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Purpose: Proof-of-concept study of mapping renal blood flow vector field accord-
ing to the inverse solution to a mass transport model of time resolved tracer-labeled 
MRI data.
Theory and Methods: To determine tissue perfusion according to the underlying 
physics of spatiotemporal tracer concentration variation, the mass transport equation 
is integrated over a voxel with an approximate microvascular network for fitting 
time-resolved tracer imaging data. The inverse solution to the voxelized transport 
equation provides the blood flow vector field, which is referred to as quantitative 
transport mapping (QTM). A numerical microvascular network modeling the kid-
ney with computational fluid dynamics reference was used to verify the accuracy 
of QTM and the current Kety’s method that uses a global arterial input function. 
Multiple post-label delay arterial spin labeling (ASL) of the kidney on seven subjects 
was used to assess QTM in vivo feasibility.
Results: Against the ground truth in the numerical model, the error in flow estimated 
by QTM (18.6%) was smaller than that in Kety’s method (45.7%, 2.5-fold reduction). 
The in vivo kidney perfusion quantification by QTM (cortex: 443 ± 58 mL/100 g/min  
and medulla: 190 ± 90 mL/100 g/min) was in the range of that by Kety’s method 
(482 ± 51 mL/100 g/min in the cortex and 242 ± 73 mL/100 g/min in the medulla), 
and QTM provided better flow homogeneity in the cortex region.
Conclusions: QTM flow velocity mapping is feasible from multi-delay ASL MRI 
data based on inverting the transport equation. In a numerical simulation, QTM with 
deconvolution in space and time provided more accurate perfusion quantification 
than Kety’s method with deconvolution in time only.
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1 |  INTRODUCTION

The traditional approach to quantitative perfusion mapping 
uses Kety’s equation, where the arterial input function (AIF) 
at each voxel is not measurable and is assumed to be a global 
function ignoring dilution, delay, and dispersion.1 For exam-
ple, in arterial spin labeling (ASL) that uses radiofrequency 
(RF) labeled water as tracer, the AIF is assumed at the up-
stream arterial site where RF label is applied.2 The use of 
global AIFs intrinsically causes errors in quantitative perfu-
sion mapping.1 Although there have been attempts at mod-
eling and correcting for delays and dispersions,1 perfusion 
quantification using Kety’s equation remains prone to er-
rors of local arterial dispersion and has never been validated 
against a ground truth.

Regional blood flow in tissue is fundamentally gov-
erned by the transport equation of mass and momentum 
fluxes, or the continuity equation and Navier-Stokes equa-
tion.3,4 The solution to the transport equations requires 
knowledge of the detailed vascular anatomy at a sub-voxel 
scale.5 Integration over the voxel of the detailed transport 
solution can be used to model signals acquired in macro-
scopic time-resolved imaging of tracer passage in tissue.6 
The inverse solution to this transport model allows determi-
nation of transport parameters including the velocity vector 
field.7,8 Accordingly, we are developing this quantitative 
transport mapping (QTM) to quantify tissue perfusion from 
time-resolved imaging of tracers.

We report here the feasibility of QTM for the human kid-
ney where the fractal microvasculature model has been estab-
lished for the intravoxel blood vessel structure.9 Renal blood 
velocity/flow maps obtained using QTM in numerical simu-
lation agree with the ground truth, and its in vivo feasibility 
was assessed in healthy volunteers using renal ASL MRI data 
with multiple post label delays (PLDs).

2 |  THEORY

Blood tracers, including the non-invasively labeled blood 
water for ASL and injected contrast agent for dynamic con-
trast enhancement (DCE) and dynamic susceptibility contrast 
(DSC), are assumed to have the same transport parameters 
including the velocity vector field as blood.3,10 Here, we re-
view the transport equation for the labeled blood water in 
ASL as a forward problem and describe the corresponding 
inverse problem.

2.1 | Forward problem

The forward model of QTM includes the microvascular net-
work, Navier-Stokes equation, and the continuity equation. 

Given the microvascular model,9 the intravascular blood 
velocity is governed by the steady-state Navier-Stokes 
equation and the tracer concentration by the continuity 
equation.4

where �b denotes the density of the blood (1.06 g/ml), p the 
pressure, �  the blood viscosity, Ωv the domain of intravascular 
space, c(r, t) the tracer concentration, �t the time derivative, ∇ 
the spatial gradient, u (r)= [u

x
(r), u

y
(r), u

z
(r)] the blood veloc-

ity field, r= [x, y, z] the position vector, D(r) the diffusion coef-
ficients, and � the tracer decay rate. � =1∕T1blood with T1blood = 
1650 ms for labeled blood tracer data in ASL on 3T scanner.11,12 
Pulsation is ignored for simplicity. The velocity field u(r) is re-
garded as constant in time and the diffusion coefficient D (r) is 
assumed to have a negligible effect, that is, D (r)=0. The veloc-
ity u in the tracer transport equation Equation (3) is assumed to 
be the same as that of blood flow in Equation 1.

