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Active contour models are always designed on the assumption that images are approximated by regions with piecewise-constant
intensities.This assumption, however, cannot be satisfiedwhen describing intensity inhomogeneous images which frequently occur
in real world images and induced considerable difficulties in image segmentation. Amilder assumption that the image is statistically
homogeneous within different local regionsmay better suit real world images. By taking local image information into consideration,
an enhanced active contour model is proposed to overcome difficulties caused by intensity inhomogeneity. In addition, according
to curve evolution theory, only the region near contour boundaries is supposed to be evolved in each iteration. We try to detect the
regions near contour boundaries adaptively for satisfying the requirement of curve evolution theory. In the proposedmethod, pixels
within a selected region near contour boundaries have the opportunity to be updated in each iteration, which enables the contour to
be evolved gradually. Experimental results on synthetic and real world images demonstrate the advantages of the proposed model
when dealing with intensity inhomogeneity images.

1. Introduction

Image segmentation is one of the fundamental tasks in the
fields of computer vision and image processing. It has been
successfully applied to a variety of realistic problems, such as
medical imaging, object recognition, and synthetic aperture
radar (SRA) image understanding [1–4]. Currently, various
image segmentation techniques have been proposed [5–8],
such as histogram thresholding, clustering [7], active contour
models [8], and graph-cut methods [5]. However, due to the
complexity of several images, designing a robust and efficient
segmentation method is still a common goal and challenge
for researchers.

Since the introduction of snakes, active contour models
(ACMs) [8] have been applied to many fields, in which
image segmentation is one of themost important applications
[9–14]. The core part of ACMs for image segmentation is

that a curve which evolves subject to image characteristics
is employed, and then the desired object can be extracted
by optimizing an energy function. Nevertheless, the perfor-
mance of ACMs which use energy functions on the basis of
edge information is inadequate, as only objects with edges
defined by gradient can be detected [15–18].

Enhanced techniques have been proposed to overcome
the limitations of traditional ACMs, especially on designing
complex region-based energy functions. Region-based mod-
els [19–25] utilize not only the image information near the
evolving contour, but also the image statistics information
deriving from both sides of the contour. They are less
sensitive to noise and more likely to detect weak boundaries
when compared to edge-based models. In the Mumford-
Shahmodel [20], an image is decomposed into some regions,
and then each region is approximated by a smooth function.
However, it is difficult to minimize the function which is
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not convex in generality. The Chan-Vese (CV) [9] model was
proposed based on a region-based energy function inspired
by a simplified Mumford-Shah function. The CV model can
detect the object with boundaries not necessarily defined
by gradient. However, the computational cost of the CV
model is rather expensive due to the complicated procedures
involved, which limits its application. After the CV model, a
broad range of variations have been proposed for reducing
computational cost [21].

Traditional ACMs are called piecewise-constant models,
since they are designed on the assumption that image inten-
sities are statistically homogeneous of each region over the
whole image. However, the assumption is so strict for real
world imageswhich are not always statistically homogeneous.
In fact, intensity inhomogeneity is frequently observed in
real world images and challenging in image segmentation.
Due to technical limitations or artifacts introduced by the
object being imaged, intensity inhomogeneities often occur
in real world images from different modalities andmay cause
considerable difficulties in image segmentation. For example,
intensity inhomogeneity inmagnetic resonance (MR) images
arises from the nonuniform magnetic fields produced by
radio-frequency coils as well as from variations in object
susceptibility. It often appears as the variation of intensities
from the same tissue type over the locations in an image. In
addition, since aurorae are often imaged at night, intensity
inhomogeneity in aurora images is usually due to technical
limitations of sensor. Segmenting such MR and UVI images
has been a challenge. Without an effective preprocessing
step such as intensity inhomogeneity correction or histogram
equalization, segmentation is difficult to implement.

To deal with intensity inhomogeneity, an effective way
is taking local information of the segmented image into
account. Because of using local region information, the
distance regularized level set evolution (DRLSE) model can
cope with intensity inhomogeneity [14]. In addition, some
relatedmethodswere proposed in [25–27] which have similar
capability of handling intensity inhomogeneity as the DRLSE
model. However, these local information based methods are
sensitive to initial condition to some extent, which holds back
their practical applications.

Fuzzy logic which has the ability to flexible process
information is widely studied and successfully applied in
many real applications [28–30]. The fuzzy logic provides a
balanced technique with a strong ability to reject “weak” local
minima. Fuzzy energy-based active contourmodel (FAC)was
proposed by Krinidis and Chatzis [31], which first combines
fuzzy logic with the active contour methodology. Fuzzy
active contour models have a strong ability to reject local
minima and can detect objects with smooth or discontinu-
ous boundaries. Besides, to reduce the computational cost,
the associated Euler-Lagrange equations were replaced by
pseudo-level set functions.Thus, fuzzy active contourmodels
have the properties of less sensitivity to initial conditions and
high computation speed. Some related methods which have
similar capability of rejecting local minima as the FACmodel
were proposed in [26, 28, 31].

