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A  method  for  registering  highly  vari-
able brain  image  populations.
Motivated  by  and  applied  to pre-
clinical images  with  highly  abnormal
appearance.
Tested  using  simulated  images  of
brains with  lesions  of  varying  sizes.
Applied  to  Parkinson’s  disease  and
stroke model  populations.
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a  b  s  t  r  a  c  t

The  size  and  complexity  of  brain  imaging  studies  in  pre-clinical  populations  are  increasing,  and  automated
image  analysis  pipelines  are  urgently  required.  Pre-clinical  populations  can be  subjected  to  controlled
interventions  (e.g.,  targeted  lesions),  which  significantly  change  the appearance  of the  brain  obtained  by
imaging.  Existing  systems  for  registration  (the  systematic  alignment  of  scans  into  a  consistent  anatomical
coordinate  system),  which  assume  image  similarity  to  a reference  scan,  may  fail when  applied  to  these
images.  However,  affine  registration  is  a  particularly  vital  pre-processing  step  for  subsequent  image  anal-
ysis which  is assumed  to  be  an  effective  procedure  in recent  literature  describing  sophisticated  techniques
agnetic resonance imaging
arkinson’s disease
troke

such  as  manifold  learning.  Therefore,  in  this  paper,  we present  an  affine  registration  solution  that  uses
a  graphical  model  of  a  population  to decompose  difficult  pairwise  registrations  into  a composition  of
steps  using  other  members  of the population.  We  developed  this  methodology  in the  context  of  a  pre-
clinical  model  of stroke  in which  large,  variable  hyper-intense  lesions  significantly  impact  registration
performance.  We  tested  this  technique  systematically  in  a simulated  human  population  of  brain  tumour

 to pr
images  before  applying  it

. Introduction

Pre-clinical brain-imaging is increasing in importance, diver-
ity and scale. Non-invasive imaging with Magnetic Resonance
maging (MRI) facilitates powerful studies that support the three

’s (replacement, reduction, refinement) of humane animal exper-

mentation. This is particularly true for serial imaging and in the
tudy of correlations between imaging and histology and how

∗ Corresponding author. Tel.: +44 020 3228 3043; fax: +44 020 3228 2116.
E-mail address: bill.crum@kcl.ac.uk (W.R. Crum).

1 Joint Senior Authors.

165-0270 © 2013 Elsevier B V  . . 
ttp://dx.doi.org/10.1016/j.jneumeth.2013.03.015

Open access under CC BY license.
e-clinical  models  of Parkinson’s  disease  and  stroke.
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they translate to human studies. However, to extract maximal
benefits from imaging studies in terms of scientific gain and the
three R’s, systematic image processing and analysis are required.
Brain imaging studies in humans benefit from an array of auto-
mated and semi-automated techniques for analysis, especially
in functional MRI  (fMRI) and structural MRI  (sMRI). One of the
most fundamental operations is to register (realign) scans into
a common coordinate frame to remove positioning and slicing
differences to improve accuracy in inter-subject comparisons (Hill

Open access under CC BY license.
et al., 2001). Registration methods are predicated using brains of
similar appearance in the scans; large anatomical or pathological
variations can cause standard methods to fail. Images acquired in
pre-clinical imaging studies can vary in appearance due to surgical
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r other interventions and scanning practicalities (especially in
egacy data). Our recent experience is that the performance of
tandard automated affine registration techniques can therefore
e severely degraded. However, affine registration is essential
o allow for qualitative examination of study images in the
ame anatomical space and construction of anatomical template
mages (e.g., means) and is a pre-requisite for mapping localised
ifferences using non-rigid registration. More generally, the
evelopment of animal-specific processing pipelines has lagged
ehind that of human studies, with some notable exceptions
Badea et al., 2012; Clark et al., 2012; Johnson et al., 2007; Lerch
t al., 2008). However, the registration of highly variable anatomy
n pre-clinical populations remains challenging. Therefore, we
ave developed a population-based approach to registration in
hese populations that is successful despite the large variations in
ppearance observed in typical studies.

