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1. INTRODUCTION

It is now well established that proteins and nucleic acids
undergo local and global conformational fluctuations to
perform a variety of cellular functions such as signal

transduction, transport, and catalysis.1 Many experimental
techniques such as X-ray crystallography, nuclear magnetic
resonance (NMR) spectroscopy, small-angle X-ray scattering
(SAXS), and single-particle electron microscopy (EM) have
indeed provided structural evidence at different resolutions to
support the view of multiple functional states of biomolecules.
Yet it remains difficult to characterize the vast conformational
repertoire of biomolecules via experimental methods alone.
Therefore, biophysical theory, modeling, and simulation
techniques rooted in statistical mechanics are often useful for
a detailed molecular understanding of biomolecular struc-
tures.2−5 Despite the limitations of molecular mechanics
interaction potentials, computational methods can now be
combined with low-resolution structural data to generate
experimentally consistent conformational ensembles as well as
to probe underlying mechanistic questions.
Analyses of structural data for different functional states of

biomolecules have revealed large-scale conformational rear-
rangements on the scales of entire domains. This means that a
large group of atoms collectively move in a concerted way to
facilitate functional movements. Traditionally, one relatively
less expensive computational method to analyze collective
motions in proteins has been to carry out normal-mode analysis
(NMA) of equilibrium structures, because low-frequency
modes are typically indicative of high-amplitude/large-scale
motions.6−8 Such global and collective modes are robust,
independent of sequence detail, and are intrinsically accessible
to each biomolecule because they are encoded in their global
shape.9−13 Given that the total number of degrees-of-freedom
(DOF) in biomolecules is very large, NMA provides an efficient
way to describe biomolecular dynamics in a reduced number of
variables. As was originally pointed out by Hayward and Go,6

this reduction in dimensionality has led to the concept of an
important subspace of variables, “collective variables (CVs)”,
that are well-suited to characterize the dynamics of
biomolecules. Interestingly, the concept of CVs as reaction
coordinates has been recently extended to atomistic molecular
dynamics (MD) simulations,14 which has significantly increased
their capability in capturing long time-scale motions. This is
chiefly possible because sampling in these CVs can be carried
out more extensively in comparison to all possible DOF. Such
methods are typically referred to as enhanced sampling
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techniques because they increase the likelihood of observation
of a rare biomolecular event.
The range of studies in which NMA and MD simulations

have played a central role is immense, and it is not possible to
do justice to all such studies in this focused Review. However,
we refer the reader to pertinent comprehensive literature on
those subjects along the way. Therefore, we have limited the
scope of this Review to some specific applications of NMA, and
enhanced sampling via temperature-acceleration in the context
of flexible fitting to low-resolution EM data on macromolecular
complexes. Particularly, we concentrate on two methods in this
Review: (a) normal mode flexible fitting (NMFF)15,16 for
structural refinement into EM maps; and (b) temperature-
accelerated molecular dynamics (TAMD)17,18 for conforma-
tional exploration and flexible fitting. We first discuss
theoretical underpinnings of all-atom and coarse-grained
NMA of protein structures, which is followed by highlights of
various successful applications. The theory and applications of
NMA for flexible fitting of protein structures into EM maps are
described thereafter. This is immediately followed by a
discussion of the importance of enhanced sampling in
biomolecular simulations, and how dynamics in these systems
can be explored by evolving CVs via temperature acceleration,
for example. Specifically, we discuss in detail various aspects of
TAMD. During these discussions, we further highlight a few of
the many cases where NMA and TAMD have alleviated
difficulties faced by other methods in understanding large-scale
functional excursions in biomolecules. This Review concludes
with a brief overview and future outlook for these methods.

2. NORMAL MODE ANALYSIS

2.1. Theory

Normal mode analysis is a well-established technique to
understand physical phenomena, and has a long history of
applications to biomolecular systems.6,19−24 It is based upon a
harmonic approximation of the underlying potential energy
landscape, which suggests that systems at equilibrium fluctuate
in a single well-defined minimum in the potential energy
surface. Therefore, we can model the dynamics of biomolecules
by considering a collection of independent harmonic oscillators
through the solution to the eigenvalue problem for these
oscillators. Central to such analysis is the diagonalization of a
3N × 3N (where N is the total number of atoms) matrix of the
second derivatives of the potential energy with respect to the
atomic Cartesian coordinates, also known as the Hessian.
Solving the Hessian leads to a set of normal modes, each with a
direction eigenvector and its related eigenvalue (frequency). A
positive or a negative eigenvalue represents a local minimum or
maximum on the potential energy surface. In a nutshell, NMA
is comprised of three steps: (a) energy minimization; (b)
calculation of the Hessian; and (3) the solving of the eigenvalue
problem.6

