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MHC class II (MHC-II) molecules are present on antigen presenting cells (APCs) and these
molecules function by binding antigenic peptides and presenting these peptides to antigen-
specific CD4+ T cells. APCs continuously generate and degrade MHC-II molecules, and
ubiquitination of MHC-II has recently been shown to be a key regulator of MHC-II expres-
sion in dendritic cells (DCs). In this mini-review we will examine the mechanism by which
the E3 ubiquitin ligase March-I regulates MHC-II expression on APCs and will discuss the
functional consequences of altering MHC-II ubiquitination.
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Major histocompatibility complex class II molecules (MHC-II)
function by presenting processed antigens, derived primarily
from exogenous sources, to CD4+ T-lymphocytes. MHC-II mol-
ecules thereby are critical for the initiation of the antigen-specific
immune response. MHC-II is constitutively expressed by immune
cells including B cells, monocytes, macrophages, and dendritic
cells (DCs) and even non-hematopoietic cells can express MHC-II
under inflammatory conditions. While each of these MHC-II-
bearing cell types function as “professional” antigen presenting
cells (APCs), DCs have received much attention as APCs since
it is these APCs that are able to stimulate naïve antigen-specific
CD4+ T cells. Tissue-resident DCs have often been referred to
as the “sentinels of the immune system,” and it is their job
to continuously sample their microenvironment by internaliz-
ing extracellular fluid and generating peptide-MHC-II complexes
(pMHC-II) that can potentially interact with antigen-specific T
cells (1). While resting (immature) DCs do express considerable
amounts of pMHC-II on their surface, stimulation of DCs by a
variety of inflammatory stimuli results in increased expression
of pMHC-II at the plasma membrane by at least two mecha-
nisms: (1) by increasing antigen proteolysis/peptide binding to
MHC-II (2, 3) and (2) by promoting pMHC-II movement from
intracellular antigen processing compartments to the cell surface
(4, 5). Activation of DCs transiently increases MHC-II synthe-
sis and increases macropinocytosis. However, within hours of
the activation signal CIITA synthesis (and thus MHC-II synthe-
sis) is severely reduced and macropinocytosis is terminated (6,
7). Together, these processes poise the recently activated DC to
generate large amounts of pMHC-II with antigens derived from
pathogens at the site of infection, thereby enhancing their ability
to stimulate antigen-specific CD4+ T cells.

At steady-state, the rate of generation of pMHC-II complexes
in immature DCs is equal to the rate of pMHC-II degradation.

It is regulation of pMHC-II degradation that is the topic of this
mini-review. Recently, it has been shown that ubiquitination par-
ticipates in pMHC-II degradation (8, 9). MHC-II is ubiquitinated
on a single conserved lysine in the cytoplasmic domain of the
MHC-II β-chain present in mouse I-A and I-E molecules as well
as human HLA-DR molecules, heretofore referred to as K225. The
membrane-associated RING-CH-domain containing E3 ubiqui-
tin ligase March-I is the sole E3 ligase responsible for the ubiquiti-
nation MHC-II in B cells and is the primary E3 ligase responsible
for ubiquitination of MHC-II in DCs (10). March-I expression is
highly enriched in secondary lymphoid tissues such as spleen and
lymph node (11) and appears to be especially prominent in APCs
such as B cells (10), DCs (12–14), and monocytes (15).

Expression of March-I leads to the down-regulation of sev-
eral surface molecules including MHC-II, CD86, and transferrin
receptor (TfR) (11, 16). In March-I-deficient B cells, MHC-II
expression is much higher than in control B cells, and this effect was
mediated by ubiquitination of K225 in the I-A β-chain (10). Gain-
of-function experiments in which March-I was overexpressed
in MHC-II-expressing HeLa-CIITA cells or human monocyte-
derived DCs (MoDC) resulted in profound down-regulation of
surface HLA-DR level in these cells (14, 16). Our own loss-of-
function experiments revealed that expression of MHC-II was
significantly higher on immature DCs isolated from March-I KO
mice than on DCs isolated from WT mice. Essentially iden-
tical results were obtained using DCs isolated from MHC-II
K255R ubiquitination-mutant mice, demonstrating that ubiqui-
tination of MHC-II K225 by March-I regulates MHC-II surface
expression (14).

Whereas March-I is constitutively expressed in resting profes-
sional APCs, March-I can be induced or repressed by different
stimuli both in vitro and in vivo. Infection of mouse macrophages
with Francisella tularensis induces the ubiquitin-dependent
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degradation of MHC-II by promoting IL-10-dependent March-I
expression (17). IL-10 up-regulate March-I expression and MHC-
II ubiquitination not only in mouse macrophages but also in
human monocytes and mouse B cells (18, 19). Curiously, although
most MHC-II-expressing APCs constitutively express March-I,
interferon-gamma-treatment of monocytes, which leads to MHC-
II expression, does not result in March-I expression unless the cells
are also treated with IL-10, highlighting the complexity of March-I
expression in APCs. Curiously, the ability of IL-10 to downregulate
MHC-II expression in DCs is due to induction of March-I (15, 20).
Perhaps more important than the up-regulation of basal March-
I expression, March-I mRNA expression is significantly reduced
when resting APCs are stimulated with toll-like receptor (TLR)
signals such as LPS, PGN, poly (I:C) (16, 21). The March-I protein
has a half-life of less than 30 min, potentially regulated by auto-
ubiquitination (12), therefore the termination of March-I mRNA
expression leads to a rapid drop in March-I protein levels (16). The
reduction of March-I protein expression upon DC activation has
profound consequences for MHC-II ubiquitination, for upon DC
activation MHC-II ubiquitination is dramatically reduced (8–11,
21). As will be discussed below, it is the activation-induced ter-
mination of March-I expression that primarily regulates MHC-II
surface expression in DCs.