.1. Image registration

Image registration is a vital tool in most medical image anal-
sis applications (Crum et al., 2004; Zitova and Flusser, 2003). In
he broadest terms, it is used to determine meaningful biological,
tructural or functional correspondences between medical images
Crum et al., 2003), usually in the form of a coordinate transforma-
ion between scans from one or more modalities such as magnetic
esonance imaging (MRI), X-ray computed tomography (CT), ultra-
ound, positron emission tomography (PET), and histopathology.
hese correspondences allow detailed comparison of anatomy,
unctional areas (Gholipour et al., 2007) and can help identify imag-
ng biomarkers of disease (Holland et al., 2009; Vernon et al., 2011).
n effective registration algorithm is one that reliably establishes
lausible and meaningful coordinate transformations within the
ontext of the application. The most common registration task in
rain imaging is to align scans of multiple subjects into a single
rame of reference for group analysis. This task is so ubiquitous
hat it is a core component of popular processing software such as
tatistical Parametric Mapping (SPM) (Friston et al., 1995) and the
MRIB Software Library (FSL) (Jenkinson et al., 2012).

A measure of correspondence between scans, either direct
r surrogate, is required for registration. Direct correspondence
easures were originally based on distances between common

eometrical features (e.g., landmarks, edges, ridges, surfaces); how-
ver, surrogate functions of corresponding voxel-intensities (West
t al., 1997) are now widely used in large studies because they
re more easily incorporated into automated pipelines. Voxel-
imilarity measures can model a variety of intensity relationships
etween registered scans including those that are functional (e.g.,
orrelation ratio) (Roche et al., 1998), or probabilistic (e.g., mutual
nformation (Maes et al., 1997, 2003) or normalised mutual infor-

ation (Studholme et al., 1999)). The implicit assumption is
hat maximising the image similarity measure (by adjusting the
ransformation parameters) maximises the true correspondence
etween scans. This assumption is violated when image con-
ent differs significantly between scans, e.g., because of a large
yper-intense lesion in one scan or because of large non-affine mor-
hological differences. Pre-clinical imaging studies often feature
oth of these confounding effects. In addition, even when images
re similar, naïve automated registration techniques can fail by
eing trapped in a local minimum during parameter optimisation.

.2. Stroke imaging example
This work was initially motivated by our experience with a
ohort of 52 scans from a pre-clinical rodent stroke model imaging
tudy, described in detail in Section 3.2.2. Briefly, 39 rats experi-
nced stroke-lesions of varying size and position induced in one
nce Methods 216 (2013) 62– 77 63

hemisphere, and the remaining 13 rats completed a sham proce-
dure. On scanning, the cohort featured variable positioning and
image quality combined with highly variable image content (Fig. 1).
All scans were rigidly registered to a masked, selected reference
using FLIRT – a widely used affine registration software package
forming part of FSL. Even using the sophisticated global param-
eter search available in FLIRT, there were six gross registration
failures (defined visually as unequivocal and complete misalign-
ment of the brain) and other more subtle mis-registrations. The
gross failure rate might have been reduced by case-by-case opti-
misation of the standard FLIRT parameters, by providing individual
initialisation transformations for poorly positioned scans or by
masking individual lesions prior to registration. However, for rou-
tine use in neuroscience research, automated and robust solutions
are required.

1.3. Our contribution

The most commonly used registration techniques explicitly
register each image to a reference image. It is well known that regis-
tering individual images to a reference image is biased when the
reference does not well represent the population and will always
be biased to some extent because some subjects will be more sim-
ilar to the reference than other subjects. An alternative group-wise
approach is to implicitly define a reference on a per-study basis in
which a measure of (registration) distance from the population is
minimised (Bhatia et al., 2007; Learned-Miller, 2006; Studholme
and Cardenas, 2004; Twining et al., 2005; Wang et al., 2010a,b).
Group-wise registration can be computationally demanding; how-
ever, it is not clear that defining such a compromise reference is
advantageous when there is large variation in image appearances.
However, the situation often arises such that an individual image
may  differ significantly from the reference, but be more similar to
another image in the group. Therefore, from a registration perspec-
tive, it makes sense to discover these between-image relationships
and traverse the population solving a series of well-defined inter-
mediate registration problems, which can be aggregated to bring
all images into the reference space.