In the computed mode spectrum, low-frequency modes
represent large-amplitude and collective structural deforma-
tions, while high-frequency modes are related to local structural
perturbations such as in the residue side-chains. From a
physical standpoint, global low-frequency modes are most easily
accessible, and deformations along these require the least
amount of energy (the energy of a mode is directly
proportional to the square of its frequency), thereby making
these softer modes. Such modes have been observed to
correlate remarkably well with large-scale movements inferred

from experimental structures, which is why they bear functional
significance. It is important to note here that large-scale
excursions along a specific low-frequency mode tend to violate
the harmonic approximation, and a re-evaluation of normal
modes at a different minimum may be needed in such cases.
Additionally, normal modes represent displacements that are
tangent to the direction of motion at equilibrium, due to which
violations of internal constraints such as bond lengths/angles
may occur unless appropriate preventive measures are taken.
As was pointed out above, a key step in NMA is the

diagonalization of the Hessian, which is a computationally
expensive procedure for large biomolecules. Therefore, an
approach is needed to decrease the number of DOF during this
step. Although early workers attempted to address this problem
by using the lower dimensional dihedral angle space as opposed
to Cartesian space,25 more useful methodologies such as
diagonalization in mixed basis (DIMB) were later proposed by
Perahia and colleagues.26,27 In this method, an iterative
diagonalization utilizing partial solutions to the entire problem
is performed to calculate the normal modes of proteins up to
300 amino acids. To deal with much larger systems, the
rotation translation block (RTB) method was proposed by
Sanejouand and co-workers.28,29 In this method, approximate
low-frequency normal modes are computed by dividing the
biomolecular system into a number of rigid blocks (a group of
residues). The blocking scheme reduces the 3N DOF to 6nb
(where nb is the number of blocks). The RTB method led to
successful applications in studies of large biomolecular
machines such as the ribosome, RNA polymerase, and
ATPases.30−32 Some workers have also combined the RTB
method with a dihedral angle basis to perform normal mode
calculations of massively sized icosahedral viruses.33,34

A conventional approach to carry out NMA is to consider
atoms in a biomolecule as classical point masses, where
interaction energy terms between all atoms are given by a
molecular mechanics (MM)-based potential energy function,
“force-field”. In such models, it is quite difficult to ensure an
adequate energy minimization of equilibrium structures, and
the quality of modes is dependent on finding the true minimum
on the potential energy surface. Despite these limitations, if
carried out carefully, all-atom NMA based on atomistic force-
field can provide useful information on natural frequencies of
slow modes. In a seminal paper,35 Tirion introduced a
simplified single-parameter representation of the potential
energy function by considering biological systems as three-
dimensional elastic networks of atoms connected by harmonic
springs. Such elastic network model (ENM) representation can
be readily extended to any level (typically Ca-atoms in proteins
and P-atoms in nucleic acids) of coarse-graining by proposing
different cutoff distances between individual nodes, and spring
constants connecting the nodes in this network can be treated
uniformly or nonuniformly. Popular models in this category are
the anisotropic network model (ANM)36−39 and the Gaussian
network model (GNM).40,41 These ANM/GNM-based elastic
network models have been extensively developed and applied
on various proteins by Bahar, Jernigan, and co-workers.10,42−46

2.2. Applications

As was pointed out in the Introduction, there are numerous
successful applications of NMA to a variety of biological
systems, and a review of all such applications is beyond the
scope of this work. Hence, we recommend the reader to follow
earlier research and review papers that describe methodological
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advances and their applications.6,7,9,12,22,38,47−61 To highlight a
few examples, Jernigan and colleagues applied a coarse-grained
elastic network NMA to study dynamics in the GroEL−GroES
complex.62 This work revealed complex details on cooperative
cross-correlations between subunits: slowest modes were
suggested to uniquely characterize opposing torsional rotations
of the two GroEL rings by alternating compression/expansion
of the GroES cap binding region. NMA has also been applied to
study maturation transitions in icosahedral virus capsids and
their mechanical properties.34,63−69 Specifically, comprehensive
studies by Brooks and co-workers64,65,68,70 on viruses of
different sizes and symmetries such as Hong Kong 97
(HK97), cowpea chlorotic mottle virus (CCMV), cucumber
mosaic virus (CMV), rice yellow mottle virus (RYMV),
southern bean mosaic virus (SBMV), and nudaurelia capensis
virus (NωV) have suggested that the structural transitions are
largely dominated by a few icosahedrally symmetric low-
frequency normal modes. Other systems that have been
successfully studied via NMA include RNA/DNA polymerases,
adenylate kinase, hexameric helicases, and motor pro-
teins.31,53,71,72 For a comprehensive review of NMA of
biomolecular structures, we direct the reader to a recent work
by Bahar and co-workers.13 However, relevant to our work are
also applications of normal mode theory in the interpretation of
low-resolution EM data, which we discuss below.
Single-particle EM is a powerful methodology to probe both

the architecture as well as the underlying conformational
dynamics of biomolecules.73−82 This technique is very useful
for the structural exploration of large complexes or in general
for biomolecules that are challenging to study by X-ray
crystallography or NMR. Primarily due to imaging limitations
as well as the inherent flexibility of macromolecules, 3D EM
maps of macromolecules are often obtained at a resolution
lower than 15 Å, and therefore require interpretation with the
help of available high resolution structures of subregions that
are fit manually or computationally in the EM envelope. Many
computational algorithms that use all-atom or coarse-grained
models of biomolecules to carry out rigid-body or flexible fitting
into EM maps have been proposed and compared.15,16,83−97 To
highlight a few, the molecular dynamics flexible fitting (MDFF)
method was developed and applied to generate density-guided
structural models by Schulten and co-workers,85−87 MultiFit
and Flex-EM were developed by Sali and co-workers for
iterative comparative modeling and fitting multiple components
into EM envelopes,91,98−100 MDfit was developed and applied
by Sanbonmatsu and co-workers,88−90 and EM-Fold was
proposed and applied by Meiler and colleagues.101−104