The boundary conditions for Equations (1 and 2) are de-
termined by the microvascular model and the blood pressure 
difference between the inlet (main arterial) and the outlet 
(capillary level vessel at arterial side). The boundary condi-
tions for Equation (3) are determined by the tracer supply 
time duration and the permeability of the vessel wall. For 
simplicity, we assume the vessel wall is impermeable, that 
is, the tracer is confined within the intravascular space, al-
though permeability and other processed can be included in 
the above equation. Equations (1-3) together serve as the for-
ward model of the proposed QTM to provide the solution of 
blood velocity and tracer concentration.

In summary, tracer passage through tissue as captured 
in dynamic perfusion imaging is fundamentally governed 
by the physics of transport equation consisting of mass 
and momentum flux and boundary conditions of tissue 
microvasculature.

2.2 | Inverse problem

The inverse problem in QTM is to reconstruct the voxel-based 
blood velocity/flow using the tracer concentration image 
data at the voxel level of spatial resolution. Approximating 
D (r)=0 in studying convection dominated transport phe-
nomena, we solve for u that satisfies Equation (3) for a given 
multiple time frames of tracer concentration c(r, t). As the 
ASL tracer signal in MRI is weak, approximately 2 ~ 3% of 
the total signal in the brain13 and 5 ~ 7% in the kidney,14 and 

(1)�b (u ⋅∇)u=−∇p+�∇ ⋅∇u, ∀r∈Ω
v
,

(2)�
b
∇ ⋅u=0, ∀r∈Ω

v
,

(3)
�

t
c (r, t)=−∇ ⋅ (c (r, t)u (r))

+∇ ⋅ (D (r) ∇c (r, t))−�c (r, t) , ∀r∈Ω
v



   | 2249ZHOU et al.

is prone to noise and motion induced errors, regularization is 
used to reduce their effects.

Let’s first consider the inverse problem in the continu-
ous space. Given the measured 4D time-resolved tracer data 
c (r, t), the inverse problem of fitting to Equation (3) for es-
timating the velocity u∗ can be formulated as the following 
minimization problem.

where ck = c
(
r, tk

)
 the tracer concentration at the k-th 

time frame tk, N the number of time frames of concen-
tration data used, ‖⋅‖2 the standard Euclidean L2 norm, 
‖∇u‖1:=‖∇u‖x1+‖∇u‖y1+‖∇u‖z1 the L1 norm, and � 
the regularization parameter. � can be determined using the 
L-curve method to best reduce the ill-posedness of the inverse 
problem.15 The blood flow Q within a blood vessel can be cal-
culated from the reconstructed velocity field u∗ by integrating 
the velocity on the corresponding cross-sectional area of the 
blood vessels

where A is the cross-sectional area of the investigated blood 
vessel.

Now we introduce discretization at the imaging voxel level, 
assuming that the microvasculature is known. The notation 
� :=

(
�x, �y, �z

)
 for the voxel discrete space variables is used to  

distinguish them from the microvascular continuous space 
var iables r. Equation (3) needs to be integrated over a voxel 
space ΔΩ= [

(
�x−1

)
�x, �x�x)]×

[(
�y−1

)
�y, �y�y

]
× [

(
�z−1

)
�z, �z�z], 

where �x, �y, �z ∈ℤ are the voxel indices, and 𝛿x, 𝛿y, 𝛿z >0 are 
the voxel dimensions:

Here, ΔV=�x�y�z denotes the volume of the voxel. Define 
a binary microvasculature mask m (r)=1 if r is in the intra-
vascular space and 0 otherwise. Then Equation (6) becomes.

Note that the microvasculature is assumed to be time- 
independent, that is, �m(r)

�t
=0.

Let us define the intrinsic concentration at voxel � as 
C(�, t):= ∫

ΔΩ
c(r, t)m(r)dr and Vm(�):= ∫

ΔΩ
m(r)dr the intra-

vascular blood volume. Applying the divergence theorem, 
Equation (7) becomes.

where �ΔΩ denotes the surface of the voxel space ΔΩ and n(r) 
is the outward unit normal vector of ΔΩ. With the assumption 
of smooth velocity field u(r) and concentration c(r, t), Equation 
(8) can be rewritten as the following voxelized continuity equa-
tion (see Supporting Information documents, which are avail-
able online, for details):

with U= (Ux, Uy, Uz) defined as

The solution U of Equation (9) is a quantity across the 
voxel surfaces with unit s−1, according to the definition in 
Equation (10). Therefore, in the discrete space of imaging 
voxels, the transport equation after integration over a voxel 
(Equation 9) appears in an apparent form similar to that in the 
continuous space (Equation 3).

According to Supporting Information Equation (S9) (see 
Supporting Information documents for details), blood flow 
on each surface of the voxel is.