Several other researchers have focussed on population-based
approaches to registration and analysis, but all have focused on
non-rigid procedures. One related technique applied to human
brain imaging is manifold learning (Gerber et al., 2010; Hamm
et al., 2010; Jia et al., 2010; Wolz et al., 2010), which creates mod-
els that efficiently parameterise brain appearance in a relatively
low-dimensional space (i.e., low-dimensional space compared to
the number of voxels in the brain volume). However, populations
with highly variable image appearances due to pathology may not
lie on a well-defined low-dimensional manifold; in any case, these
techniques assume good affine pre-registration. Another recently
reported approach (Wang et al., 2010b) decomposes the group-
wise registration problem into a set of smaller problems that are
easier to solve. A different approach to population registration is
described (Tang et al., 2009) in which a Principal Component Analy-
sis (PCA) is used to generate a series of intermediate templates that
are more appropriate for individual members of the population.
This method depends on the PCA ability to adequately represent
the range of morphological variation in the population; this may
not be possible in small populations with large variation. Concep-
tually, the closest work to ours (Jia et al., 2012) uses a (different)
directed graph approach to determine optimal registration paths.
However, this approach and other related approaches are focussed
on non-rigid morphological (shape) variations rather than pathol-

ogy and assume that good affine registration already exists for the
population. In addition, they have predominantly been applied to
shape variation in synthetic and real image populations of normal,
or smoothly varying abnormal appearances (e.g., Mild Cognitive
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on a multi-core system. There are many possible parameter
optimisation schemes (e.g., from fully exhaustive searches to
simplistic steepest-descent methods) that can be used in affine
registration; there is a correlation between computing time
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Fig. 1. Three examples from the stroke model imaging study demonstrating variat

mpairment and mild-to-moderate Alzheimer’s disease). Hyper-
r hypo- intense lesions are generally non-corresponding across
mages, do not represent shape variation of existing anatomy and
an confound even state-of-the-art affine registration techniques.

In this paper we describe a general, robust and efficient frame-
ork for affine registration of challenging images – a step that is

ften taken for granted in the literature. In terms of complexity,
ur approach lies between the extremes represented by pair-wise
nd group-wise approaches. It uses a rooted-tree chain graph rep-
esentation of the image population, in which edge weights are
etermined by a surrogate distance measure. Nearest-neighbour

mage pairs on the graph are registered directly, whereas registra-
ions between images that are separated by more than one edge
re obtained by transformation composition. We  present a general
mplementation of this approach that uses freely available registra-
ion software from the Oxford Centre for Functional MRI  of the Brain
www.fmrib.ox.ac.uk/fsl). First we evaluate performance in a model
opulation of human brains, in which lesions of varying size and

ocation were present, and that were subject to known position-
ng procedures. We  then evaluate the technique in two pre-clinical
maging studies: (i) a Parkinson’s disease model and (ii) a stroke

odel.

. Materials and methods

Most image registration techniques in brain imaging studies
se measures of image-similarity that are computed from voxel

ntensities to drive the registration optimisation. The assumption
s that image similarity is an acceptable surrogate for biological
orrespondence and that choosing the transformation that max-
mises image similarity results in good correspondence properties
etween brains. Studies in which there are subtle but systematic
ifferences in brain appearance between groups can bias registra-
ion. A number of strategies have evolved over the years involving
ustomised templates to try and control for this (Evans et al., 2012).
tudies with brains of highly variable and/or abnormal appearance
an result in gross registration failures because image similarity is
o longer an adequate correspondence substitute. Our hypothesis

s that in populations of such brain images, a graph-based approach
hat directly registers images that are “similar” and infers registra-
ions for images that are “dissimilar” by compositing a series of
ntermediate registration steps can be effective.

.1. Chain graph representation

We  modelled the image population using a special case of

 chain graph representation (Lauritzen and Wermuth, 1989),
amely, the rooted tree (or arborescence) variant of the Directed
cyclic Graph (DAG). This model represents a population of regis-

rations as a series of nodes (images) connected by directed edges
 image positioning, quality and appearance and their effects on FLIRT registration.