Although fuzzy active contour models have made great
progress, they still have some disadvantages. (1) Traditional

fuzzy active contour models fail to process images with
intensity inhomogeneity by using distinct means of pixel
intensities, one representing the objects region and the other
representing the background. (2)The real intention of ACMs
is to evolve the region near contour boundaries, which
cannot be achieved by the traditional fuzzy active contour
models. In fuzzy active contour models, the membership
degrees of all the pixels are updated at each iteration, which
may cause incorrect results, especially when the contour is
not continuous enough [28]. To deal with the difficulties
caused by intensity inhomogeneity, a partition-based fuzzy
active contour model is proposed for image segmentation.
In particular, the following techniques are introduced. (1)
By introducing image local characteristics, distinct means of
pixel intensities are replaced by spatially varying ones which
is better suited for images with intensity inhomogeneity. (2)
Regions near contour boundaries are detected with the help
of shadowed sets. Only the pixel within the selected region
has the opportunity to be updated, which enables the contour
to be evolved gradually.Themain advantages of the proposed
model can be concluded as (1) computational simplicity (the
calculation of each step only includes the computation of
pixels within the region near the contour boundary); (2)
flexibility (it has less sensitivity to initial conditions with
the help of fuzzy technique); (3) being suitable for images
with intensity inhomogeneity by considering image local
characteristics.

The rest of this paper is organized as follows. In Section 2,
themain ideas of the proposedmodel and ourmotivationwill
be introduced. Section 3 will describe the proposed model
in detail. In Section 4, experimental results on synthetic
images,medical images, and natural imageswill be described.
Conclusions will be drawn in Section 5.

2. Motivation

The basic idea of traditional ACMs is to look for the partition
of a given image 𝐼 into two regions which have distinct
means of pixel intensities, one representing the objects region
and the other representing the background. First, a random
initial partition of the image is provided.This initial partition
defines a curve 𝐶 that will be iteratively evolved according
to the image characteristics in the image domain Ω by
a minimization process. The evolving curve 𝐶 defines a
boundary of the segmentation region. The object to be
detected is represented by the region inside 𝐶, while the
background is represented by the region outside𝐶. In ACMs,
the segmentation process is defined as the minimization of
the distances between pixels and cluster prototypes, taking
into account the length term as a regularization term.

The segmentation result of traditional ACMs is highly
dependent on initial conditions. Soft computing technique
which has the ability to flexibly process information has been
successfully applied in many real applications [28–30], but
not in active contour methods. Fuzzy energy-based active
contour model (FAC) was proposed by Krinidis and Chatzis
[31], which first combines fuzzy logic with the active contour
methodology. In the FAC model, the segmentation process
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is defined as the minimization of a fuzzy energy function
[26, 28, 31]:
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where 𝑐
1
and 𝑐
2
are the average intensities of regions inside

and outside of the evolving curve 𝐶, respectively, (𝑥, 𝑦) is
the spatial coordinate of a pixel, 𝑢(𝑥, 𝑦) is the membership
degree of the pixel (𝑥, 𝑦) belonging to the inside of 𝐶,𝑚 ≥ 1
is the fuzzy coefficient, 𝐼(𝑥, 𝑦) is the gray value of the pixel
(𝑥, 𝑦), and 𝜆
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The first term in (1) is the length term, which accounts for
smoothing the curve. 𝜇 is used to control the effect of the
length term. According to [26, 28, 31], the length term is not
important for a clean image. For simplicity, without losing the
generality, the length term has not been considered during
minimizing the fuzzy energy function. 𝜆

1
and 𝜆

2
are used

to control the weights of the distances between pixels and
average prototypes of the image regions inside and outside𝐶,
respectively. 𝜆
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fixed and minimizing (1), the member-

ship degree of each pixel is computed as follows:
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Fuzzy active contourmodels have a strong ability to reject
local minima and can detect objects with smooth or dis-
continuous boundaries. Besides, to reduce the computational
cost, the associated Euler-Lagrange equations were replaced
by pseudo-level set functions. Although fuzzy active contour
models have made great progress, they still have some diffi-
culties in processing images with intensity inhomogeneous,
which will be analyzed as follows.

2.1. Motivation of Introducing Local Region Information.
ACMs are called piecewise-constant models, since they are
designed on the condition that images are approximated
by regions with piecewise-constant intensities. It can be
seen from (2) that the prototypes are constant, representing
the average intensities of pixels within regions inside and

outside of the curve, respectively. However, regions are not
always statistically homogeneous in real world images. It is
inappropriate to employ constant prototypes for describing
the image where the intensity distributions overlap between
the object region and the background.

Figure 1 shows the segmentation result of the FAC model
on a synthetic image with intensity variation. The segmenta-
tion result shows that certain parts of the object with weak
intensities are submerged in the background. It is impossible
for the FAC model to obtain a satisfactorily result on the
synthetic image with intensity variation. Figure 2(b) depicts
a 10 × 10 window shown in a red square extracted from
Figure 2(a).The intensity of pixels within this window ranges
from 60 to 112. The average intensities of regions inside and
outside of the curve obtained by the FAC model are 74.96
and 24.89, respectively. Since the intensities of pixels within
this window are more similar to those in the region inside
the curve, all the pixels within this window are partitioned
into the object region, which will incorrectly partition some
pixels within the background into the object region.