If we define the following vasculature parameter.

where the superscripts R, A, S denote the Right, Anterior, and 
Superior surfaces of a voxel, respectively (see Supporting 
Information Figure S1 for details). Then the average blood ve-
locity UM (�)=

(
UM

x
, UM

y
, UM

z

)
 on the voxel surfaces can be 

derived as

Analogous to Equation (4), QTM solves the blood flow 
velocity according to the inverse problem of Equation (9), 
representing deconvolution in both space and time:

(4)u
∗ = argmin

u

N�
k= 1

����
�ck
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�
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u
�
+�ck

����2
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u
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(6)�
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(7)
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∫
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.
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, UM
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.
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The blood flow can be determined according to the veloc-
ity and voxel surface vasculature:

In summary, the voxelized transport equation can be used 
to fit voxel-averaged concentration measured on space-time 
resolved imaging data, and the fitting or the inversion of the 
voxelized transport equation can determine an apparent ve-
locity vector field defined by averaging on the voxel surface.

2.3 | Renal microvascular network 
construction

A renal microvasculature for each subject was constructed 
in the following way. The 3D shape of the kidney was ob-
tained from a segmentation of the mean ASL data in time. 
The MRA was used to segment the renal arteries using ITK-
SNAP semi-automatically16 and to identify the directions of 
their blood flow. Starting from the segmented renal artery 
branches, a microvasculature structure in the segmented 
3D kidney shape was generated using a bifurcation branch 
rule.17 The iterative process to generate renal microvascular 
branches was continued until the renal blood volume in 85% 
of the voxel within the cortex reached fell within the 16%-
20% range.18,19 The output microvasculature will be used as 
the fluid space for the forward problem computation based 
on the fluid dynamics. The structural parameters, that is, the 
intersection area  MR, MA, and MS between vessel and voxel 
surface and the blood vessel volume Vm, were calculated for 
all the voxels. These parameters will be used for both nu-
merical simulation experiments and in vivo experiments.

2.4 | QTM numerical simulation with 
microvascular network

The numerical simulation was done based on the simulated 
microvascular network obtained for one of the subjects re-
cruited in this study (see above). In order to verify the pro-
posed QTM method, a ground truth blood velocity and 
pressure in this microvascular network was computed fol-
lowing the method proposed by Lorthois et al.5 In this ap-
proach, the 3D microvascular network was simplified as a 
1D non-linear network of cylindrical model (see Supporting 
Information Figure S2 for details). The flow rate Qij through 

each vessel segment (i, j) was related to the pressure drop 
(Pi−Pj) by Poiseuille’s law, which is a special case of the 
Navier-Stokes equations Equations (1 and 2) (see Supporting 
Information document for details). Therefore, our simula-
tions are based on the Poiseuille’s flow:

with

where Pi denotes the pressure at node i and Gij is the hydrody-
namic conductance of segment (i, j), �ij is the apparent viscos-
ity of the blood, Rij and lij are the segment radius and length, 
respectively. Note that �ij depends on the vessel diameter and 
hematocrit as shown in Lorthois et al.5 Applying Equation (16) 
to every segment of the microvascular network and considering 
the conservation of mass at each interior node i, we have a large 
sparse linear system

Given the flow rate at each boundary node, Equation (18) 
can be solved using the conjugate gradient (CG) method to 
get the pressure at each interior node. The blood flow rate is 
calculated using Equation (16).

Consequently, the average velocity in each vessel segment 
can be calculated by.

The parabolic velocity profile of the segment (i, j) is, 
therefore, expressed as.

where r is the radial distance from the center of the cylindrical 
vessel.

For the numerical simulation in the microvasculature, 
the blood pressure in Equation (18) was solved by giving a 
boundary condition of blood flow rate at the boundary of the 
microvascular network, that is, the flow inlet and outlets. The 
inlet flow was estimated by multiplying artery blood veloc-
ity (taken from literature measurements20) with the artery 
cross-sectional area estimated from MRA. The outlet flow 
was assumed to equal for all the terminal capillary segments 
and the sum of all outlet flows was set equal to the inlet flow. 

(14)

min
U

N�
k= 1

����
�

�t
C(�, tk)+∇ ⋅

�
C(�, tk)U

�
+�C(�, tk)

����
2

+�
�‖∇U‖1

�
.

(15)

BF (�)=
[||Fx

(�)||+ |||Fy
(�)

|||+
|||Fz

(�)
|||+

|||Fx

(
�x−1, �y, �z

)|||
+
|||Fy

(
�x, �y−1, �z

)|||+
|||Fz

(
�x, �y, �z−1

)|||
]
∕2.

(16)Qij =Gij

(
Pi−Pj

)

(17)Gij =
�R4

ij

8�ijlij

(18)
∑

j

Gij

(
Pi−Pj

)
=0,

(19)uij =
Qij

�R2
ij

.

(20)uij (r)=2uij

(
1−

(
r

Rij

)2
)

,
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Then the blood flow and velocity for each vessel segment 
were computed using the calculated pressure. The ground 
truth of the voxelized flow rate was calculated by averaging 
the inflow and outflow for each voxel.

The tracer concentration distribution in the microvascu-
lature can be computed by solving the partial differential 
equation (PDE) Equation (3) with the velocity in Equation 
(20) for multiple time steps. However, the approach of solv-
ing Equation (3) using the finite element method (FEM) or 
finite difference method (FDM) in the large vascular system 
is challenging and time-consuming. We adopted the approach 
of the analytical solutions by Chen et al and Massabo et al21,22 
to compute the concentration distribution in the microvascu-
lar network (see Supporting Information Figures  S2 in the 
Supporting Information and Figure A1 in the Appendix for 
details). The approach of the analytical solution is summa-
rized in the Appendix.

