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Abstract Mathematical modeling has recently been added
as a tool in the fight against cancer. The field of
mathematical oncology has received great attention and
increased enormously, but over-optimistic estimations about
its ability have created unrealistic expectations. We present
a critical appraisal of the current state of mathematical
models of cancer. Although the field is still expanding and
useful clinical applications may occur in the future,
managing over-expectation requires the proposal of alter-

native directions for mathematical modeling. Here, we
propose two main avenues for this modeling: 1) the
identification of the elementary biophysical laws of cancer
development, and 2) the development of a multiscale
mathematical theory as the framework for models predic-
tive of tumor growth. Finally, we suggest how these new
directions could contribute to addressing the current
challenges of understanding breast cancer growth and
metastasis.
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Introduction

The hallmarks of cancer include a disordered balance of
cell proliferation and cell death resulting in tumor growth,
direct tissue invasion, and metastasis. The initiation and
sustenance of carcinogenesis requires multiple steps [1],
suggesting not all breast cancers are the same [2]. Also, the
concepts of cancer stem cells [3], invasion incorporating
tumor–stroma interactions [4], and metastasis (including the
self-seeding hypothesis [5, 6]) are conceptually challeng-
ing. However, there remain significant gaps in our
understanding of breast cancer and how best to manage
the disease [7].

In addition to these more generalizable molecular and
biological concepts of malignancy, breast cancer presents
specific clinical problems of in situ disease (ductal
carcinoma in situ [DCIS], lobular carcinoma in situ),
distinct types of invasive cancer (including several different
histologic types, transcriptome subtypes, or typing based on
immunohistochemistry of estrogen receptor [ER], proges-
terone receptor [PR], and human epidermal growth factor
receptor type 2 [HER2]), and metastatic disease (again this
can be subclassified by site of metastasis to loco-regional
skin/tissues/node, visceral, or bone). The balance of expect-
ations of surgery, radiotherapy, and drug therapy improving
survival from breast cancer against the clinical reality of a
rising global (mostly female) breast cancer incidence, with
breast cancer becoming a chronic but incurable disease for
some, leaves room for significant improvements in our
understanding of the biology and hence therapy of breast
cancer.

The limitations of current strategies for managing breast
cancer have moved beyond selecting the extent of loco-
regional surgery and radiotherapy to the need to improve
the targeting of drug therapy. There remains uncertainty in
identifying those patients who will actually benefit from
targeted therapies and those for whom therapy will be
ineffective or unnecessary. Despite many years of experi-
ence with ER and PR for endocrine treatments, and more
recently HER2 or other targeted therapies, such biomarkers
still only define about 40% of patients who will be cured as
a consequence of the therapy, and there are few promising
markers of response to chemotherapy. Whether more recent
genomic technologies have an impact on clinical practice
remains to be seen [2].

At present, a large number of patients develop DCIS,
invasive, and/or metastatic breast cancer for which there are
some effective therapies, although 50% of women ulti-
mately die from breast cancer. Despite significant clinical

and research resources generating large amounts of data,
breast cancer requires a refocusing of scientific endeavor;
the mathematical and physical sciences could provide the
much needed advance.

There is a substantial literature that addresses subcel-
lular function in normal and transformed cells, but less
that examines the bigger picture of the tissue heteroge-
neity and complexity that influences nutrient diffusion,
drug diffusion, and cell migration. There is a pressing
need to extend intracellular considerations to the
physical meta-scale, including tissue architecture, and
to up-scale this to the tumor, organ, and whole body, as
well as the reverse process to account for the impact of
tissue-scale processes on smaller scales. On an individ-
ual patient basis, this may translate into understanding
the mechanisms and time-scale of cancer growth, and
consequently how much tissue to resect (and where
from); where to target radiotherapy and how local tissue
characteristics (eg, composition) affect the efficacy of
radiotherapy; how drugs, antibodies, or small molecules
are transported through tissues into neoplastic cells; and
the relationships between biological processes and
therapeutic response.

Use of Modeling Approaches

Mathematical modeling provides a rigorous framework for
understanding disease evolution and for testing biological
hypotheses. By translating biological complexity and
translating biological components of cancer development
into mathematical terms, the modeling process describes
cancer-related phenomena as a complex set of interactions
with the emerging outcome predicted by mathematical
analysis that defines the field of mathematical oncology [8].
This field is characterized by two main ideas: 1) that
mathematics can be applied to improve biomedical knowl-
edge of the disease, and 2) that biology proposes new
mathematical challenges, which generate enhanced mathe-
matical tools.