Structural refinement methods based upon EM density have
also been implemented in other software programs. For
example, Rosetta is a popular ab initio protein structure
modeling, prediction, and refinement software suite that has
been applied for the improvement of NMR and X-ray crystal
structures.105−108 Dimaio et al.109 recently described a Rosetta-
based rebuilding-and-refinement protocol for fitting protein
structures into density maps. Many of these methods were put
to test during the “2010 Cryo-EM Modeling Challenge”,96 and
have been reviewed in detail recently.110 Among all methods in
the flexible fitting domain, the normal mode flexible fitting
(NMFF)15,16 technique of Brooks and co-workers was one of
the first methods with successful applications in large
macromolecular complexes such as the ribosome. In the
following, we highlight some of the achievements of this
method.

2.3. Normal Mode Flexible Fitting

2.3.1. Theory. The need for a flexible fitting technique
arises from the fact that in many cases simple rigid-body
orientations of biomolecular structures are not sufficient to
explain the conformation of a biomolecule in solution, as
represented by a single particle EM map, regardless of
resolution. Although one could alleviate this difficulty by
dividing the system in independent parts, the problem is that
the partitioning scheme for a multidomain assembly is not
known a priori, and such partitioning often leads to disjoint
conformations of the biopolymer chain. There are three main
ingredients of a structural fitting protocol: (a) availability of a
set of initial coordinates of the biomolecule; (b) existence of an
experimental map of the biomolecule at some resolution; and
(c) a flexible fitting methodology. NMFF15,16 is one such
flexible fitting computational method based upon elastic
network NMA in which coarse-grained representations of
biomolecules are typically fitted into low-resolution EM data.
Given that the target data for flexible fitting are of low-
resolution, all-atom representations may lead to overfitting of
structural elements unless preventative measures are ap-
plied.111,112 Therefore, methods such as NMFF that use only
a few DOF to carry out fitting process are ideally suited for
structural refinement applications. NMFF takes advantage of
the fact that low-frequency normal modes of a system
collectively represent most facile deformations, and due to
this interesting property, they can be used as search directions
in a refinement protocol.23 The fitting is performed by
iteratively deforming the initial structure along a set of low-
frequency normal modes, which increases the cross-correlation
coefficient (CCC) between the calculated electron density from
the atomic model and the observed density from the EM map.
Gradient-following techniques in the space of collective normal
modes can then be used to maximize CCC. The aim of the
entire procedure this way is to conform the initial structure to
the target EM map. The simulated electron density for
computing CCC with the target map is generated as:15,16

∫∑ρ =
=

i j k x y z g x y z x y z( , , ) d d d ( , , ; , , )
n

N

V

n n nsim

1 ijk

(1)

where ρsim(i, j, k) is the density of voxel (i, j, k), (xn, yn, zn) are
the Cartesian coordinates of atom n, N represents the total
number of atoms, the volume of the voxel is Vijk, and g(x, y, z;
xn, yn, zn) represents the density of each non-hydrogen atom by
a Gaussian kernel. Therefore, the displacements along the
collective low-frequency normal modes that increase the
correlation coefficient gradually lead to conformations that
better fit the target EM map. Although a set of only a few
(∼10−20) low-frequency normal modes is sufficient in most
cases for structural refinement, one can also use rotational/
translational modes to further improve the rigid-body fit into
the density map.

2.3.2. Applications. Although NMFF was formally
proposed in 2004,15,16 an NMA-based strategy was used earlier
to study the mechanism and pathway of pH-induced swelling in
CCMV.64 CCMV is a plant virus, whose genome consists of
three single-stranded RNA molecules. The viral capsid in
CCMV is composed of 180 protein subunits, thereby making it
a virus with T-number (T) of 3 (total subunits in the capsid are
given by 60T). Native CCMV is stable around pH 5.0, but at
pH 7.0, it undergoes a massive structural transition to a swollen
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form during which the average size of the particle increases by
∼10%.113 In this study, the native form of CCMV was displaced
along the direction of a single low-frequency mode, and many
candidate structures of swollen virus particles were generated
and a putative pathway for virus expansion was proposed. The
proposed models were in good agreement with the EM data on
swollen particles at 28 Å resolution. The analysis of structures
along the expansion pathway further revealed that significant
loss of interactions occurs in the initial stages of the maturation
transition. NMFF was also applied successfully to refine the
structure of Red clover necrotic mosaic virus (RCNMV) in an
8.5 Å-resolution EM map.114 The results from this study
indicated that the divalent cations play a significant role in the
capsid dynamics, and at low ionic concentrations, it may lead to
the release of viral RNA.
Tama et al.32 used NMA to understand ratchet-like