3 |  METHODS

The proposed QTM was applied to 4D time-resolved ASL 
MRI data. All subjects satisfied the MR safety criteria. 
Informed consent was obtained from each subject under ap-
proval from the institutional review board at our institution.

3.1 | Data acquisition

Pseudo-continuous ASL (PCASL)11 3D fast spin echo (FSE) 
data were acquired in the kidney in healthy subjects (N = 7; 
age 27  ±  6, six male, one female) using a GE MR750 3T 
scanner (GEHC, Milwaukee, WI) using a 32-channel body 

coil. Acquisition parameters include 2.5  ×  2.5  ×  4 mm3 
voxel size, 128 × 128 × 36 matrix, 10.5 ms echo time, 111° 
flip angle, three signal averages, ~4.5 min scan time. Four 
PLDs (PLD = 1025 ms, 1525 ms, 2025 ms, 2525 ms) were 
used during the data acquisition to obtain temporal resolu-
tion. Background suppression and synchronized breathing 
were used to enhance the signal quality and reduce motion 
artifacts.23,24 Next, a non-contrast 3D MR angiogram (MRA) 
data were acquired for each subject, using acquisition param-
eters: IFIR sequences, 0.625 × 0.625 × 2 mm3 voxel size, 
512  ×  512 × 128 matrix, 4  ms repetition time, 2  ms echo 
time, 50° flip angle, and respiratory gating.

3.2 | Image analysis

QTM was performed by solving Equation (14) for blood flow 
vector field and Equation (15) for absolute blood flow on all 
data. Rigid image registration was performed for all PLDs 
using the first frame as reference.25 The intrinsic concentra-
tion Ck(�), k=1,…, N in Equation (14) was derived from the 
motion-corrected 4D ASL data Ck

m
(�) as follows.

where RBV (�) :=
Vm(�)

ΔV
 is the renal blood volume. Here, we as-

sumed a linear relationship between image intensity and tracer 
concentration. The optimization problem Equation (14) was 
solved using the alternating direction method of multipliers 
(ADMM) with the conjugate gradient algorithm26 as a sub-
routine for solving the linear sub-problems. The regularization 
parameter � was chosen by performing an L-curve analysis.27

(21)Ck (�) :=
Ck

m
(�)

RBV (�)
,

F I G U R E  1  Illustration of microvasculature construction and structural parameters. A, Renal MRA image. B, Constructed microvasculature in 
the kidney using the renal arterial vessel information and shape information from MRA image in (A). C, Calculated renal blood vessel volume map 
(unit: mm

3) from constructed microvasculature in (B), D-F, Calculated intersectional areas MR, M
A, M

S (unit: mm
2) of renal blood vessel on the right, 

anterior, and superior surfaces of a voxel, respectively
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The solution 
U

M =
(

UM
x

, UM
y

, UM
z

)
 of Equation (14) is the 

flow passing through three surfaces of a voxel. The blood 
flow map QQTM (�) from QTM can be obtained directly from 
Equation (15)

in (mL/100  g/min), where QQTM denotes the scaled flow of 
Equation (15), and � is the density of the tissue.

The blood flow (QKety) map (mL/100  g/min) was com-
puted by fitting ASL multiple delay data to the following 
signal model28-30

where dM(ti) is the difference between control image and label-
ing image at PLD= ti, M0 the proton density-weighted image, 
�=0.8 the labeling efficiency, �=0.9 the tissue/blood partition 
coefficient, T1,blood =1650 ms, T1t =1053 ms in renal cortex 
and 1389 ms in the medulla of kidney, � the arterial transit time 
(ATT) of blood from labeling location to the kidneys estimated 
from the weighted delay defined in Wang et al and Dai et al,28,29 
� =1500 ms the labeling time. Using Equation (23), the AIF for 

all the voxels was assumed to be the arterial concentration at 
the aorta site of spin labeling corrected by the T1,blood decay. As 
suggested Koh et al,11 to reduce noise and enhance the signal-
to-noise ratio (SNR) of the M0 image, the M0 data were regis-
tered to the dM to reduce motion artifacts and smoothed using 
a smoothing filter with a diameter of 8 mm. Masks for the renal 
cortex and medulla regions were segmented for each subject 
using thresholding the average ASL data across PLDs.31 The 
blood flow QKety was obtained from deconvolution in time by 
performing nonlinear least square fitting of Equations (23) for 
all PLDs.30 Average blood flow in the renal cortex and medulla 
was computed for both QTM and Kety’s method. For reference, 
Equation (23) for Kety’s flow as derived by Buxton2 is a time 
convolution of the differential Kety’s equation32 modified with 
a decay term:

where AIF(t) is 2�M0

�
e−�∕T1b, � (�)=0.9, and � as in Equation (3).

4 |  RESULTS

Figure 1 shows the microvasculature constructed from MRA 
and M0 data and the corresponding structural parameters cal-
culated from the microvascular network using voxelization. 