In regard to the first idea, two main approaches have
been developed. Computational oncology uses mathemati-
cal techniques to extract information from large datasets
(such as transcriptome, proteome, or imaging data) where
extensive computational resources are utilized either by
means of statistical and bioinformatics methodologies or for
the study and quantitative prediction of tumor behavior by
means of data-driven models [9, 10]. Physical oncology
views tumors as complex systems that result from bio-
physical interactions and processes. This leads to
mechanism-driven models that aim at the identification
and analysis of (bio)physical laws to quantify and predict
cancer progression.
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Experimentation with a model is performed by changing
the parameters of the system and studying the differences in
outcomes of computer simulations, as the complexity of the
models prohibits any mathematical analysis in all but the
most simplified settings. Physical modeling attempts to
provide a simplified description of reality to develop a
better understanding of the various phenomena involved in
cancer development. Both approaches are important to
advance cancer research.

A boom in mathematical studies of cancer development
occurred during the past decade [11, 12, 13•]. In this
paper, we identify key publications in mathematical/
physical oncology (principally involving solid tumors as
in breast cancer) and present a critical appraisal of the
current state of the field. We have identified eight key
topics for which we discuss the impact of modeling by
means of selected publications that exhibit inspiration,
originality, and completeness of approach and that, for
some topics, constitute most of the few valuable studies
(Table 1).

Understanding Hypoxia-Induced Phenomena

Hypoxia is a key driving force of tumor progression: tumor-
induced angiogenesis, necrosis, invasion, or anaerobic
metabolism are potential responses by tumor cells to
hypoxic conditions. Gatenby and Glawinski pioneered the
use of mathematical methods to study the influence of
hypoxia on tumor evolution. In particular, they focused on
the emergence of the anaerobic response by tumor cells to a
low oxygen supply and the evolutionary advantage that such
an adaptation may confer. By using a model of glycolysis
associated with tumor development, it was shown how
tumor growth is promoted through microenvironmental
acidification [8]. This acid-mediated invasion was pro-
posed as a simple mechanism linking altered glucose
metabolism with the ability of tumor cells to form invasive
cancers [14]. Such invasive tumors show an unstable
morphology driven by heterogeneities of the environment
due to non-uniform distribution of oxygen, captured in
more recent modeling studies by Frieboes et al. [15].

Table 1 Key topics and selected publications for understanding the mathematical modeling of cancer

Topic Major finding Selected publications Clinical importance

Hypoxia-induced
phenomena

Heterogeneous environment (eg, non-uniform
distribution of oxygen) and acid-mediated invasion
results in highly variable and complex tumor
behavior reproducing many clinical observations

Gatenby and Gawlinksi [8] (2003);
Frieboes et al. [15] (2010)

Radiotherapy,
chemotherapy

Intra-tumoral transport Hypoxic regions, providing a source of angiogenic
factors, play a crucial role in the interaction between
tumor growth and the developing neovasculature

Zheng et al. [18] (2005);
Cristini et al. [19] (2005);
Welter et al. [20] (2008)

Chemotherapy,
radiotherapy

Drug delivery Quantification of the diffusion barrier as an
explanation of poor response to chemotherapy

Frieboes et al. [22] (2009);
Sinek et al. [21] (2009)

Chemotherapy

Tumor size Predicting tumor growth and tumor size Macklin et al. [25] (2010);
Szeto et al. [24] (2009)

Imaging,
surgery

Mechanisms of tumor
progression

Invasive cancers use multiple adaptive strategies
to overcome specific microenvironmental growth
constraints

Gatenby and Gillies [29•] (2008);
Hatzikirou et al. [27] (2010)

Surgery

Interface tumor-host
tissue

Understanding and implications of tumor growth
morphology

Bru et al. [30] (2003);
Cristini et al. [31] (2003);
Bearer et al. [32] (2009)

Chemotherapy,
radiotherapy,
surgery

Cancer stem cells Implications of cancer stem cells on spatio-temporal
tumoral architecture and morphology

Enderling et al. [34] (2009);
van Leeuwen et al. [33] (2007);
Galle et al. [35] (2009)

Chemotherapy,
radiotherapy

Multiscale modeling Hybrid multiscale modeling: the next generation
of tumor models