(registration transformations). A DAG always has directed edges
and no loops. The rooted tree has a single root node representing
the reference image and there is a single directed path from each
node to the root. Any node (image) apart from the reference has
one and only one outgoing directed edge connecting it to the next
(parent) node and zero or more incoming directed edges from other
(child) nodes. Nodes without children are known as leaf nodes. Any
image represented as a node on the graph has an unambiguous set
of registrations associated with it that are defined by the path across
the graph to the root node, and that transforms it into the reference
space. Fig. 2 shows an extract from the rooted-tree graph generated
for the variable positioning cohort discussed in full in Section 3.1.2.

2.1.1. Distance measure and connectivity
We assume the “distance” between a pair of images can be

computed that approximates the between-image differences in
appearance and/or spatial configuration and is therefore related
to the difficulty of the registration (problems with local min-
ima  not withstanding). Image pairs that are more dissimilar
or spatially distant will have a larger computed distance. All
images are first registered to each other directly in a pair-
wise fashion and the pair-wise distance measures are computed
resulting in a complete, directed graph with weighted edges.
Any initial registrations that fail completely will result in large
computed distances. This step scales in computational expense
as n2 (n = number of images). However, if pairwise affine reg-
istration is fast, then for typical pre-clinical populations of
n � 100, this step is not computationally restrictive, especially
when registrations can be spread over computational cores
Fig. 2. Detail from a rooted-tree chain graph describing image registration over a
population. Nodes represent individual images and arrows define pair-wise regis-
trations pointing towards the local reference in each case. The shape of each node
encodes the number of registration steps to the global reference, R.

http://www.fmrib.ox.ac.uk/fsl
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equired for sophisticated or extensive search strategies and the
ikelihood of finding the optimal registration solution. However,
ven for the relatively small number of parameters in affine regis-
ration of three dimensional MR  images, a fully exhaustive search
s prohibitively time-consuming and the optimisation landscape
s so complex that even sophisticated search strategies can fail to
nd the global minimum. The performance of any particular opti-
iser may  also be critically dependent on appropriate parameter

hoices. Our registration technique is designed as an alternative to
he FLIRT global optimisation strategy but uses FLIRT for fast indi-
idual pair-wise registrations. Therefore, we use FLIRT with the –
osearch option and a custom schedule file to turn off the multi-
esolution and global parameter search strategy (see Section 2.3).
his ensures a highly localised search strategy and fast operation.
or very large populations or instances in which some images are
ollected after an initial analysis has been performed, the complete
raph can be built on a smaller representative sample of m images
nd the remaining n − m images can then be registered via the clos-
st corresponding images in the graph. These steps together scale
s m2 + m(n − m) = mn  � n2 for m � n.

For subsequent chain graph construction to succeed, sufficient
air-wise registrations must succeed so that all scans are connected
o all others by one or more pair-wise registrations. Equivalently,
e require that the weighted, directed graph is weakly connected

fter edges corresponding to gross registration failures have been
runed. For example (Fig. 3), for six images A, B, C, D, E, R (= Refer-
nce) that are all pair-wise registered to one another, a successful
utcome for scans A and R occurs if registrations succeed such
hat A–B–C–D–R represents a composition of pair-wise registra-
ions that transforms A into the space of R via some intermediate
egistrations. However, an unsuccessful outcome example would
e A–B/C–D–R in which no path exists between A and R because the
dge representing the failed registration of C–D has been pruned.

Successful pruning of the weighted, directed graph (or equiv-
lently, construction of the weakly connected graph), to form the
ooted-tree chain graph is key to our approach. This is related to
he well-known minimum spanning tree problem for undirected
raphs; in directed graphs, this is known as the arborescence prob-
em and can be solved in quadratic time (Chu, 1965). In our case,
he distance measures are known to be imperfect, so we  aimed to
xert stronger control over the branching structure imposed on the
raph. Therefore, we investigated two complementary approaches
o graph construction that grow the graph iteratively out from
he reference node. For large populations, or when scans become
vailable after the initial graph construction, new images can be
ndividually added to the existing graph at low cost. In all of the
xperiments described in this paper, a single graph construction
tep was used (Fig. 4).