(22)QQTM (�)=BF (�)×
60

1000
×

100

�ΔV
,

(23)�dM
(
ti
)
=QKety ⋅2�M0T�

1
exp

(
−

�

T1b

)
⋅

[
1−exp

(
−

min
(
ti−�, �

)

T�
1

)]
⋅exp

(
−

max
(
0, ti−�−�

)

T�
1

)

(24)1

T�
1

=
1

T1t

+
QKety

�
(25)�

�t
C (�, t)= f

(
AIF (t)−

C (�, t)

� (�)

)
−�C (�, t) ,

F I G U R E  2  Simulated pressure in Equation18(A), velocity in Equation20(B), flow in Equation16(C) in the constructed microvascular network 
of a kidney. D-G, Simulated concentrations at four time frames in the simulated microvascular network of a kidney using the velocity field from 
Equation20
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Figure 1A shows the MRA image of the kidney, Figure 1B 
the constructed microvascular network, Figure 1C the abso-
lute blood volume, and Figure 1D-F the vessel intersectional 
areas on the voxel surfaces.

Figure  2 demonstrates the simulated pressure, velocity, 
flow in the numerically generated microvascular network: 
Figure  2A shows the pressure in mmHg computed using 
Equation (18), Figure  2B the velocity in mm/s computed 
using Equation (20), Figure 2C the flow in mL/min computed 
using Equation (16). These results were used to generate the 
ground truth of velocity and flow maps at the voxel level. 
Figure 2D-G presents the simulated tracer concentration at 
various time points with tracer labeling duration 1.5 s. The 
parabolic velocity field in Figure 2B was used for the tracer 
delivery simulation.

Figure  3 shows the voxelized simulated concentration 
data at 4 PLD as shown in Figure 2D-G.

Figure  4 shows the comparison of blood velocity and 
blood flow between ground truth, QTM, and Kety’s method 
in the numerical simulation. Figure 4’s top panels (A), (B), 
and (C) show the ground truth velocity magnitude, QTM 
reconstructed velocity magnitude, and QTM velocity mag-
nitude error, respectively. The bottom panels (D-H) show 
the ground truth blood flow, QTM reconstructed blood 
flow, QTM blood flow error, Kety’s method blood flow, 
and Kety’s method blood flow error, respectively. The root 
mean square errors (RMSE) in the estimated flows were 
49.7 mL/100 g/min and 121.8 mL/100 g/min, for QSM and 

Kety’s method, respectively. This corresponds to 18.6% and 
45.7% of the mean of the ground truth flow 266.6 mL/100 g/
min, respectively.

Figure 5 presents the in vivo ASL data for healthy subject 
at four PLDs.

Figure 6 displays results in a healthy subject. Figure 6A 
shows a 3D view of the QTM velocity field in one slice. 
Figure 6B shows a comparison of the renal blood flow esti-
mated using QTM (top) and Kety’s method (bottom). QTM 
provided a more uniform RBF in the renal cortex compared 
to Kety’s method. Across the seven healthy subjects, QTM 
provided 443±58 mL/100  g/min and Kety’s method gives 
482±51 mL/100  g/min for the cortex region; QTM pro-
vided 190±91 mL/100  g/min and Kety’s method 242±73 
mL/100 g/min for the medulla region.

Figure 7 shows the statistical analysis between the results 
from QTM and Kety’s methods. The top (bottom) row show 
the results for the cortex (medulla) region. Linear regression 
shows that r2 coefficient in cortex region is 0.99 and in me-
dulla region is 0.37. Bland-Altman analysis shows that the re-
sults from QTM are underestimated compare to that of Kety’s 
method.

Table 1 shows the mean and SD of the measured blood 
flow in cortex and medulla using QTM and Kety’s meth-
ods for all the seven subjects. The coefficient of variation 
(CoV) in cortex region of all the subjects are also listed in 
the Table 1, CoV in cortex is 0.25 from QTM vs. 0.33 from 
Kety’s method.

F I G U R E  3  A-D, Voxelized simulated concentration data of Figure 2D-Gat the voxel size of [4, 2, 2], which is typical ASL data voxel size. 
This voxelized data will be used for the QTM simuation reconstruction
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5 | DISCUSSION

Our numerical simulation and preliminary in vivo results 
demonstrate the feasibility of QTM to reconstruct the 
blood flow map and average velocity map from multi-
ple delay ASL data in the kidney. The QTM approach is 
based on the biophysical description of blood transport in 
the tissue microvascular network. Voxelization with the 
microvasculature discretizes the continuous model for fit-
ting time-resolved imaging data. QTM is the solution to 
the inverse transport equation from imaging data to blood 
flow at the voxel level. Numerical results show that the 
reconstructed blood flow and velocity maps from QTM 
agree with the ground truth, and that the large error in the 
traditional Kety’s method is reduced by more than two-fold 
using QTM.
Accurate mapping of regional blood flow in medical im-
aging is known to be very challenging. Although there are 
researches comparing ASL to positron emission tomogra-
phy (PET) or microspheres for blood flow mapping,33,34 
it has not been validated against the ground truth blood 