Naturally, each pixel has connectionswith its neighbors to
some extent and is reasonable to be approximately described
by taking its local immediate neighborhood into consid-
eration. Generally, the local information is an important
feature to describe the relationship of pixels within a local
region. For a point 𝑥, its intensity can be approximated by
a weighted average of the pixel intensity 𝐼(𝑦) where 𝑦 is
the neighborhood of 𝑥. By introducing image local charac-
teristics, a mild assumption that the image is approximated
by regions with piecewise-constant intensities within a local
region is more suitable for real world images. In this study,
we try to incorporate local region information into the
original piecewise-constant models for processing the image
with intensity inhomogeneity. The proposed technique is
described in Section 3.1.

2.2. Motivation of Detecting the Contour Boundary. In fuzzy
active contour models, the membership degree measures the
degree of a pixel belonging to the object region. The range
of the membership degree is [0, 1]. For a binary classification
problem, pixels with membership degrees equal to 0.5 form
the contour boundary. If the membership degree of a pixel is
larger than 0.5, the pixel belongs to the object region. If the
membership degree of a pixel is smaller than 0.5, the pixel
belongs to the background region. A large uncertainty may
exist when assigning pixels with membership degrees near
0.5, because they have nearly the same degrees of belonging
to the object region and the background. Thus, it is natural
to make great effort to process pixels with large uncertainties
within certain selected region of interest.

In addition, ACMs use a high order function to define
the contour boundary and originally intend to evolve the
region near the contour boundary. However, in traditional
fuzzy active contour models, membership degrees of pixels
are updated over the whole image domain in each iteration.
These approaches fail to only evolve the regions near contour
boundaries.Therefore, it is necessary to design a narrow band
strategy for making the contour evolve gradually.
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(a) The synthetic image (b) The FAC model result

Figure 1: The segmentation result of the FAC model on a synthetic image.
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104

102 103 104 105 107 108 109 110 109 109

101 102 103 104 106 108 109 109 110 109

100 100 102 103 105 107 108 109 110 109

99 99 101 102 104 106 107 108 110 110

96 97 99 102 104 107 109 110 112 112

676565 67 696860 636260

73 7265 65

676772

65 74

72

65

71

6565 6565

67 69

72

65 66

64

64

64 64 6462 63 63

110111

62

111 109110110 109109 103

(b) The intensity value of pixels within the window

Figure 2: A 10 × 10 window obtained from a synthetic image marked with a red rectangle.

To confine the update area close to contour boundaries,
it is natural to update the pixel with the membership degree
of 0.5. However, it is not easy to accurately define contour
boundaries by detecting the pixel with the membership
degree of 0.5, because fuzzy energy will create a region with
low pixel-density close to the membership degree of 0.5 [28].
An improved model that uses mathematical morphology to
detect regions near contour boundaries is stated as follows:
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where 𝐻(⋅) is the Heaviside function, 𝛽(𝐴) = 𝐴 − (𝐴 ⊖

𝐵) is a morphological boundary extraction operation that
uses a structural element 𝐵 to cause erosion from the image
𝐴, and 𝑅 is another structuring element for expanding the
boundary to its neighborhood. The structuring elements
𝐵 and 𝑅 are a 3 × 3 square and a circle with radius 5,
respectively [28]. The selection of structuring elements has
a great impact on final segmentation results and requires a
careful consideration in practical applications. It is difficult to
select a suitable structuring element; different images usually
require different structuring elements. According to what has
been mentioned above, it is necessary to design a partition-
based strategy for making the contour evolve gradually. The
designed technique which adaptively detects the region near
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Core region

Boundary region
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The cluster

Figure 3: Three levels of belongingness with respect to a cluster.

the contour boundary based on the intrinsic structure of the
image is described in Section 3.2.

3. Methodology

In this section, an enhanced fuzzy active contour model that
draws upon intensity information in local regions is pro-
posed. In particular, the following techniques are designed.
(1)The constant prototypes are replaced by the spatially vary-
ing ones for overcoming the difficulties caused by intensity
inhomogeneities. (2) The region near contour boundaries is
automatically detected and only the pixels within the selected
region are updated, which enables the contour to evolve
gradually. The details are described as follows.

3.1. Spatial Varying Prototypes. Traditional ACMs are
designed on the assumption that the image is approximated
by regions with piecewise-constant intensities over the
whole image. However, the assumption is so strict for
real world images which are not always statistically
homogeneous. A milder assumption that the image is
statistically homogeneous within a small local region may
better suit real world images. Thus, it is more reasonable
to utilize local region information for approximately
describing the intensity of a pixel by the weighted average
of its neighbors. With the incorporation of local region
information, we replace the constants 𝑐

1
and 𝑐
2
by the spatial

varying ones which are computed as follows:
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where (𝑥, 𝑦) is the spatial coordinate of the current pixel, (𝑖, 𝑗)
is the pixel falling into the local region around the current
pixel, 𝑔

𝑘
is a kernel function which is taken as the weight

coefficient assigned to a pixel within the local region around
the current pixel (𝑔

𝑘
(𝑖, 𝑗) = (1/√2𝜋𝜎)𝑒
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/2𝜎
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with a standard
deviation 𝜎 > 0, and 𝑑 = ((𝑥 − 𝑖)2 + (𝑦 − 𝑗)2)1/2 is the spatial
distance between the pixel (𝑖, 𝑗) and the current pixel (𝑥, 𝑦)).
We assume that one pixel is one unit length.
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Figure 4: The number of pixels within approximation regions near
the contour boundaries changes over time.