rearrangement of the 70S ribosome observed in EM maps.
The ribosome is a ribonucleoprotein structure that is
responsible for protein synthesis in all cells by translating
mRNA into a specific sequence of amino acids. Frank and
Agrawal observed a ratchet-like relative rotation of the two
ribosomal subunits.115 The coincidence of experimentally
observed dynamic transitions with a few low-frequency
modes suggested that the shape of macromolecular assemblies
may be a robust parameter that dictates their underlying
dynamics. A structure of the E. coli protein-conducting channel
was further solved with the help of NMFF and imaging via
EM.116 NMFF-based structural refinement suggested that the
channel formation takes place by opening of two linked SecY
halves during polypeptide translocation, and a model for
cotranslational protein translocation was also proposed.

In 2005, two other landmark applications of NMFF were
reported.117,118 The first application118 was for Myosin II,
which is an ATP-dependent molecular motor in smooth muscle
cells. A combination of EM data, homology modeling, and
NMA was used to obtain structural models of putative activated
and inhibited states, and mechanistic details of coupling
between Head and S2 domains were explored. In the second
application,117 a structure of chaperonin GroEL-GroES
complex was determined at 13 Å resolution. The GroEL
chaperonin is an essential protein that assists in the folding of
other polypeptides in an ATP-dependent manner. NMFF
analysis of this chaperonin bound to a protein substrate
revealed that the observed conformational changes induced by
protein binding are variable, and may depend on the properties
of a specific substrate. NMFF was also applied to a toxic
complex of anthrax to understand conformational changes in
the lethal factor and the protective antigen heptamer.119 The
concerted structural arrangements in the lethal factor and
heptamer were suggested to facilitate the ingress of the ligand
into the lumen of the heptamer. NMFF application was also
demonstrated on the experimental maps of Elongation Factor
G (EF-G) bound to the ribosome and on the E. coli RNA
polymerase.16 The correlation coefficients for the final NMFF-
generated models of each system were 0.81 and 0.88,
respectively. NMFF fitting of other proteins such as lactoferrin
and Ca2+-ATPase into 10 Å resolution EM maps also resulted
in relatively high (greater than 0.9) final correlation
coefficients.15 We briefly note that NMFF-based strategies
have also been applied to small-angle X-ray scattering (SAXS)
data.120,121

Figure 1. TAMD-generated conformational change in the activation loop of the insulin receptor kinase domain. (a) RMSD versus simulation time
(ns) for the activation-loop (the A-loop), R-spine, C-spine, and Phe1151 with respect to the active crystal structure. Gray background in the plots
indicates first ∼7 ns of MD equilibration, which is followed by ∼40 ns of TAMD. (b) Representative snapshots of IRKD from TAMD simulation are
shown at various time-points with the A-loop in red, side-chains of Asp1150 and Phe1151 in cyan and blue, respectively. The conformation of the A-
loop in the active crystal structure is shown as a black cartoon. The large panel in the center shows the conformations of IRKD with highlighted
structural motifs: αC-helix, nucleotide-binding loop, and the activation loop from TAMD simulation at t = 7.59 (red), 17.09, 22.89, 40.09, and 47.00
ns (blue). Arrow directions guide along the increasing simulation time. Adapted with permission from ref 167. Copyright 2012 Elsevier.
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The methodologies that we have described so far are based
upon the analyses of static structures that can been deformed in
the CV-space without invoking the dynamical aspects of the
system evolution in this reduced coordinate set. Interestingly, it
is possible via MD simulations to carry out dynamics in the
multidimensional CV-space14 for conformational exploration of
biomolecules. There are many such rapidly evolving enhanced
sampling techniques, and therefore we highlight in the
following only a few of these methods that have been applied
to biomolecular systems.

3. ENHANCED SAMPLING METHODS
Extensive equilibrium sampling of biomolecules remains a
challenging goal.122 Sampling of phase space at equilibrium
requires access to all possible regions of configuration space,
information on which, for a system at constant temperature and
fixed volume, is encoded in the equilibrium probability
distribution function:

∝ −p U k TX X( ) exp[ ( )/ ]B (2)

where p is the probability density function, X is the complete
3N-dimensional atomic coordinate set, U is the potential
energy function, kB is Boltzmann’s constant, and T is the
absolute temperature. Although exhaustive conformational
exploration in all possible DOF for biomolecules may not be
feasible, many useful techniques with similar/overlapping
theoretical basis that use dimensionality reduction as a tool
to explore conformational landscape in a few CVs have been
proposed. In these methods, the 3N-dimensional atomic
configuration of the system is mapped to an M-dimensional
CV space (where M is typically significantly smaller than 3N),
and the dynamics restricted to the M-dimensional CV space are
explored. Many such enhanced sampling methods for
equilibrium and nonequilibrium systems are periodically
reviewed, and we refer the reader to consult excellent existing

literature on such topics.14,122−135 However, we briefly point
out the following: (a) the adaptive biasing force (ABF) method
of Darve et al.134,135 has found applications in biomolecular
conformational sampling;136−138 and (b) the metadynamics
method (and its variants) by Parrinello and co-work-
ers123,124,139−142 is another popular approach that has been
extensively applied to a variety of problems in biophy-
sics.143−147 There also exist “tempering” protocols that use
high temperature as a way to overcome barriers.148−150 These
protocols are often employed in Replica Exchange MD