flow directly since the ground truth in the real world is 
unknown.1,35,36 And the gold standard microsphere deposi-
tion method or PET method suffer from many assumptions 
including the use of a global AIF.37 The simulation in the 
current work based on the transport equation and microvas-
cular network provides a ground truth for assessing quanti-
fication accuracy. The QTM approach does not assume an 
AIF as in the traditional Kety’s approach,1,36 but requires 
detailed knowledge of intravoxel microvasculature, suffer-
ing consequently from the imperfect knowledge. The error 
in QTM flow may be caused by the voxelization error of 
concentration data,38 because the voxelization could pos-
sibly increase the error of spatial and temporal derivative 
of the tracer. This error could be reduced by increasing the 
data resolution and accordingly decreasing the voxel size. 
Errors in Kety’s method may come from the assumption 
of a single global AIF (see Figure A2 in the Appendix for 
details). In vivo results show that even though the results 
from both methods agree with literature values,20 the blood 
flow map obtained using QTM with the microvascular net-
work approximation generates a more homogeneous flow 

F I G U R E  4  The numerical results comparison between QTM, Kety’s method and the ground truth. The top panel (A-C) shows the ground 
truth velocity magnitude, QTM reconstructed velocity magnitude and QTM velocity magnitude error, respectively. The bottom panel (DH) show 
the ground truth blood flow, QTM reconstructed blood flow, QTM blood flow error, Kety’s method blood flow, and Kety’s method blood flow 
error, respectively
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expected in the renal cortex region compared to Kety’s 
method (mean CoV in cortex for QTM 0.25 vs. Kety 0.35 
as shown in the Table 1).

QTM is the first method that uses the transport equation 
to quantify the blood flow at the image voxel level to the best 
of our knowledge.7 Although several groups have proposed 
to use the idea of mass conservation in PDE (Equation 3) 
to analyze the blood transport phenomenon, most of them 
focus on the forward problem analysis.3,6,39,40 The 2D inverse 

problem of Equation (3) was considered in tumor assuming 
only (constant) diffusion.40 The assumption of the constant 
diffusion coefficient obviously deviates from the reality, and 
the direct inversion method for solving for the diffusion co-
efficient is likely prone to the noise in the data, especially 
with second derivatives of noisy data in the denominator. 
The direct inversion approach in Ref. 40 is not applicable 
to the blood perfusion case since blood velocity u in 3D is 
directional. Our group has proposed to use porous medium 

F I G U R E  5  In vivo ASL data on healthy subject 2. A-D, The ASL data at four PLDs = 1025 ms, 1525 ms, 2025 ms, 2525 ms (left to right, top 
to bottom)

F I G U R E  6  QTM results on healthy subject. A, The 3D display of the vector field from QTM at one slice. B, The renal blood flow comparison 
between QTM (top) and Kety’s method (bottom)
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approximating tumor tissue and solved the inverse problem 
to quantify the blood velocity using PDE Equation (3) in 3D.7 
This work is an extension of the previous work by modeling 
an approximate microvascular network in the tissue to better 
quantify blood flow.

There are several benefits of the proposed QTM method. 
The QTM model is a biophysically based method derived 
from mass transport equation accompanied by rigorous 
mathematical derivation. Given the microvascular informa-
tion, no AIF is required, as is the case with Kety’s method 
of quantitative perfusion mapping, which generalizes the 
Fick’s principle for an organ to mass conservation in a 

voxel with several assumptions.2 Kety’s method relies on 
empirically determined parameters, such as labeled blood 
arrival time, labeling efficiency, blood/tissue partition co-
efficient, labeling plane position, etc.2,11,24 A small change 
of these parameters can result in a large change in the blood 
flow value.41 Kety based methods have been proposed that 
do rely on many empirical parameters or assumed global 
AIF,42 but the fact remains that a single global AIF, even 
those reconstructed from blind convolution, are not appro-
priate for the whole organ. The QTM model is potentially 
applicable to other tracers and image modalities, such as 
DCE and DSC MRI, CT, and PET. The signal decay rate 

F I G U R E  7  Statistical analysis between the results from QTM and Kety’s methods. The top (bottom) row show the results for the cortex 
(medulla) region. A, The correlation of the results between QTM and Kety’s method in the cortex region. B, The Bland-Altman plot of cortex blood 
flow from QTM and Kety’s method. C,D, The corresponding plot of (A) and (B) in the medulla region

T A B L E  1  The regional blood flow results from QTM and Kety’s method, including blood flow in the cortex and medulla for seven healthy 
subjects and their mean and SDs

Method Region S1 S2 S3 S4 S5 S6 S7 Mean SD

QTM Cortex 443.78 518.33 445.46 391.19 417.43 368.55 518.84 443.37 58.19

Cortex CoV 0.26 0.28 0.17 0.32 0.23 0.28 0.23 0.25

Medulla 153.89 246.42 310.96 68.88 146.15 119.58 287.51 190.49 91.45

Kety Cortex 486.16 553.02 471.73 442.70 459.52 415.83 546.37 482.19 51.22

Cortex CoV 0.35 0.31 0.34 0.36 0.30 0.32 0.30 0.33

Medulla 257.80 326.74 211.35 105.48 234.14 242.50 313.97 241.71 73.31

Cortex CoV is the coefficient of variation in the cortex region to measure the homogeneity of the blood flow distribution in the cortex.
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� in Equation (3) should be correspondingly adjusted, that 
is, � =0 for contrast agent tracers that do not decay,43 and  
γ= ln2/half-life for radioligands used in PET.