Lowengrub et al. [13•] (2010);
Kim et al. [37] (2007);
Ramis-Conde et al. [38] (2008)

Imaging,
surgery,
chemotherapy,
radiotherapy
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Prediction of Intra-Tumoral Transport

Although oxygen gradients within the tumor bulk define
hypoxic regions of critical importance for tumor develop-
ment, more generally substrate transport within tumors
critically affects tumor growth characteristics. The effect of
nutrient supply by the vasculature of the tumor has been
modeled by Byrne and Chaplain [16] based on one of the
pioneering mathematical formulations generated to account
for nutrient diffusion and consumption [17]. This original
formulation [17] remains the basis of most current models.
Importantly, Zheng et al. [18] advanced the first model
coupling tumor growth with angiogenesis, allowing for the
identification of hypoxic regions within a tumor. Similar
formulations have been the basis of more refined and
sophisticated studies of spatially heterogeneous cell prolif-
eration and migration (eg, where microenvironmental
substrate gradients may drive tumor morphology [19]) and
have made possible the improvement of modeling drug
delivery because of a better understanding of the effects of
vascularization on tumor development [20].

Drug Delivery and Impact on Tumor Growth

Diffusion gradients of both drug and microenvironmental
substrates induce physiologic resistance, diminishing the

efficacy of drug therapy. Of particular importance is the
“diffusion barrier effect,” where diffusion gradients com-
bined with highly packed cells increase drug resistance,
which can result in a poor response to chemotherapy from a
combination of diminished drug delivery and lack of
nutrients required for cell proliferation (and drug activity).
In addition, the poorly functioning tumor-induced vascula-
ture can also prevent drugs from reaching the tumor. The
studies of Sinek et al. [21] and Frieboes et al. [22]
investigate in detail the modification of drug and substrate
gradients within tumors and predict drug penetration
correlated with drug efficacy (Fig. 1).

Prediction of Tumor Size

Resection of primary breast cancer remains the most
effective therapy. Breast conservation raises the issue of
how to identify the tumor margin, as margins are difficult
to detect either by eye or by imaging techniques,
reflecting the lack of encapsulation and the low density
of tumor cells migrating into the breast stroma. Involved
or close tumor margins on surgical resection correlate
with tumor recurrence and poor clinical outcomes. A
similar problem exists for other cancers (eg, glioma)
where margin detection is also challenging. An ambitious
goal of mathematical models has been the prediction of

Fig. 1 Validation of hypothe-
sized functional relationships in
a computational model of breast
cancer drug response quantify-
ing the important effect of
physiologic resistance intro-
duced by diffusion gradients of
cell substrates and drug in three-
dimensional tumor tissue. The
graphs show cell viabilities as a
fraction of control versus doxo-
rubicin (Dox) concentrations in
A, drug-sensitive (MCF-7 WT)
and B, drug-resistant (MCF-40F)
cells (glucose concentration=
2.0 g/L and time=96 h of drug
exposure). The in vitro mono-
layer without diffusion gradients
is reported along with three-
dimensional in vitro tumor
spheroids with diffusion gra-
dients. Predictions made by the
model are based on hypothesiz-
ing the resistance introduced by
the gradients onto the monolayer
data. (Adapted from Frieboes et
al. [22]; with permission)
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this “invisible” margin. Swanson et al. [23] developed a
model of glioma growth by taking into account the
preference of glioma cell migration along fiber tracks.
By combining preoperative and postoperative imaging
data with this tumor growth model, Szeto et al. [24]
reported an accurate prediction of patient survival, fitting
the model parameters for proliferation and migration,
which could not entirely correlate with realistic values.
An agent-based model was recently developed that
considered in vivo cell-level data to predict clinical
evaluation of breast tumor size without adjusting the
model parameters [25]. This novel approach is one of the
few trying to address the issue of size prediction, which
remains unresolved.

Key Mechanisms of Tumor Growth and Evolution
of Malignancy

The evolutionary transformation of healthy cells into cancer
cells includes genetic mutations and epigenetic mechanisms
involving gene up-regulation or down-regulation according
to microenvironmental selective pressure [26]. The biolog-
ical literature relies heavily on the importance of accumu-
lation of mutations as the driving force toward malignancy.
However, random genetic mutations may not explain
recurrence, and the synergy of tumor substrate alterations
with a specific cell mechanism (the migration/proliferation
dichotomy) may indeed be responsible for recurrence, as
proposed for glioma [27]. Although the influence of the

microenvironment on tumor growth has been considered by
several authors (Anderson et al. [28], Zheng et al. [18],
Cristini et al. [19]), one of the most exciting works of how
tumor microenvironment induces the emergence of “fit”
phenotypes has been conducted by Gatenby and Gillies
[29•]. Their work provides a theoretical framework where
tumor adaptive strategies to circumvent microenvironmen-
tal growth constraints may result from genotype and
phenotype heterogeneity.