The kernel function is highly useful in clustering analysis
and provides a robust property based on influence function
analysis [32–35]. It generates larger weight coefficients to
pixels closer to the current pixel and smaller weight coef-
ficients to pixels far away from the current pixel. If the
spatial distance between pixels (𝑖, 𝑗) and (𝑥, 𝑦) is larger than
a level (i.e., (𝑖, 𝑗) keeps away from (𝑥, 𝑦)) [35], the weight
coefficient will approach its minimum value. That means
the contribution of 𝐼(𝑖, 𝑗) to 𝑐

1
(𝑥, 𝑦) and 𝑐

2
(𝑥, 𝑦) approaches

zero as the pixel (𝑖, 𝑗) lies far away from the current pixel.
Due to the localization property of the kernel function, the
intensity averages of local regions inside and outside of the
curve are dominated by the intensities of pixels within the
neighborhood of the current pixel [18]. The kernel function
makes the influence of pixels within the local region on
the current pixel change flexibly according to their spatial
distances from the current pixel, allowing more image local
characteristics to be obtained. With the incorporation of
local region information, the assumption that the image is
statistically homogeneous within different small local regions
is more appropriate for the characteristics of images with
intensity inhomogeneity.

3.2. Detecting the Approximation Region Near the Contour
Boundary. With the introduction of spatial varying proto-
types, the computational cost increases due to the compu-
tation of 𝑐

1
(𝑥, 𝑦) and 𝑐

2
(𝑥, 𝑦) for each pixel. It is crucial to

make great effort to process pixels with a large uncertainty,
thus restricting the computational cost to certain selected
region of interest. In addition, since pixels with membership
degrees near 0.5 form the region near contour boundaries,
making great effort to such selected region of interest is
benefit to evolve the contour boundary gradually.Thus,we try
to confine the update area near the current contour boundary
at each iteration, which enables the curve to evolve gradually
and saves the computational resource as well.

The concept of shadowed sets was developed to improve
the observation and the interpretability of fuzzy sets [36–39].
Shadowed sets help to restrict uncertainty of membership
degrees within the whole fuzzy set to certain selected regions
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(a) The variation of pixels within the approximation regions at the first five iterations

(b) The evolution of the contour boundary at the first five iterations

Figure 5: The evolution of the approximation region and the associated contour boundary with iteration.

(a) (b) (c)

(d) (e) (f)

Figure 6: Segmentation results on a synthetic image: (a) the initial contour, (b) the CV model result, (c) the GACV model result, (d) the
DRLSE model result, (e) the FAC model result, and (f) the LFAC model result.

to denote patterns with large extent of vagueness and to
elevate or reduce membership degrees in other regions.
Shadowed sets partition the distribution of a target set into
three regions: the core, boundary, and exclusion regions, as
shown in Figure 3. The red curve describes the real contour
of the cluster. Patterns within the core region belong to

the cluster, those within the exclusion region do not belong
to the cluster, and those within the boundary region possibly
belong to the cluster and come with a certain component
of uncertainty. According to shadowed sets theory, great
effort will be made to process patterns with large extent of
vagueness within the boundary region.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Segmentation results on a synthetic image: (a) the initial contour, (b) the CV model result, (c) the GACV model result, (d) the
DRLSE model result, (e) the FAC model result, and (f) the LFAC model result.

(a) (b) (c)

(d) (e) (f)

Figure 8: Segmentation results on the synthetic image corrupted by Gaussian noise: (a) the initial contour, (b) the CV model result, (c) the
GACV model result, (d) the DRLSE model result, (e) the FAC model result, and (f) the LFAC model result.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Segmentation results on the synthetic image corrupted by salt and pepper noise: (a) the initial contour, (b) the CV model result,
(c) the GACV model result, (d) the DRLSE model result, (e) the FAC model result, and (f) the LFAC model result.

A specific threshold is needed for partitioning the distri-
bution of fuzzy set into three regions.The threshold of object
region is computed by minimizing the following function
[39]:

𝑉 (𝛼) =
𝜓1 + 𝜓2 + 𝜓3

 ,

𝜓
1
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𝑢(𝑥,𝑦)≤𝛼
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(𝑈max − 𝑢 (𝑥, 𝑦)) ,

𝜓
3
= card (Δ) ,

(6)

where Δ = {(𝑥, 𝑦) | 𝛼 < 𝑢(𝑥, 𝑦) < (𝑈max − 𝛼)}, card(Δ) is the
number of pixels inΔ,𝑢(𝑥, 𝑦)denotes themembership degree
of pixel (𝑥, 𝑦) belonging to the object region, 𝑈max and 𝑈min
are the largest and the smallest membership degrees of all the
pixels belonging to the object region, respectively, 𝜓

1
denotes

the reduction ofmembership degrees,𝜓
2
means the elevation

of membership degrees, and 𝜓
3
represents the region with

the greatest uncertainty. The three terms on the right side
of (6) correspond to the three regions shown in Figure 3
[39]. The optimal threshold can be obtained by satisfying
the requirement 𝛼opt = arg min

𝛼
𝑉(𝛼). The values of 𝛼 are

suggested in the range of [𝑈min, (𝑈max + 𝑈min)/2] with an
interval of 0.001 [39].