Figure 2. TAMD-generated conformational change in the C-terminus of the B-chain of each insulin. (A) Traces (T-insulin, black; R-insulin, cyan) of
the root-mean-squared deviation (RMSD) and buried surface area (BSA) versus simulation time (ns) are shown for each insulin/IRΔβ complex.
Circled digits indicate the following: (①) RMSD of the C-terminus (residue B21−B30) of the B-chain of each insulin. For RMSD computation, the
insulin molecules were aligned based upon the residues of each A- and B-chain (A1−A21 and B1−B20; Cα); (②) BSA between the C-terminus of the
B-chain (residues B21−B30) of each insulin and rest of the insulin molecules; (③) BSA between each insulin molecule (except the B-chain residues
B21−B30) and the L1 domain; and (④) BSA between CT and the L1 domain. Horizontal lines indicate the values measured in the IRΔβ crystal
structure (PDB code 3LOH) except the dotted horizontal lines that are arbitrarily drawn for guidance. (B) Conformational change in the C-terminus
of the B-chain of each insulin is highlighted. Representative snapshots of each insulin (transparent blue), CT (transparent red), and the L1 and CR
domains of IRΔβ (transparent white) are shown at various time-points of respective TAMD simulations. The residues FB24, FB25, and YB26 are shown
in sticks and labeled in the first snapshot for each insulin/IRΔβ complex. Initial positions of CT are different (from the crystal structure) for each
insulin/IRΔβ complex because TAMD trajectories were started based upon the Monte Carlo (MC) docked and MD-equilibrated structural models
of each insulin/IRΔβ complex. Some of the terminal residues of CT spontaneously fold/unfold during TAMD trajectories. Adapted with permission
from ref 169. Copyright 2013 John Wiley & Sons, Inc.

Figure 3. MD and TAMD simulation data for RGS4 runs with initial
coordinates from PDB code 1AGR. (a and b) Overlay of cartoon
representations of apo-RGS4 (red, beginning; blue, end of
simulations). All helices of RGS4, except the α5−α6 pair, are shown
in white cartoons. (c) The Cα-RMSD traces with reference to starting
conformations. (d) Buried surface area (BSA) between the α5−α6 helix
pair and the rest of RGS4. Adapted with permission from ref 170.
Copyright 2013 American Chemical Society.

Chemical Reviews Review

dx.doi.org/10.1021/cr4005988 | Chem. Rev. 2014, 114, 3353−33653357



(REMD) simulations (and its variants) and have been applied
for understanding folding of proteins.151−153 Various tempering
methods have also been recently reviewed and compared.154,155

Among all of these methods, we only focus on the theory and
recent applications of enhanced sampling in the CV-space via
temperature acceleration. Particularly, TAMD17,18 is discussed
as a promising method to study rare events in biomolecular
systems.132

3.1. Temperature-Accelerated Molecular Dynamics: Theory

TAMD was originally introduced by Maragliano and Vanden-
Eijnden17,18 as a method to explore the physical free-energy
landscape in a large but finite set of CVs, which are functions of
the atomic Cartesian coordinates. In TAMD, additional
dynamical variables z = (z1, z2,...zm) are introduced along
with physical DOF, and an extended Lagrangian is proposed.
These auxiliary variables are harmonically coupled (with spring
constant κ) to CVs θ = (θ1(x), θ2(x),...θm(x)), and the potential
energy of the system V(x) is augmented with an additional
term, thereby describing the coupled motion of the [x, z] set
over the following extended potential:

∑κ θ= + −κ
=

U x z V x x z( , ) ( )
2

[ ( ) ]
j

m

j j
1

2

(3)

The auxiliary variables are assigned a fictitious mass as well as
temperature different from that of the physical system. There
are no restrictions, in principle, on the dynamics of the auxiliary
variables that can be described via Langevin, Nose−́Hoover,
and other related schemes. Adiabatic separation of the motion
of the physical and fictitious variables is achieved by simply
increasing the mass of the fictitious variables and assigning
appropriate values to the thermostat parameters such as the
friction coefficient. By guaranteeing in this way that z moves
slower than x, one can generate a trajectory z(t), which moves
at an artificial temperature β̅−1 on the free energy landscape
computed at the physical temperature β−1. Sufficiently high
temperature for the fictitious variables leads to accelerated
sampling of the free-energy surface restricted to the CVs. The

following coupled system of equations thus describes the
motion of physical and auxiliary variables:

∑κ θ
θ
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η β

γ κ θ ξ β
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1

(4)

where mi are the masses of xi, V(x) is the interatomic MD
potential, κ is the “coupling spring-constant”, γ is the Langevin
friction coefficient, η is a white noise source satisfying the
fluctuation−dissipation theorem at physical temperature β−1, γ ̅
and mj, respectively, are fictitious friction and masses of the
variables zj, and ξ is the thermal noise at artificial temperature
β̅−1.
In TAMD simulations, equilibrium distributions may deviate

from the canonical Boltzmann distribution, and ways to correct
such deviations by reweighting have been proposed.156 We note
that there are some similarities between TAMD and well-
tempered metadynamics. For example, similar to the fictitious
temperature in TAMD, a parameter ΔT is used in the well-
tempered ensemble to control the extent of exploration near
free-energy minima. A key difference is the adiabatic separation,
which is perfectly achieved in TAMD only when CVs never
move. Given that CVs are dynamic, TAMD never achieves
perfect adiabatic separation. However, in metadynamics, errors
due to poor adiabatic separation gradually decrease with the
progress of metadynamics trajectory. Because metadynamics
also aims to reconstruct free-energy surfaces, it must
exhaustively sample space around a specific point for accurate
free-energy estimation. TAMD, on the other hand, is only
aimed at fast exploration of the CV-space. A major consequence
of this fact is that TAMD can handle a significantly large CV-
space for conformational exploration, while metadynamics may
be somewhat limited.

3.1.1. Free-Energy Reconstruction. It is often informa-
tive and insightful to compute via simulations relative free-

Figure 4.MDFF versus TAMD-assisted MDFF (TAMDFF) fitting of adenylate kinase in explicit solvent. (A; top panel) Schematic representation of
the simulation domain (29416 atoms) of the adenylate kinase (ADK) as viewed along the z-axis: starting docked closed-conformation of ADK (black
cartoon), 5 Å resolution target map (blue surface), water molecules (wireframe), and ions (spheres). (A; bottom panel) Subdomain partitions of
ADK are shown for the TAMD simulation. Each sphere represents the center-of-mass (COM) of a mutually exclusive subdomain. Entire ADK
structure was divided into 9 subdomains. (B) Top and bottom panels, respectively, show the Cα-RMSD traces from the known initial and final crystal
conformations of ADK. The black trace is from an MDFF simulation, while the traces of other color are from six independent TAMD-assisted
MDFF (TAMDFF) simulations. Initial/final correlation coefficients for all seven simulations are shown in the bottom panel. (C) Cartoon
representations of two different views of the overlay of final conformations generated via MDFF and TAMDFF simulations are shown. Cartoon
colors are the same as the RMSD traces in panel B. Adapted with permission from ref 111. Copyright 2012 Elsevier.
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energy differences125 between metastable/stable states of
biophysical processes such as conformational transitions.
However, as was pointed out above, TAMD is a method to
explore fast the free-energy landscape restricted to the chosen
CV-space without actually reconstructing it. In principle, one
can accumulate the histograms of auxiliary variables to
reconstruct the free energy surface explored via TAMD, yet it
remains rather difficult primarily because it would require that
the trajectories of CVs visit relevant regions of phase space
several times to allow statistics to be gathered.132 Notwith-
standing these challenges, a method for on-the-fly parametric
calculation of free energy functions (TAMD/OTFP) in

arbitrary collective variables was recently proposed and applied
to simple test cases.157 In this approach, forces from a running
TAMD simulation are used to progressively optimize the best
set of some parameters λ on which a free energy of known
functional form depends. There are two other methods that can
be used in combination with TAMD to compute free energies
in a large CV-space: (1) the single-sweep method;18 and (2)
the string method in CVs.158 In the single-sweep method,18

TAMD forces are first used to quickly sweep through the
underlying free-energy landscape and identify important
regions in the landscape where one can compute mean forces.
In a follow-up step, free energy is reconstructed from mean

Figure 5. Conformational change in the Gα-subunit of a GTP-binding protein (G-protein) studied via MDFF and TAMD simulations. (A) Cartoon
representations for MDFF fitting of Gα at 5 Å target-map resolution: initial docked open-state crystal conformation (white cartoon; left panel), final
conformations generated via two independent 20-ns MDFF simulations (red and green cartoons; middle panels), and the known target closed-state
crystal conformation with perfect correlation coefficient of 1.0 (black cartoon; boxed right-most panel). The Cα-RMSD (with respect to the final
crystal structure) traces for each 20-ns MDFF run are shown in panel B. (B) Representative snapshots from a 40-ns TAMD simulation of Gα are
shown at various time-points during the simulation. TAMD-generated conformation is shown in cyan, and the known closed-state crystal structure
conformation is in black. The Cα-RMSD (with respect to the final crystal structure) trace from the ∼40-ns TAMD simulation is shown in the central
right-panel along with the RMSD trace from an unbiased ∼36-ns explicit-solvent MD simulation of Gα. Adapted with permission from ref 111.
Copyright 2012 Elsevier.
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forces by representing the free energy using radial basis
functions, and minimizing/optimizing certain parameters. The
method is useful to compute free energies in several yet a low
number of collective variables. However, the finite-temperature
string method is an approach to compute the minimum free
energy path (MFEP) in a large but finite set of CVs. The string
method algorithm requires iterative refinement of an initial
string, that is, a collection of discrete system configurations also
known as “images”. TAMD is ideally suited for generating such
initial paths/strings because it allows exploration of the physical
free-energy landscape. At each iteration, application of the
string method algorithm requires the calculation of the mean
force at each image along the string. This mean force is
generally obtained from restrained MD simulations by keeping
the CVs relatively fixed in phase space. The images in the string
are updated by measuring the negative gradient of the free
energy for each CV. The convergence of the string calculation
can be monitored by computing the root-mean-squared
deviation of the string in CV-space as well as by computing
the average string deviation over different iterations. A variant
of the string method called on-the-fly string method has also

been proposed159 and applied successfully.126 Many successful
applications of TAMD and associated free-energy methods in
various contexts are emerging, which we discuss in the
following section.