Interface of Tumor-Host Phenomena

There is a consensus that most tumor cell activity is located
at the interface between tumor and host tissue. High
proliferation rates are observed close to the tumor margin,
and invasive tumor cells escape from the margins of the
tumor bulk. Therefore, a modeling effort has focused on
this tumor-host tissue interface (Fig. 2). A mathematical
characterization of the interface in terms of scaling
exponents from studying various boundary microstructures
in vivo and in vitro has been derived by Bru et al. [30].
These exponents provide information about the dynamics
of the tumor interface, with the key result that all tumor
interfaces may exhibit the same dynamics. Further elucida-
tion is provided by a physical model that predicted the
“fingering” morphology of invasive tumors into the
surrounding tissues as a mechanical instability associated
with cell-to-cell adhesion modeled by a surface tension
[31]. One of the follow-up developments from the same

NV

Protruding
tumor front

Aged vessels

Brain

A B

NV

Protruding
tumor front

Brain

Fig. 2 Multiscale modeling has been considered in more detail for
glioma (rather than breast cancer), where models predict that tumor
invasiveness and morphology is strongly influenced by diffusion
gradients of cell substrates. A, Detail of computer-simulated glioma
histology showing protruding tumor front moving up toward extra-
tumoral conducting neovessels (NV), supporting the hypothesis that
diffusion gradients maintained by the neovasculature drive collective
tumor cell infiltration in addition to determining the tumor structure.
Aged vessels inside the tumor have thicker walls and thus are assumed
to provide fewer nutrients than the thin-walled neovasculature at the

tumor periphery. Conducting vessels are shown in red, and non-
conducting vessels are shown in blue. B, Histopathology from one
patient showing tumor front pushing into more normal brain. Note the
demarcated margin between tumor and brain parenchyma and the
green fluorescent outlines of larger vessels deeper in the tumor.
Neovascularization (NV) at the tumor–brain interface can be detected
by red fluorescence from the erythrocytes inside the vessels. Bar
indicates a scale of 100 micrometers. (From Frieboes et al. [45]; with
permission.)
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group quantified the link between cellular and molecular
perturbations and the changes in tumor morphology that
may correspond to different stages of tumor progression
[32].

Mathematical Models of Stem Cells in Cancer

Tumor-initiating cells (also called cancer stem cells) are
cancer cells found within epithelial tumors or hematologic
cancers that possess the ability to promote tumorigenesis
and metastases. These cells are typically thought of as
having unlimited proliferative potential and the ability to
give rise to all cell types found in a particular cancer. The
recognition of leukemic stem cells prompted further
research into other types of cancer, including breast and
colorectal cancer. The evolution of colon cancer is based on
the behavior of cancer stem cells, including the influence of
cancer stem cell activity on crypt dynamics and eventually
on colon cancer development [33]. The influence of cancer
stem cells on gliomas concluded that the combined effect of
progeny proliferation, apoptosis, and motility rates may
confer counterintuitive tumor growth rates [34]. Recent
modeling work by Galle et al. [35] and Sottoriva et al. [36]
have elucidated the impact of stem cells on tumor tissue
morphology.

Multiscale Modeling of Tumor Growth

Tumor growth is a result of events at the intracellular (eg,
signaling pathways), intercellular (eg, cell-cell adhesion/
communication), and tissue (eg, mechanical pressure due to
host constraints) scales. Mathematical and physical theories
provide tools for the analysis of such multiscale phenom-
ena, where the outcome of the interplay between processes
at various scales is not trivial. So far, no complete
mathematical framework exists to allow the rigorous
connection of these multiple scales. A detailed review of
the problem of multiscale tumor modeling discussed some
recents advances and the difficulties of bridging the scales
[13•]. Most current work focuses on linking two scales. For
example, one interesting approach consists of using hybrid
modeling techniques to couple cellular (individual cells)
and tissue (described as a continuum) scales [37], whereas a
more common way to couple molecular (signaling path-
ways) and cellular (individual cells) scales has been derived
to model the epithelial-mesenchymal transition for invasive
processes [38].