The membership degrees of pixels belonging to a certain
region can be considered as a fuzzy set. After obtaining
the thresholds of the object region and the background,
the approximate region near the contour boundary can be
detected according to the following functions:

𝑅
𝑎
= 𝑆
1
∪ 𝑆
2
,

𝑆
1
= {(𝑥, 𝑦) | 𝛼
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1opt)} ,
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2opt < (1 − 𝑢 (𝑥, 𝑦))

< (max (1 − 𝑢 (𝑥, 𝑦)) − 𝛼
2opt)} ,

(7)

where 𝛼
1opt and 𝛼2opt are the adaptive thresholds of the object

region and background and are updated in each iteration and
𝑆
1
and 𝑆

2
are boundary regions inside and outside of the

evolving curve, respectively. 𝑅
𝑎
is the approximation region

near the contour boundary, which is adaptively detected with
the help of shadowed sets theory.

To demonstrate the effectiveness of detecting the approx-
imation region near the contour boundary, a synthetic image
with size 143 × 150 is employed.The variation in the number
of pixels within the approximation region is depicted in
Figure 4. It can be seen that the number of pixels within the
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Figure 10: Segmentation results on the synthetic image: (a) the initial contour, (b) CV result, (c) GACV result, (d) DRLSE result, (e) FAC
result, and (f) LFAC result.

approximate region becomes smaller with time increasing.
Figure 5(a) shows the variation of the approximate region, in
which pixels within the approximation region are shown in
black and other pixels are shown in gray. The evolution of
the corresponding contour boundary (red curve) is depicted
in Figure 5(b). It can be found that pixels within the region
near the contour boundary are effectively identified, and the
approximate region can more accurately approach to the real
contour of objects with time increasing.

3.3. General Framework of the Proposed Model. We present
a partition-based fuzzy active contour model with incor-
porating local information, termed as LFAC for short. The
proposed model designs an enhanced fuzzy energy function
which is written in the summation sign form for indicating
the discrete nature of the image data. The fuzzy energy
function is introduced as follows:

𝐹 = ∑

Ω

(𝑢 (𝑥, 𝑦))
𝑚

(𝐼 (𝑥, 𝑦) − 𝑐
1
(𝑥, 𝑦))

2

+∑

Ω

(1 − 𝑢 (𝑥, 𝑦))
𝑚

(𝐼 (𝑥, 𝑦) − 𝑐
2
(𝑥, 𝑦))

2

,

(8)

where 𝑐
1
(𝑥, 𝑦) and 𝑐

2
(𝑥, 𝑦) are the spatial varying prototypes

of the pixel (𝑥, 𝑦), Ω denotes the image domain, 𝑢(𝑥, 𝑦) is

the membership degree of the pixel (𝑥, 𝑦) belonging to the
object region, 𝐼(𝑥, 𝑦) is the gray value of the pixel (𝑥, 𝑦), and
𝑚 ≥ 1 is the fuzzy coefficient.Themain steps of the proposed
model are presented as follows.

Step 1. Set fuzzy coefficient𝑚 and the stopping condition 𝜀 =
10
−2.

Step 2. Provide an initial partition of the image; set 𝑢 > 0.5
for the object region and 𝑢 < 0.5 for the background.

Step 3. Detect the approximation region close to contour
boundaries according to (7).

Step 4. Compute the spatial varying prototypes for each pixel
within the approximation region according to (5).

Step 5. Assume that the membership degree of the current
pixel is 𝑢

𝑜
. Compute the new membership degree 𝑢

𝑛
for the

pixel according to (3). Then, compute the difference between
the old and the new energy Δ𝐹 which is derived in the
Appendix:

Δ𝐹 = (𝑢
𝑚

𝑛
(

𝑠
1

𝑠
1
+ 𝑢𝑚
𝑛
− 𝑢𝑚
𝑜

)

2

− 𝑢
𝑚

𝑜
)(𝐼
𝑜
− 𝑐
1
(𝑥, 𝑦))

2
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Figure 11: Segmentation results on the synthetic image: (a) the initial contour, (b) CV result, (c) GACV result, (d) DRLSE result, (e) FAC
result, and (f) LFAC result.

+ ((1 − 𝑢
𝑛
)
𝑚

(
𝑠
2

𝑠
2
+ (1 − 𝑢

𝑛
)
𝑚

− (1 − 𝑢
𝑜
)
𝑚
)

2

−(1 − 𝑢
𝑜
)
𝑚

)(𝐼
𝑜
− 𝑐
2
(𝑥, 𝑦))

2

,

(9)

where 𝑠
1
= ∑
Ω
[𝑢(𝑖, 𝑗)]

𝑚
𝑔
𝑘
and 𝑠
2
= ∑
Ω
[1 − 𝑢(𝑖, 𝑗)]

𝑚
𝑔
𝑘
. If

Δ𝐹 < 0, 𝑢
𝑜
is replaced by 𝑢

𝑛
and vice versa.

Step 6. Compute the total energy 𝐹 according to (8). If the
change of 𝐹 is smaller than 𝜀, stop. Otherwise, return to
Step 3.