The available evidence shows that ubiquitination by March-I
is an important regulator of MHC-II degradation. Simple overex-
pression of March-I dramatically reduces the survival of MHC-II
molecules in HeLa-CIITA cells and in B cells (10, 14, 16). In addi-
tion, studies in mutant mice have shown that surface MHC-II
expression is higher and the half-life of MHC-II is significantly
prolonged in B cells isolated from March-I KO mice as compared
to WT mice (10). A similar role for human March-I in regulation
of HLA-DR expression MoDCs has also been described (16). We
have shown that surface pMHC-II complexes on March-I KO DCs
or K255R ubiquitination-mutant immature DCs are considerably
more stable than those in WT DCs and kinetic analyses demon-
strated that ubiquitination directly affects the rate of degradation
of surface pMHC-II (14). Limiting lysosomal proteolysis delays
March-I-induced MHC-II degradation in DCs (9), suggesting that
ubiquitinated MHC-II is degraded in late endosomes/lysosomes
in these cell types.

In immature DCs, a relatively large pool of MHC-II is present
in intracellular antigen processing compartments. During TLR-
mediated DC activation many of these MHC-II molecules traffic
to and accumulate on the plasma membrane (3). Maturation of
DCs not only inhibits fluid-phase macropinocytosis in DCs (22,
23), but also inhibits the kinetics of MHC-II endocytosis from the
cell surface in human MoDCs (6). The findings that MHC-II is
(1) ubiquitinated in immature DCs, (2) internalizes efficiently in
immature DCs, and (3) accumulates intracellularly in immature
DCs (but not mature DCs) has led to speculation that ubiquiti-
nation regulates MHC-II endocytosis in DCs. It has been shown
that anti-MHC-II mAb accumulate intracellularly in WT imma-
ture DCs but not in K255R ubiquitination-mutant immature DCs
(8, 9, 14), a finding that is consistent with the hypothesis that
ubiquitination regulates MHC-II endocytosis.

However, the role of ubiquitination in enhancing the kinetics
of MHC-II internalization remains controversial. De Gassart et al.

have reported that MHC-II internalization was reduced by 50%
in MoDCs in which March-I expression was reduced by trans-
fected siRNA (16). By contrast, our own studies in both human
and mouse DCs have shown that while MHC-II endocytosis is
slightly more rapid in immature DCs than in mature DCs, there is
no difference in the kinetics of MHC-II endocytosis in DCs from
WT, March-I KO, and MHC-II K255R ubiquitination-mutant mice
(14). Furthermore, analysis of March-I-deficient B cells revealed
that the internalization rate of MHC-II in March-I KO B cells was
similar to that in WT B cells, demonstrating that MHC-II ubiq-
uitination is not required for internalization of MHC-II in B cells
(10). We have also examined the kinetics of endocytosis of MHC-
II in HeLa-CIITA cells expressing (or not) March-I. In agreement
with our results in DCs, we found no difference in the rate of
MHC-II endocytosis in HeLa-CIIA cells expressing GFP alone or
GFP-March-I, demonstrating that ubiquitination of MHC-II does
not affect the kinetics of MHC-II endocytosis in DCs (14). These
data showing that ubiquitination does not affect MHC-II endo-
cytosis rate are also consistent with similar types of experiments
showing that ubiquitination profoundly affects the intracellular
distribution of fibroblast growth factor receptor 1 and epidermal
growth factor receptor but does so without affecting the kinetics
of receptor endocytosis (24, 25).

Despite the significant effects of March-I on pMHC-II ubiq-
uitination and pMHC-II localization, we do not yet have a clear
understanding of how ubiquitination actually regulates the stabil-
ity of pMHC-II complexes. Recently it has been found that the
MHC-II polyubiquitin chain length is different in DCs and in B
cells and that longer polyubiquitin chains (such as those present
in DCs) promote more efficient MHC-II lysosomal targeting (26).
How polyubiquitin chain length is regulated in APCs (whether by
diminished ubiquitination or enhanced activity of deubiquitinat-
ing enzymes) remains to be determined. Clearly ubiquitination of
MHC-II regulates MHC-II surface expression, and while our own
data argues that ubiquitination does not directly affect pMHC-II
endocytosis rate, the possibility exists that ubiquitination affects
MHC-II surface expression by regulating the ability of pMHC-II to
recycle back to the plasma membrane after endocytosis. pMHC-II
complexes continuously internalize and recycle from early endo-
somes to the plasma membrane and back again (27). While analysis
of internalization rate data has suggested that pMHC-II recy-
cling rates are different in immature DCs and mature DCs (6),
we have been unable to find direct experimental data to support
this theory. We have recently shown that internalized pMHC-II
enters into elongated Arf6+ Rab35+ tubular recycling endosomes
and efficiently recycles back to the plasma membrane in HeLa-
CIITA cells as well as in APCs (28). Although a direct link between
pMHC-II recycling and ubiquitination has not been established,
it is curious to note that overexpression of March-I promotes the
re-distribution of MHC-II from early endocytic compartments to
terminal lysosomes (16) and also that MHC-II co-localizes with
recycling TfR+ endosomes more in March-I-deficient B cells as
compared to WT B cells (10). Furthermore, overexpression of the
related MARCH family member MARCH-8 alters the itinerary of
proteins internalized by clathrin-independent endocytosis from
recycling endosomes to terminal lysosomes (29), leading to the
possibility that ubiquitination of pMHC-II by March-I serves to
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limit recycling and promote lysosomal degradation of pMHC-II
complexes.
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