How Good Are the Current Models?

The current literature demonstrates the extended variety of
approaches for modeling cancer, including studies focused

on breast cancer (eg, to better understand DCIS morphol-
ogy and progression [39] or predict tumor size [25]) with
more direct surgical applications. The evaluation of the
quality of a particular model is a difficult task, a situation
further exacerbated when one realizes that different
mathematical approaches can reproduce the same experi-
mental results [12]. The choice of an adapted modeling
approach has to be dictated by both the scale of interest
and the level of detail that is required for a particular
problem. This sounds like a simple criterion when one
focuses on one specific aspect of cancer; however,
modelers face significant difficulties when trying to
account for phenomena at various spatio-temporal scales.
A good model should offer predictions at multiple levels
of detail that can be tested experimentally to ascertain the
ability of the model to provide true insights into the
biological problem.

Thus far, a common direction in mathematical oncology
has been the development of models that focus on potential
applications for in vitro experimentation. This approach
helps simplify all steps to develop a model (ie, integration
of the main mechanisms, calibration, comparison, and
validation). However, the approach is limited by the
simplification of the in vivo reality, as phenomena observed
in vitro under controlled conditions may be oversimplified
when compared with the complexity of the in vivo
environment, which plays a major role in cancer develop-
ment. Recent studies have increasingly focused on the
integration of the physiologic environment with tumor
progression, which is a primary goal of physical oncology.
In both in vitro and in vivo studies, a major difficulty lies in
the comparison of the theoretical results obtained from
modeling with experiments.

Tumor models are based on equations that describe,
according to the level of detail and sophistication, tumor
growth, nutrient evolution, vessel distribution, extracellular
matrix structure and composition, anatomic geometries, and
so forth. They require experimental data of various kinds to
evaluate the model parameters (eg, proliferation rate,
diffusion coefficient of chemical within tissues) for cali-
bration, and to validate the outcome. However, real time
acquisition and extraction of most of these data is an
extremely difficult task, which is further exacerbated for
patient clinical data. Although spatio-temporal measure-
ments are required, the best current scenarios essentially
provide static (eg, snapshot of histopathology stainings,
MRI scans) and partial information that has to be
extrapolated for a relevant comparison. A necessary step
forward lies in a mutual understanding of this difficulty by
modelers, experimentalists, and clinicians through greater
interactions.

Physical oncology strives to uncover and delineate the
basic laws of tumor growth from cancer biology and to
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include the relevant mechanisms in the mathematical
models. Although current models have proven to be helpful
for addressing particular questions in cancer development,
such as those previously described in this article, the
models to date may not include all the important mecha-
nisms but can help with their identification, as proposed in
a recent work by Tektonidis et al. [40] for glioma.
However, different regulation mechanisms can equally fit
with experimental results [35], which reinforces the need
for feedback loops between modelers, experimentalists, and
clinicians.

Mathematical and physical modeling has been provid-
ing an increasing contribution to the war on cancer.
However, achieving the minimal requirements for clinical
applications remains a challenge. A key question is how
models at disparate scales can be combined and extended
to help address practical clinical questions such as where
and what to resect, how to optimize radiotherapy, or
when and how to administer chemotherapy for maximal
clinical effect. In the past, over-optimistic estimations
about the future of the field created unrealistic expect-
ations. Researchers had emphasized that mathematical/
physical models could reach such a level of completeness
that they would be able to predict the evolution of the
disease and conduct the corresponding modeling experi-
ments, supporting the idea that in the course of time,
mathematical and physical oncology could evolve as a
science analogous to meteorology. Although models have
become more sophisticated, the development of clinically
relevant models remains a formidable challenge.

Future Directions for Physical Oncology

There are two key directions in which physical oncology
should develop that are relevant to cancer in general but
are also of particular interest in addressing specific
clinical questions in breast cancer. These directions are
the identification of fundamental biophysical laws gov-
erning tumor progression and the development of a
multiscale modeling framework capable of describing
the fundamental laws.