4. Experimental Results

In order to assess the effectiveness of the proposed method,
both synthetic and real world images which are widely used
in the field of image segmentation algorithms are used in the
experiments [14, 18, 25, 26, 31]. We compare the proposed
model with state-of-art models including the CV model [9],
the Geodesic-Aided C-V method (GACV) [6], the distance
regularized level set evolution model (DRLSE) [14], and the
FACmodel [31].The initial contours are set to be the same for
all the compared models in Sections 4.2 and 4.3.

4.1. Measuring Segmentation Accuracy. In our experimental
study, the results are exhibited in two ways: the final seg-
mentation results in figure form and the criteria in tabular
form. Since the ground truth of the synthetic images can be
obtained, the performances of the compared models were
compared with respect to segmentation accuracy. To evaluate
segmentation quality, a region-based segmentation accuracy
measurement 𝑃mp is employed [40]. 𝑃mp which measures the
variation of the extracted region from the desired region is
the percentage of mislabelled pixels and is defined as

𝑃mp =

𝑅mb
 +
𝑅ms


𝑅𝑏
 +
𝑅𝑠


× 100%, (10)

where 𝑅
𝑏
and 𝑅

𝑠
are the sets of pixels within the desired and

extracted regions, respectively, 𝑥 is the pixel in the image,
𝑅mb = {𝑥 : 𝑥 ∈ 𝑅𝑏 ∧ 𝑥 ∉ 𝑅𝑠} is the set of pixels in 𝑅𝑏, but
not in 𝑅

𝑠
, and 𝑅ms = {𝑥 : 𝑥 ∉ 𝑅𝑏 ∧ 𝑥 ∈ 𝑅𝑠} is the set of pixels

in 𝑅
𝑠
but not in 𝑅

𝑏
. The smaller 𝑃mp is the better the result is

assessed.

4.2. Results on Synthetic Images. The first experiment applies
the compared models on synthetic images with different
characteristics, in which the intensities of the object regions
to be detected are varying. Figure 6 illustrates that the CV
model, the GACV model, and the FAC model fail to detect
the object at the bottom, while the proposed model and
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(a) Time cost on Figure 6(a) with size 143 × 150

2 4 6 8 10 12 14 16
0

5

10

15

20

The number of iterations

Ru
nn

in
g 

tim
e (

s)

The model with narrow band technique
The model without narrow band technique

(b) Time cost on Figure 10(a) with size 128 × 128
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(c) Time cost on Figure 11(a) with size 97 × 103

Figure 12: Time cost of the model with and without partition-based technique on three images.

the DRLSE model succeed. The curve obtained by the CV
model or the FAC model better depicts the real contour than
that of the GACV model. The DRLSE model can detect the
object at the bottom, but the region inside the ring cannot be
segmented. As the fact that the intensity of the arch is more
similar to that of background, the arch is easily submerged
into background when adopting constant prototypes as in
the CV model, the GACV model, and the FAC model. The
comparison between Figures 6(f) and 6(e) demonstrates that
the proposed model detects all the objects by introducing the
spatial varying prototypes.

We next consider a synthetic image with blurred bound-
aries as shown in Figure 7(a). Figures 7(b), 7(c), and 7(e)
show that similar segmentation results are obtained by the
CVmodel, the GACVmodel, and the FACmodel.The object
at the bottom cannot be easily detected by the three models.
The curve obtained by the FAC model can better match the
real contour inside the ring compared with the CV model
and the GACV model. Although the DRLSE model detects
a portion of the object at the bottom as shown in Figure 7(d),
its segmentation result is not satisfied. Figure 7(f) shows that

the contour boundary of the proposed model can be better
tailored to the real contour of three objects.

Furthermore, the performance of the compared models
under noise conditions is investigated. A synthetic image
is corrupted by Gaussian noise and salt and pepper noise.
Segmentation results are shown in Figures 8 and 9, respec-
tively. Figures 8(b), 8(c), and 8(e) show that the CV model,
the GACV model, and the FAC model are not affected by
Gaussian noise, but the object at the bottom cannot be
detected by the three models. Figure 8(d) shows that the
DRLSE model detects a large proportion of the object at
the bottom. But its result is not satisfactory enough, as the
contour inside the ring is unable to be detected. Figure 8(f)
shows that the proposed model removes the added noise and
well detects the object contour.

Figures 9(b), 9(c), and 9(e) show that the results obtained
by the CV model, the GACV model, and the FAC model
are affected by salt and pepper noise to some extent. The
result obtained by the CVmodel is themost seriously affected
by noise. The comparison between Figures 9(e) and 9(f)
shows that the proposed model performs better than the
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Figure 13: Segmentation results on the bird image: (a) the initial contour, (b) the CVmodel result, (c) the GACVmodel result, (d) the DRLSE
model result, (e) the FAC model result, and (f) the LFAC model result.

FAC model. With the accurate estimation of the relationship
among neighbors by employing the local region information,
the proposed model obtains better performance than the
original FAC model. Figure 9(d) shows that the DRLSE
model removes a large proportion of the noise and keeps
clear contour boundaries. However, it fails to detect the
region inside the ring. Figure 9(f) shows that the proposed
model not only obtains a desire partition but also becomes
insensitive to noise.