.1.2. Rooted-tree graph construction
One image from the population of n images is selected as the

ominal reference. This can be arbitrarily specified or defined as
he image that is closest to the rest of the population after pairwise
egistration. Nodes (= images) on the graph are defined by their Tier
the number of edges separating them from the reference node)
eginning with the reference (Tier = 0). The distances between all

mage pairs are sorted and stored and then used to construct the
ooted-tree chain graph.

.1.2.1. Graph construction. The r closest images to the reference
re connected directly to it and assigned Tier = 1. Then, the pair-
ise distances between all images and those in the Tier = 1 set
re sorted in ascending order. Any unassigned images that have
 Tier = 1 image amongst their r-closest neighbours are connected
nd labelled as Tier = 2. The process is repeated for the next Tier
ntil no more images can be assigned (because any remaining
nce Methods 216 (2013) 62– 77 65

images do not have a peripheral node amongst their r closest
images). The value of r is then increased and the process is repeated
from Tier = 0 for any remaining unassigned images. An essential
part of this algorithm is that connections are made based on the
global ranking of image distances – that is at each stage, a new
image connection to a node is only made if the node is amongst the
r-most similar images to it in the entire population. The number of
incoming edges at each node can vary as r is incremented.

The value of r must be specified and has a large effect on the
graph structure because it determines the number of connections
received by each node. Because constructing each graph is compu-
tationally fast given pair-wise registrations, we  optimise the choice
of r. Essentially we  compute graphs for r = 1, 2, 3, 4, . . .,  n where
r = n ensures that all nodes are Tier = 1 i.e., each node has a single
direct connection to the reference. There are many potential ways
to measure graph-fitness. In this work, we have considered simple
measures based on the inter-node distance between nodes i and j
(i = j). We  compute the mean and minimum inter-node distances
between each node and the reference. We  then compute the aver-
age of these distance quantities over all nodes. So for a given node,
j, with nj nodes inclusive between it and the reference we have:

mean inter-node distance of node j : d̄j

= 1
nj − 1

nj∑

k=2

d(cj(k), cj(k − 1)),

min.  inter-node distance of node j : m̄j

= min
2≤k≤nj

d(cj(k), cj(k − 1)),

where cj(k) is the k’th node between node j and the reference,
cj(1) = j, and d(,) returns the distance between two  connected nodes.
We  then define:

graph average inter-node distance : dmean =
n∑

j=1

d̄j

graph minimum inter-node distance : dmin =
n∑

j=1

m̄j

From all candidate graphs we select the one with the smallest
dmean. If more than one of the graphs has the minimum dmean, we
choose the one with smallest dmin.

2.1.3. Rank examples
Construction of the registration graph reduces to two well-

known registration paradigms for extreme values of the rank r.
Fig. 5(a) and (b) presents two  cases with r = 1 where (a) the

distances are suitably ranked, yielding a single strand registration
chain or (b) a chain with one or more branches. Fig. 5(c) shows
the case with r = 5 and 5 images where all images are automatically
assigned to Tier 1 (because the reference R must be in the top 5 most
similar images for each) resulting in traditional pair-wise registra-
tion to the reference with no intermediate steps. In practice, the
optimised value of r usually lies between these extreme values.

2.2. Indirect and direct registration

Once the chain graph is constructed, any image can be trans-

formed into the reference space by taking the uniquely defined path
across the graph from that image to the reference. In applications
where the image appearance (in terms of intensity, morphology,
etc.) is overall very diverse (e.g., our target MRI  population of
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ig. 3. Successful and unsuccessful chain graph construction. (a) Initial compreh
nsuccessful graph construction – the graph is not connected and there is no regist

ocal stroke lesions), but where images associated with directly
onnected nodes on the graph are quite similar, generating the
et transformation by composition of the intermediates (Indirect
egistration) should lead to a good solution. It may  be possible
o improve results in these applications by performing a Direct
egistration of each image to the reference using the Indirect Reg-
stration transformation as an initialisation.