To safely apply the proposed QTM, the assumptions 
in the development of it should be understood properly. 
First, there are several assumptions that should be under-
stood carefully: The blood velocity u (r) is assumed to be 
the same as the velocity of the tracer. This is the basic 
assumption in the study of most tracer transport phenom-
enon. The pulsation of the blood velocity u(r) is ignored 
and u(r) is assumed to be constant in time because QTM is 
to measure an averaged effect of blood velocity and flow. 
The pulsation can be averaged out during a time interval 
that is longer than a cardiac period. In MRI, the ASL data 
were acquired within about 4 min; therefore, the data only 
reflect an average of blood velocity information. The as-
sumption of impermeable vessel wall is reasonable because 
the tracers first transport in the renal vasculature before en-
tering the renal tubules.44 The vessel wall was assumed to 
be impermeable, in other words, the model is basically one 
compartment model. For ASL data, the tracer signal decays 
at the rate of 1∕T1,blood. The tracer is on the arterial side 
and is generally regarded with little penetration through the 
vessel wall into the tissue compartment. This assumption 
serves as a reasonable start for this proof-of-concept work 
and for healthy subjects. Future work needs to incorporate 
permeability in the model for tissues that are peameable to 
tracers and for diseases that increase the vessel wall per-
meability. Two or more compartment model can be con-
sidered, and corresponding temporal convolution45 can be 
added to the transport equation of mass flux described in 
this work. The outlet flow was assumed to be equal for all 
the terminal capillary segments during the construction of 
the microvascular network. This is a reasonable assump-
tion given that the tissue needs nutrition supply from the 
capillary and the capillary distribution in the renal cortex 
is quite homogeneous. This assumption can be removed in 
future work on the inhomogeneous case.

The proposed QTM has its limitations at this preliminary 
stage. First, microvasculature information is needed or at least 
the absolute blood volume value is required for accurate re-
construction of the blood flow map. The error in the estima-
tion of blood volume may introduce errors in the final blood 
flow map. To produce a reasonable prediction of the absolute 
renal blood volume, one can use a population-based value or 
patient-specific predicted value. The population-based renal 
blood volume may be obtained from large database and the 
patient-specific renal blood volume may be calculated using 
MRI technique.46 Second, QTM uses ASL data with multiple 
PLDs, which means more data acquisition time is needed. 
The long data acquisition time for some patients may be intol-
erable. This problem may be solvable by shortening the data 
acquisition time for each PLD using Hadamard encoding.47 A 

navigator may be used to compensate motion artifacts from 
the long scan.48,49 Third, QTM is a PDE based inverse prob-
lem in which the derivative of data plays a key role. Errors 
in the flow map may be caused by subject movement during 
data acquisition, which is an issue in abdominal imaging. 
However, motion artifacts can be reduced using state-of-the-
art motion correction algorithms and image registration al-
gorithms.50,51 Fourth, the microvasculature model of kidney 
employed here was from rat,9 and the computational power to 
calculate the forward problem in a large microvascular net-
work limited the smoothness of the simulated data. Although 
there is no renal micrvasculature data for human available to 
our knowledge, the rat renal microvasculature is suggested 
to be very similar to that of human in both morphology and 
function.52 However, the renal vasculature in disease is dif-
ferent from that in health, and future studies on the renal mi-
crovasculature network of human in health and diseases are 
needed. Fifth, the simulation is based on transport equation 
and, therefore, favors QTM against Kety’s method, which is 
the so-called inverse crime in the area of inverse problem. 
Fundamentally, Kety’s method assumes global arterial input 
for all voxels, ignoring the physics of local spatial variation 
contributing to local temporal variation, and any physics 
based modeling is biased against Kety’s method. In this work, 
the simulated data were first generated on a “microscopic” 
scale and then, voxelized and inverted on imaging voxel scale 
in QTM. This voxelization makes the resolution of QTM dif-
ferent from that of the forward problem, mitigating the in-
verse crime to some degree. Moreover, in vivo data provides 
a fair comparison between QTM and Kety’s method. Sixth, 
the non-contrast MRA was used to obtain the prior informa-
tion of main arteries of the kidney. We found that the renal 
artery structure for different subjects have a great similarity 
and it may be affected by the shape of kidney as well. We are 
thinking to train a convolutional neural network to predict 
the renal main artery structure given the shape of kidney to 
reduce the scanning time.