Table 1 shows the segmentation accuracy in terms of 𝑃mp
obtained by each model. Apart from the proposed model,
the DRLSE model obtains the lowest 𝑃mp on four images
among the remaining models. The FAC model performs
slightly better than the CV model and the GACV model in
terms of 𝑃mp. The value of 𝑃mp obtained by the proposed
model is lower than that obtained by the FAC model.

The comparison between the FAC model and the proposed
model demonstrates that object regionswhich are not distinct
from the background can be detected to a larger extent by
the proposed model. The proposed model obtains the lowest
𝑃mp on four images, which indicates that the object region
detected by the proposed model is more similar to the actual
object region compared with those of other four models.

Moreover, we apply the compared models on other two
synthetic images. Since the ground truth of the two synthetic
images is not given, only the segmentation result is shown.
Figures 10(b), 10(c), and 10(e) show that the CV model, the
GACV model, and the FAC model fail to obtain the right
segmentation results, as the top dot cannot be detected. Visu-
ally, the DRLSE model and the proposed model are able to
segment the dot in white as shown in Figures 10(f) and 10(d).
The contour boundary of the proposed model can be better
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Figure 14: Segmentation results on the rice image: (a) the initial contour, (b) the CVmodel result, (c) the GACVmodel result, (d) the DRLSE
model result, (e) the FAC model result, and (f) the LFAC model result.

Table 1: Quantitative result given by different models.

CV GACV DRLSE FAC The proposed model
𝑃mp on Figure 6(a) 38.77% 41.91% 3.39% 38.77% 0
𝑃mp on Figure 7(a) 44.21% 48.85% 16.96% 42.66% 9.67%
𝑃mp on Figure 8(a) 38.77% 39.07% 4.57% 38.77% 0.24%
𝑃mp on Figure 9(a) 39.15% 41.54% 5.25% 39.15% 0.32%

tailored to the real contour of objects than that of the DRLSE
model. Figure 11 shows the segment results on a synthetic
image where the pixel intensities of background and the
object to be detected present high variation. Since, the right
part of the background has higher intensities than the left
part of object, the FACmodel, the CVmodel, and the GACV
model cannot detect the contour of the object at the right side
as shown in Figures 11(b), 11(c), and 11(e). Figures 11(d) and
11(f) show that DRLSE and LFAC can better detect the object
than other three models.

Finally, Figure 12 illustrates the computational cost on
three synthetic images used in this subsection with different
sizes for the proposed model with and without partition-
based technique. All experiments performed on a Pentium
IV (3GHz) workstation under Windows XP Professional
using MATLAB. The model without using partition-based
technique is computational consuming, since all the pixels

are updated in each iteration. With the help of shadowed
sets, only the pixels within the boundary region are updated
in each iteration. Since the number of pixels within the
region close to the contour boundary becomes smaller
with time increasing, the time cost of the proposed model
employing partition-based technique is less than the model
without using partition-based technique as the result shown
in Figure 12.

4.3. Results on Real World Images. In this part, two medical
images and two natural images which are widely used in
the field of image segmentation algorithms are used in the
experiments [14, 18, 25, 26, 31]. Figure 13 shows that the
five models achieve the similar results in general, except
in the area near the tree branch and the head of the
bird. Figure 13(b) shows that the CV model fails to detect
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Figure 15: Segmentation results on the first vessel image: (a) the initial contour, (b) the CVmodel result, (c) the GACVmodel result, (d) the
DRLSE model result, (e) the FAC model result, and (f) the LFAC model result.

the head and the claw. Two paws cannot be detected by the
GACVmodel as shown in Figure 13(c). Figure 13(e) illustrates
that the FAC model better detects the paws than the CV
model and the GACV model. As shown in Figure 13(d), the
DRLSE model achieves a clear contour, while the contour
cannot depict real boundaries of the paws and the beak. The
proposedmodel correctly detects the border between the bird
and the tree branch. The final curves obtained by LFAC well
approach the real contour of the bird, which can be seen from
the tail, the paws, and the beak.

Figure 14(d) shows that theDRLSEmodel fails to segment
the rice image. Figures 14(b), 14(c), and 14(e) depict that the
CV model, the GACVmodel, and the FAC model are unable
to correctly detect the real contour of all the rice grains,
especially the rice grains at the bottom of the image. Besides,
the results obtained by theCVmodel and the FACmodel have
some noises on the top of the image. The proposed model
extracts the desired contour of all the rice grains as shown
in Figure 14(f). With the help of spatial varying prototypes,
even the rice grains at the bottom with little difference in

terms of the intensity from the background can be well
detected.

Furthermore, the performance of the compared models
on two vessel images is evaluated. Figure 15 shows that the
results obtained by the GACV model and the FAC model
cannot detect the whole vessel, as the vessel at the bottom
left of the image is submerged into the background. Although
the results obtained by the CV model and the DRLSE model
detect the vessel at the bottom, they fail to approach the real
contour of the vessel as shown in Figures 15(f) and 15(e).
Figure 15(f) indicates that that the final contour obtained by
the proposed model well depicts the real border of the vessel.
Figures 16(d) and 16(e) demonstrate that the results obtained
by DRLSE and FAC cannot detect the vessel at the bottom left
of the image. Although the segmentation results obtained by
CV and GACV detect the vessel at the bottom of the image,
they still fail to depict the real contour of the vessel on the
right side. The vessel is well detected by the proposed model
as shown in Figure 16(f). Moreover, the curve obtained by the
proposed model well approach the real border of the vessel.
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Figure 16: Segmentation results on the second vessel image: (a) the initial contour, (b) the CV model result, (c) the GACV model result, (d)
the DRLSE model result, (e) the FAC model result, and (f) the LFAC model result.