.3. Implementation

The registration scheduling and graph construction was imple-
ented in Python 2.5.2 (http://python.org/). The program reads a

ist of images and applies a global threshold to create masks that
pproximately separate the foreground from the background and
efine regions of interest on each image. Pairwise registrations
ere performed, and a table of pair-wise distance measures was

omputed (i.e., the complete graph). The chain graph was then
omputed as described in Section 2.1. The graph-construction
ode is site-independent and is available on request from the lead
uthor. We  used the inverse Normalised Mutual Information (NMI)
Studholme et al., 1999) as a surrogate distance measure because
t makes the fewest assumptions about intensity relationships

etween scans and has been found to be robust to overlap variation.

 UNIX csh script was then generated to run the Indirect registra-
ions encoded in the chain graph using software from the FMRIB FSL
oolkit. Another script was generated to run the Direct registrations

(a)  (

ig. 4. Schematic of graph construction. The rooted tree graph is iteratively built by con
cans  for which the reference, R, is amongst the r-closest (most-similar) scans are directl
or  which the Tier 1 scans are amongst the r-closest (most similar) scans are directly conn
e pair-wise registration, (b) successful rooted-tree chain-graph construction, (c)
 path from A, B, C to R.

using the results of the Indirect Registration as a starting
point.

Our current implementation uses the affine registration soft-
ware FLIRT, a program run from the Linux command-line, which
offers considerable options to control its operation. FLIRT already
features a sophisticated optimisation strategy designed for volu-
metric brain registration, which allows for a large capture range in
terms of positioning and an efficient parameter search (Jenkinson
et al., 2002; Jenkinson and Smith, 2001). However, in this applica-
tion we overrode this strategy because we  have found that it can be
confounded by highly variable image appearances and positioning.
There are two related options we  used to enforce a local parame-
ter search behaviour compared to the standard global search. We
(i) invoke the nosearch option, which zeroes the angular search
ranges during optimisation, and (ii) we  use the schedule option to
load a custom schedule file. Schedule files are scripts that allow
low-level customisation of FLIRT. Our schedule file (see Appendix
A) turns off the multi-resolution and parallel search strategies to
ensure that only a fine-scale, local parameter search is performed.
Our proposed approach instead uses the population distribution to
give a large capture range overall and thus, is robust to appearance
variation.

Once the indirect solution has been found by composing

registrations across the graph, we assumed that images are approx-
imately aligned with the reference and use a reference brain-mask
as a region of interest when the direct registrations were
run.

b)

structing registration paths (edges) from each scan (node) to the reference, R. (a)
y connected. The newly connected scans are defined as Tier 1 (= I above). (b) Scans
ected. The newly connected scans are defined as Tier 2 (= J above).

http://python.org/
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(a)

(b)

(c)

Fig. 5. Chain graph structure for extreme values of the rank parameter, r, with n = 5
images. (a) r = 1 gives a serial registration chain if image distances are appropriately
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Fig. 6. Examples of the vA population. Simulated lesions of random sizes and pos-
itions change the degree of intensity similarity between the otherwise structurally

uniformly from the following ranges: translations: ±20.0 mm,  rota-
anked, (b) r = 1 case with branching structure, (c) r = n yields a pairwise registration
o  the reference.

. Experiments

First we quantified the registration error in simulated popula-
ions when distinguishing positioning differences from appearance
ifferences was possible. We  then applied CHAINS registration to
cans from a moderately affected Parkinson’s disease model cohort,
efore studying a challenging population of rat brain images fea-
uring hyper-intense stroke lesions that motivated this work.

.1. Simulated populations

We  initially distinguish two extreme registration scenarios:
i) variable appearance = vA:  in which differences in intensity
i.e., differences due to image acquisition, pathology or scanning
rtefact, localised variations in shape, etc.) dominate over differ-
nces in positioning (i.e., spatial location, orientation, large-scale
ariations in shape) and (ii) variable positioning = vP: in which
ifferences in spatial configuration dominate over appearance dif-
erences. Practical applications should contain a mixture of vA
nd vP scenarios, either of which on their own may  confound
tandard registration techniques. To evaluate standard approaches
nd CHAINS registration in populations dominated by appearance
nd positioning effects, we used simulated images in which the
istribution of spatial transformations to be recovered by regis-
ration and the appearance were controlled. We  examined three
ases: (i) a population of images of diverse appearance in a nom-
nally equivalent spatial configuration corresponding to the ideal
A scenario, (ii) a population of morphologically identical images
n a range of spatial configurations corresponding to the ideal
P scenario, and (iii) a population of images of diverse appear-
nce in a range of spatial configurations, denoted vAP (= variable

ppearance and positioning). Variation in appearance of the images
as controlled as was  the distribution of spatial configuration

o allow for quantitative assessment. We  used the T1-weighted
identical scans. Different slices from the volumes are shown to emphasise lesion
variation, but the volumes are positioned identically. (b) The relationship between
lesion radius and inverse Normalised Mutual Information in the vA population.