Several possible aspects of future work should be addressed 
to extend the perfusion quantification using QTM to clinical ap-
plications. We have demonstrated the feasibility of the proposed 
QTM in ASL data in the kidney. It may be applied to the other 
body regions including brain, liver, and breast, and the other 
types of tracer imaging methods including computed tomogra-
phy (CT), PET, and single-photon emission computed tomog-
raphy (SPECT), as well as DCE MRI. Accurate quantification 
of regional blood flow, combined with quantitative susceptibil-
ity mapping,53 allows estimating the metabolic rate of oxygen 
consumption.54 Additionally, a flow phantom to experimentally 
validate the method with a known ground truth flow map would 
provide further validation. To get an accurate estimate of the 
flow map, QTM needs an accurate estimate of blood vascula-
ture. Finally, the assumption of intravascular tracer distribution 
could be extended to the extravascular space in future work.
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In summary, the proposed QTM is able to quantify blood 
perfusion by fitting the 4D time-resolved image data to the 
voxelized transport equation with the aid of the reconstructed 
microvasculature information. QTM provides both flow and 
directional velocity maps and does not require an AIF.
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

FIGURE S1 (A) Illustration of microvasculature in one 
voxel, there are intersectional areas between vessels and 
voxel surfaces. The total intersectional areas on the six voxel 
surfaces are denoted as ML, M

R, M
P, M

A, M
I and MS, respec-

tively. (B) illustration of voxelization and adjacent voxel 
relation. Negative x to positive x: Left (L) to Right (R), nega-
tive y to positive y: Posterior (P) to Anterior (A), negative z 
to positive z: Inferior (I) to Superior (S)
FIGURE S2 Illustration of boundary condition for the trans-
port equation in cylinder
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APPENDIX A
ANALYTICAL SOLUTION OF MASS 
CONSERVATION EQUATION IN THE 
CYLINDER
As we have shown in the previous section, blood velocity can 
be calculated using Poiseuille law. The computation of blood 
tracer is another challenging problem in the huge microvas-
cular network. Since the tracer is infused to the main artery of 
kidney. The tracer distribution is changing spatialtemporally. 
This section presents the use of a analytic solution to the 
convection-diffusion equation to obtain the spatial-temporal 
solution of tracer distribution in the whole simulated micro-
vascular network.

https://doi.org/10.1002/mrm.28584
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Numerically solve the mass conservation equation in the 
massive microvasculature using the FEM or FDM could be 
computationally heavy and take long time. Consider that 
each segment of our microvascular network was simplified 
as a cylinder. We solve the mass conservation equation for 
the tracer concentration using the analytical solution in 3D 
cylinder.21,22

In cylindrical coordinate, the mass conservation equation 
for our problem can be written as.

where z and r are the longitudinal coordinate parallel and per-
pendicular to the cylinder axes, respectively. The velocity u(r) 
has a parabolic profile across the cross-sectional area of the 
cylinder (see Equation S20 in the Supporting Information). 
DL and DR are the dispersion coefficients in the longitudinal 
and radial directions.

The following boundary conditions (BC) and initial condi-
tion (IC) are required, see Supporting Information Figure S2:

BC.1. Tracer supply (label) with given concentration at 
the inlet

where � is the tracer supply duration, the labeling duration for 
ASL.

BC.2. Continuous tracer concentration at outlet

BC.3. Impervious vessel wall condition

IC. Tracer-free initial condition

where R and L are the radius and length of the vessel segment, 
respectively.

The analytical solution to the problem Equations A1-A5 
can be expressed as two parts:

1. The first part is the solution with continuous tracer 
supply when tD ≤ �D:

2. The second part is the solution after the tracer supply 
is interrupted when tD >𝜏D:

The notations in Equations A6 and A7 are defined as the 
following:

The dimensionless parameters.

The other functions.

with J1 (⋅) being the first kind Bessel function of the first 
order.
�n in Equation A11 is the finite Hankel transform param-

eter as determined by the transcendental equation.

where J0( ⋅ ) is the zero-order Bessel function of the first  
kind.
�m in Equation A6 is the eigenvalue determined from the 

following equation:

(A1)DL

�2C

�z2
−uz (r)

�C

�z
+DR

(
�2C

�r2
+

1

r

�C

�r

)
=
�C

�t

(A2)C (r, z=0, t)=C0 for t<𝜏,
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For our numerical simulation, the tracer supply duration 
� =1.5s, the tracer concentration for each vessel segment and 
each time points were computed using Equations A6 and A7 
with parabolic velocity solution. Precisely, the concentration 

distribution was computed in order from the root segment 
down to the capillary segments. For each internal segment, the 
boundary concentration at the inlet was provided by the con-
centration at the outlet of the previous adjacent segment. See 
Figure A1 for the concentration distribution in one segment at 
different times. See Supporting Information Figure A2 for the 
dependence of AIF variation on the picked locations.

(A13)�mcot
(
�m

)
=−

PeL

2
, m=1, 2,…

F I G U R E  A 1  The tracer concentration distribution in 3D cylinder at different time points with parabolic velocity. A, The tracer concentration 
at inflow time points t1 to t5. B, The tracer concentration washout at time points t6 to t10. C, The tracer concentration profiles along the central line of 
the cylinder from time t1 to t10
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F I G U R E  A 2  The AIF locations and the concentration profiles based on the data in Figure 3. A, the microvascular structure. B, The shape of 
AIFs at different location of root artery. C, The shape of AIFs at different level of vessel branches