3.2. Temperature-Accelerated Molecular Dynamics:
Applications

Although classical MD simulations in principle can provide
atomistically resolved details on conformational ensembles of
proteins, observing collective large-scale structural transitions
on reasonable time scales remains a challenging goal. Using
special hardware and improved algorithms, it is now possible to
carry out long MD simulations to capture rare biomolecular
events in some cases.160−165 Similar long time-scale biophysical
processes have also been studied via relatively short TAMD
simulations, as described below.

3.2.1. Protein Conformational Sampling. Based upon
the TAMD equations described above, Abrams and Vanden-
Eijnden developed a conformational sampling algorithm for
proteins.166 Specifically, they demonstrated that by using a
fairly general partitioning scheme to define subdomains
(spatially contiguous groups of residues) in a protein and
defining centers-of-mass (COMs) of these subdomains as CVs,
one can carry out enhanced conformational sampling at the
physical temperature of the simulation. They applied this
algorithm to study large-scale conformational changes in the
three-domain GroEL subunit and HIV-1 gp120 without a priori
knowledge of their target states. Relatively modest temperature
accelerations between 6 and 10 kcal/mol were sufficient to
trigger conformational changes in each case. Specifically, the
apical domain in the GroEL subunit is displaced by 30 Å and
90° relative to the equatorial domain leading to prediction of a
final structure within 5 Å RMSD from the known target
structure. In gp120, counter-rotations of inner and outer
domain as well as disruption of the bridging sheet were
observed, the underlying mechanisms of which may be useful in
the development of inhibitors and immunogens. This
conformational sampling algorithm was later applied to several
other proteins such as the insulin receptor, maltose-transporter,
and regulators of G-protein coupled receptor proteins.167−170

Insulin receptor (IR) is a homodimeric transmembrane
glycoprotein of the receptor tyrosine kinase (RTK) super-
family. Insulin binding to the extracellular domain triggers
activation in the intracellular kinase modules.171 Vashisth et
al.167 studied the activation mechanism of the IR kinase domain
(IRKD) using TAMD. In this work, TAMD simulations
consistently showed a folding/unfolding transition in the
activation loop (A-loop) of IRK. A key structural feature of
this transition is a helical conformation of the A-loop (Figure 1)
that drives flip of the phenylalanine residue located in the
conserved “Asp-Phe-Gly (DFG)” motif. Further free-energy
calculations using the string method in collective variables158

revealed that the helical intermediate predicted by TAMD
alone is robust. The findings of this study broaden our
understanding of the kinase activation and suggest conforma-
tions that can be potential therapeutic targets. Vashisth and
Abrams also applied TAMD to study conformational change in
the C-terminus of the B-chain of insulin (Figure 2) in the
insulin/IR complexes.169 This conformational change exposed
residues buried in the core of hormone for it to achieve a
tighter registry and higher affinity for IR. Similar to the kinase
work, TAMD-generated conformations in this study were also
further validated with the help of string method in CVs. TAMD

Figure 6. Explicit-solvent MDFF versus TAMDFF fitting of helix-44
(H44) from the mature small (40S) eukaryotic ribosomal subunit179

into an experimental map of a pre-40S maturation intermediate.82 (A)
Schematic representation of the simulation domain (208390 atoms) of
solvated H44 as viewed along the z-axis: starting docked conformation
of H44 (black cartoon), ∼18 Å resolution target map (cyan surface),
water molecules (wireframe), and Mg2+ ions (green spheres). The
additional globular blobs of density near H44 are from some accessory
factor proteins (not modeled here). (B) The backbone (P-atoms)
RMSD traces from the known initial crystal conformation of H44
(PDB code 3U5F). The black trace is from an MDFF simulation,
while the traces of other color are from five independent TAMDFF
simulations. Initial/final correlation-coefficients for all six simulations
are also shown. Inset highlights the RMSD traces in early parts of
MDFF and TAMDFF simulations. (C) Map-docked cartoon
representations are shown for two different views of the overlay of
final conformations generated via MDFF and TAMDFF simulations.
Adapted with permission from ref 112. Copyright 2013 American
Chemical Society.