Identification of Fundamental Biophysical Laws

Mathematical modeling and analysis of cancer growth
should be able to incorporate the intrinsic cellular param-
eters (see Table 2) involved in a growing tumor. In the field
of engineering, physics has provided a mathematical
framework based upon fundamental rules. For example,
these rules involve generic conservation law equations
where the description of the material properties is
accounted for by constitutive laws. Similarly, we need to

discover the fundamental biophysical and biomechanical
mechanisms involved in cancer biology to generate the
equivalent of constitutive laws that dictate tumor evolution
in the context of tumor growth (eg, by accounting for the
extracellular matrix influence [41]). The abundance of
biomedical data should support a mature development
toward this direction. A perspective of this field in the
future, which is both plausible and viable, is the loop-model
biological hypothesis, which states that models that can test
biological hypotheses can also produce novel theories.
Physical oncology may become a platform for the formu-
lation of novel biological hypotheses. The discovery of
novel intrinsic biophysical laws would allow for a more
complete picture of breast (and other) cancers and support
the prediction of tumor growth.

Development of a Physical Multiscale Framework

The multiscale nature of cancer requires the development of
sophisticated mathematical tools [25, 42]. However, many
putative multiscale frameworks have simply combined
models independently derived at multiple scales and linked
them together in a phenomenologic rather than logical
manner. There remains a significant need to bridge the
interacting processes between the subcellular, cellular, and
tissue scales. Therefore, multiscale modeling is one of the

Table 2 Components to consider for clinically relevant modeling of
breast cancer

Cellular parameters

Proliferation

Apoptosis

Senescence

Cell adhesion

Cell migration

Tissue necrosis

Neoplastic processes

Understanding the development of precancerous lesions

Understanding DCIS

Understanding the DCIS / invasive change

Invasive breast cancer and metastasis

Differences between local recurrence and invasion vs metastasis

Differences between metastasis to bone (usually ER positive) vs
metastasis to soft tissues (usually ER negative)

Therapeutic strategies / areas

Guiding surgical excision

Treatment planning for radiotherapy

Targeting stroma, vasculature and other nonmalignant cells

Understand/predict the process of recurring disease

Understand/predict the metastatic process

Target chemotherapy to those who will benefit

DCIS ductal carcinoma in situ; ER estrogen receptor.
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most important challenges of the next decade for physical
oncology, and it should be inspired by existing tools from
physics that faced (and sometimes successfully resolved)
similar problems [43•, 44].

Clinical Implications

The evolution of physical oncology in these directions will
help breast cancer researchers address critical therapeutic
problems (Table 2). These include identifying biophysical
laws that dictate the transition from an in situ neoplastic
process, such as DCIS, to an invasive tumor and the
importance of tumor–stroma interactions. Most published
work has addressed these issues in gliomas (rather than
breast cancer), where a similar transition depends on
oxygenation levels that favor either invasive or prolifer-
ating behaviors [27, 45]. The study of processes occurring
at the interface between the tumor and the host tissue
requires a high level of mathematical sophistication. The
effect of host tissue stresses (tissue scale) on a single
tumor cell (cellular scale), or the impact of single cell
mesenchymal motion leading further to collective migra-
tion impacting on the tumor morphology, are among the
questions that multiscale mathematical tools will be
required to address.

The complexity required to describe neoplastic processes
(see Table 2) in mathematical terms mainly lies in the
involvement of processes at multiple physical and temporal
scales. Such a multiscale mathematical framework is
required for an understanding of metastasis, from the loss
of cell-cell adhesive forces resulting from disrupted
molecular pathways and cell intravasation and extravasa-
tion events via the vasculature or lymphatics to establishing
secondary tumor growth sites.

Therapeutic strategies (see Table 2) may benefit from
these developments in physical oncology. Multiscale
modeling could assist in guiding the local/regional thera-
pies, by simultaneously predicting the bulk tumor size and
location and identifying the most probable locus of strands
of invasive cells and enhanced treatment planning of
radiotherapy target volumes. Moreover, mathematics could
assist in understanding the reasons for radiotherapy or
chemotherapy resistance by identifying the responsible
biophysical bases.

Conclusions

In this paper, we have identified fundamental topics and
selected key works in mathematical oncology. A critical
view of the current state-of-the-art led us to reconsider the
future directions of this field as applied to breast cancer. In

particular, we believe that future efforts should focus on
deciphering the essential biophysical laws that dictate
tumor growth. Moreover, a multiscale mathematical theory
is required to provide the appropriate framework for
developing predictive mathematical models. Finally, we
are confident that the development of these directions can
help with the comprehension of current challenges and
provide solutions for breast cancer.
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