isotropic 1 mm × 1 mm × 1 mm voxel BrainWeb digital brain phan-
tom (Collins et al., 1998) for these experiments.

3.1.1. Variable appearance, fixed position population (vA)
To generate the vA population, we added independent Rician

noise (3% of maximum intensity) and simulated hyper-intense
lesions on 20 copies of the phantom as follows. Lesions were simu-
lated as spherical volumes of random radii (uniformly selected from
the range 0–100 mm)  randomly located in the brain region. A brain
mask was applied so that only brain voxels were changed by the
lesion; within the spherical lesion volume, all voxels were set to an
intensity randomly selected to be between one and two  times the
mean tissue intensity. One lesion per phantom was  applied. Note
that this model changes only the voxel intensities and does not
simulate any mechanical effect (such as distortion and/or displace-
ment of nearby structures). Application of this model generates a
population of images with intensity characteristics that vary due
to local tissue properties rather than because of shape or posi-
tional changes. Examples of different lesion sizes and intensities are
shown in Fig. 6. This population allowed us to assess the extent to
which intensity discrepancies can influence registration. All of the
images are in perfect alignment a priori, and we explored whether
the different registration methods were influenced by the presence
of the simulated lesions.

3.1.2. Variable positioning, identical appearance population (vP)
To generate the vP population, twenty copies of the digital

phantom with independent Rician noise (3% of maximum inten-
sity) were transformed with random 9-dof (degree of freedom)
transformations. The transformation parameters were selected
tions: ±30◦, scales: ±0.025). The resulting population consisted of
nominally identical images varying only by noise, but with a range
of spatial configurations. Examples from the transformed cohort
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Fig. 7. (a) Examples of the vP population. Random spatial transformations are
applied, but the image content is the same except for Rician noise. Slices from the
s
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ame 3D position are shown in each case (compare with Fig. 6a, in which differ-
nt slices are shown). (b) The relationship between mean applied displacement and
nverse Normalised Mutual Information for the vP population.

nd the relationship between the mean applied displacement and
nverse NMI  are shown in Fig. 7.

.1.3. Variable appearance, variable positioning population (vAP)
To generate the vAP population, the transformations generated

or the vP population were applied to the vA population. The rela-
ionship between the mean applied displacement, lesion radius and
nverse NMI  are shown in Fig. 8.
.1.4. Registration experiments
We ran the following comparisons in each of the populations

bove using the untransformed, unlesioned brain image as the ref-
rence:

(a) (

ig. 8. The vAP population consists of the images from the vA population subjected to th
nd  inverse Normalised Mutual Information in this cohort. (b) The relationship between
ohort.
nce Methods 216 (2013) 62– 77

• FLIRT-G = FLIRT registrations with default global parameter
search options

• FLIRT-L = FLIRT registrations with local parameter search
• CHAINS = our graph-based registration approach

◦ CHAINS-I = Indirect CHAINS in which the final transformation
is a composition of intermediate transformations obtained by
following a path on the DAG.

◦ CHAINS-D = Direct CHAINS in which the final transformation
is obtained by running a local registration initialised by the
CHAINS-I transformation.

For the FLIRT-L and CHAINS registrations, we  used a custom
schedule file (Section 2.3 and Appendix A) to enforce a local param-
eter search by turning off the default global optimisation; more
details about schedule files are presented in the FLIRT documen-
tation. In all cases, we used Normalised Mutual Information as the
registration cost function.

We  ran a further experiment to investigate how the choice of
rank r influenced graph construction and the subsequent registra-
tion. The registration of the vAP cohort was repeated with the rank,
r, set to a range of fixed values.

3.2. Real populations

We  applied the registration techniques to three populations of
real images.