Chemical Reviews Review

dx.doi.org/10.1021/cr4005988 | Chem. Rev. 2014, 114, 3353−33653360



was further applied to study the allosteric mechanism of
inhibition of the regulator of G-protein signaling protein 4
(RGS4) by an inhibitor molecule.170 Conformational explora-
tion of RGS4 structures consistently reveals that a pair of
helices in RGS4 can spontaneously span open-like conforma-
tions, allowing binding of the inhibitor to the buried side-chain
of Cys95 (Figure 3). Remarkably, NMR experiments on RGS4
suggested chemical shift perturbations consistent with TAMD
predictions. By adding an additional angle-dependent harmonic
potential to the TAMD equations, Vashisth and Brooks showed
that robust conformational transitions can be observed in
components of the maltose-transporter,168 a membrane protein
responsible for transport of small nutrients. Moreover, they
demonstrated that every functional displacement in the
TAMD-generated pathways of each protein could be
characterized by a few low-frequency normal modes. These
results suggested, for the first time, that conformational
sampling in Cartesian CVs is governed by low-frequency soft
modes.
3.2.2. Ligand Diffusion. Given that proteins are

therapeutic drug targets, novel small molecules are designed
typically to block the activity of a specific protein. Diffusion
processes of small molecules inside the proteins are therefore
essential to understand. Specifically, free-energy barriers
associated with ligand diffusion in proteins remain difficult to
quantify, but their knowledge is necessary for a structure-based
rational drug-design approach. Many simulation techniques
have been applied to understand CO diffusion in myoglobin
(Mb), and TAMD was also used to study diffusion of either
CO or CO/water in Mb.172,173 Maragliano et al.172 first showed
the existence of a complicated network of pathways for the exit
of CO in which a histidine gate is the closest exit from the
binding site of the ligand. Lapelosa and Abrams further showed
that the histidine gate is also the preferred entry/exit portal for
water molecules in addition to CO. A key implication of these
results is that the models of gas transport in proteins should
also explicitly consider the transport of water molecules. In each
of these studies, single-sweep method18 for free-energy
calculation in a finite CV-space was combined with TAMD
for free-energy reconstruction.
3.2.3. Structural Refinement via Flexible Fitting.

MDFF is a popular method to carry out flexible fitting of
atomic structures into EM maps. Structural fitting of a number
of large biological complexes has been carried out using via
MDFF.82,85,86,174,175 Vashisth et al.111,112 showed that the
capabilities of MDFF can be extended by combining it with
TAMD for faster structural fitting. The first application of
TAMD-assisted MDFF (TAMDFF) was demonstrated on a
well-known enzyme, adenylate kinase (AdK), as a test system.
The final structures of AdK generated by MDFF and TAMDFF
were in good agreement with each other (Figure 4), thereby
suggesting that enhanced structural fitting can be achieved in
EM maps. Interestingly, TAMD can also be used to generate
better starting configurations for MDFF fitting. As an example,
conformational exploration of the Gα-subunit of the β2-
adrenergic receptor led to better starting configurations for
MDFF fitting, while rigid-body docked conformations of same
protein could not be correctly placed in EM maps via MDFF
(Figure 5).111 TAMDFF was further applied to nucleic acid
systems and a small ribonucleoprotein complex.112 In each case,
TAMDFF generated final structural modes similar to or better
than MDFF alone. In case of the ribosomal helix 44 (H44)
fitting into experimental EM maps, TAMDFF could fit the

structure in 1 ns, which takes MDFF ∼4 ns (Figure 6). This

means that computational gain for large macromolecular

complexes can be significant if simulations are carried out in

explicit solvent.
3.2.4. Other Applications. TAMD was briefly applied to

study the dynamic process of β2-adrenergic receptor

activation,176 and was also part of a study that extends

capabilities of Anton, a special-purpose machine for MD

simulations, to include more diverse set of methods.177 An

interesting nonbiological application of TAMD was to study

structures of hydrated nafion polymer in different morpholo-

gies.178 In this study, TAMD allowed observation of the trans−
gauche transition (a rare event) in the backbone of nafion

strands.

4. OUTLOOK

In this work, we have discussed some established as well as

emerging computational techniques that exploit dimensionality

reduction as a tool to understand large-scale conformational

changes in biomolecules. Particularly, methods solely based

upon analysis of static structures such as NMA and methods

based upon MD simulations such as TAMD were highlighted.

Theoretical considerations and recent key applications to

complex biomolecular systems are discussed. In many cases,

conformations generated by enhanced sampling methods such

as TAMD were in good agreement with crystallographic,167

NMR,170 and low-resolution EM data.111,112 These successful

applications provide encouragement to practitioners of

molecular simulations for testing the validity of these methods

further on a diverse set of proteins, nucleic acids, and their

complexes. Although Cartesian CVs have been remarkably

successful for protein conformational sampling,166−170 other

CVs for conformational sampling of biomolecules need to be

explored. Furthermore, there is a need for future studies on

TAMD that systematically investigate the effects of different

variables on dynamics such as the size of subdomains, fictitious

temperature, coupling spring constant, friction coefficient

associated with thermostat on auxiliary variables, presence of

solvent, and different schemes for dynamic evolution of

auxiliary variables. The hope is that a better understanding of

the limitations of these methods will be helpful in choosing the

right technique (amidst a vast array of available methods) for

appropriate application.
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