4.4. The Effect of Different Initial Conditions. The effect of
different initial conditions on the performance of the five
models is investigated in this part. Different initial conditions
are depicted in Figure 17(a). Segmentation results obtained by
the fivemodels are shown in Figures 17(b)–17(f), respectively.
Segmentation results obtained by the CV model, the GACV
model, and the DRLSE model are sensitive to different initial
conditions. All the results obtained by the FAC model and
the proposed model are the same as shown in Figures 17(e)
and 17(f), which demonstrates the robustness of the two
fuzzy active contour models. Moreover, compared with other
four models, the proposed model can obtain the correct
segmentation results under different initial conditions.

5. Concluding Remarks

In this paper, an enhanced partition-based fuzzy active
contour model with incorporating local information for
image segmentation is proposed. In the proposed model,

the prototypes are not the average intensities of pixels inside
and outside of the curve. Instead, they are spatially varying
and are related to each pixel. By considering local image
characteristics, the proposed model can efficiently segment
images with intensity inhomogeneity. Moreover, to confine
the update area at each iteration, shadowed sets theory
is employed to adaptively detect the regions near contour
boundaries, which enables the curve to evolve gradually and
saves the computational resource.

The proposed approach is basically built on fuzzy active
contour model with incorporating local information. The
main advantages of the proposed model can be concluded
as (1) computational simplicity (the calculation of each step
only includes the computation of pixels within the interesting
region); (2) flexibility (it has less sensitivity to initial condi-
tions by incorporating fuzzy technique); (3) it can efficiently
segment images with intensity inhomogeneity by considering
image local characteristics. However, classical ACMs do not
consider any spatial information in image context, which
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Figure 17: Detection of different objects from a synthetic image with various initial conditions: (a) the four different initial contours, (b) the
CVmodel results of the corresponding initial conditions, (c) the GACVmodel results of the corresponding initial conditions, (d) the DRLSE
model results of the corresponding initial conditions, (e) the FAC model results of the corresponding initial conditions, and (f) the LFAC
model results of the corresponding initial conditions.
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makes them sensitive to noise and other imaging artifacts to
some extent. Recently, many researchers have incorporated
local spatial information into segmentation algorithms to
improve the performance of image segmentation. In the
further work, we want to design a fuzzy active contour model
which retains more image details and preserves robustness
to noise by taking both spatial and gray constraints into
consideration.

Appendix

The proofs of the center and energy differences are presented
in this part. The spatial varying centers of each pixel are
written in the following forms:

𝑐
1
(𝑥, 𝑦) =

∑
Ω
[𝑢 (𝑖, 𝑗)]
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𝑔
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𝑔
𝑘

,

(A.1)

where (𝑥, 𝑦) is the spatial coordinate of the current pixel.
(𝑖, 𝑗) is the pixel in the set of neighbors falling into the local
region around the current pixel. 𝑔

𝑘
is the kernel function,

which can be taken as the weight assignment of the pixel
within the neighbor of the current point. 𝑢(𝑖, 𝑗) is the degree
of membership of pixel (𝑖, 𝑗) belonging to the inside of the
curve 𝐶.𝑚 is the fuzzy coefficient.

Assume that the gray value of the pixel is 𝐼
𝑜
. 𝑢
𝑜
is

the degree of membership of the pixel. The new degree of
membership of the pixel is 𝑢

𝑛
. The spatial varying centers

of the pixel 𝑐
1
(𝑥, 𝑦) and 𝑐

2
(𝑥, 𝑦) will have a corresponding

change. Considering that the membership value of only one
pixel is changed, then 𝑐

1
(𝑥, 𝑦) is given as follows:
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where 𝑠
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where 𝑠
2
= ∑
Ω
[1 − 𝑢(𝑖, 𝑗)]

𝑚
𝑔
𝑘
. Thus, the calculation of the

new spatial varying centers can be easily achieved according
to (A.2) and (A.3), respectively.

Besides, the change of the pixel in terms of the member-
ship value and the spatial varying centers will cause a change
in fuzzy energy. Considering that the membership value and
the spatial varying centers of only one pixel are changed, the
new fuzzy energy is given as follows:
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.

(A.4)

𝐴 and 𝐵 can be formulated separately as follows:

𝐴

= ∑

Ω
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(A.5)

where 𝐴 = ∑
Ω
[𝑢(𝑥, 𝑦)]

𝑚
(𝐼
𝑜
− 𝑐
1
(𝑥, 𝑦))

2.
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In a similar way, it can be proven that

𝐵 = 𝐵 + ((1 − 𝑢
𝑛
)
𝑚
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𝑠
2
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2
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(A.6)

where 𝐵 = ∑
Ω
[1 − 𝑢(𝑥, 𝑦)]
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, the new energy is

obtained by combining (A.5) and (A.6), which will be given
as
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