3.2.1. Global optimisation test using Parkinson’s disease model
rat population

We assessed the optimisation strategy of the CHAINS registra-
tion compared to FLIRT-G in a pre-clinical model of Parkinson’s
disease described in detail elsewhere (Vernon et al., 2011, 2010).
Briefly, there were twelve rats included in the study, of which
nc = 5 were controls and nd = 7 were in the disease group. All
rats underwent the same surgical procedure; controls received
an intra-cranial injection of saline and the disease group received
an injection of the synthetic proteasome inhibitor Lactacystin
into the left-medial forebrain bundle to induce a nigrostriatal
lesion. All procedures were in accordance with the UK Ani-
mals (Scientific) Procedures Act 1986 and the ethical review
process of King’s College London. Animals were scanned at 3
time points (1, 3 and 5 weeks post-surgery) in a 7.0 T horizon-

tal small bore magnet (Varian, Palo Alto, CA, USA). MR  image
acquisition consisted of a multi-echo, multi-slice spin-echo pulse
sequence (MEMS) (TR = 4200 ms,  TE = 10, 20, 30, 40, 50, 60, 70,
80 ms,  10 averages, matrix size = 192 × 192, FOV  = 3.5 cm × 3.5 cm,

b)

e transformations of the vP population. (a) The relationship between lesion radius
 mean applied displacement and inverse normalised mutual information for this
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Fig. 9. Unregistered MR images from the Parkinson’s disease model cohort.

n plane voxel-size = 0.182 mm × 0.182 mm,  number of slices = 50,

lice thickness = 0.5 mm,  total scanning time per subject = 54 min).
xamples from both groups at 3 weeks post-surgery are shown
n Fig. 9. Variability in image quality and appearance were appar-
nt but the direct effects of surgical intervention were relatively
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Fig. 10. Registration error in the vA cohort: (a) for each subjec
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small. However, the lesion triggers subsequent changes in mor-
phology both proximal and distal to the lesion site (Vernon et al.,
2011). A single control subject of good image quality and position-
ing was reoriented to be symmetric across the mid-line and set as
the canonical reference. This made assessment of mis-registration
more straight-forward and ensured that registered images could be
consistently displayed, even though it may be a sub-optimal choice
for the population reference. All subjects were then registered to
this reference with 6 dof using FLIRT-G and CHAINS-D to test the
population-based optimisation approach used in CHAINS against
the pair-wise strategy used in FLIRT.

3.2.2. Graph dependence on selected reference
To assess the dependence of the generated graphs on the choice

of reference, we  re-ran the graph-construction phase of Section
3.2.1 selecting each individual image as the reference.

3.2.3. Stroke-model rat population

We applied the FLIRT and CHAINS registration approaches in a

pre-clinical stroke model (Smith et al., 2012). There were fifty-two
rats in the cohort, of which nc = 13 were assigned as the control
group and ns = 39 as the stroke group. Stroke lesions were induced
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t, (b) failures as a function of the RDE failure threshold.
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Table 1
The Residual Displacement Error (mm) for each registration method tested on the
vA  population.

vA FLIRT-L FLIRT-G CHAINS-I CHAINS-D

Mean (mm)  0.18 0.19 0.13 0.18
s.d.  (mm)  0.11 0.13 0.04 0.11

there are some performance differences on individual cases. Fig. 13
presents the registration graph and suggests that the chosen refer-
ence (the image with the identity transformation) is not optimal.
We  consider the choice for the reference further in Section 4.3.2.

Table 2
The Residual Displacement Error (mm) for each registration method tested on the
vP  population.

vP FLIRT-L FLIRT-G CHAINS-I CHAINS-D
Fig. 11. The CHAINS registration graph with r = 1 for the vA cohort.

sing right transient middle cerebral artery occlusion (MCAO);
ontrols underwent the same surgical procedure but without occlu-
ion. The acute lesion manifestation was much more profound than
n the Parkinson’s disease model described in 3.2.1. All animals

ere then imaged with MRI  prior to any subsequent therapeu-
ic intervention using a horizontal-bore 7 T scanner (Varian, USA).
ll procedures were in accordance with the UK Animals (Sci-
ntific) Procedures Act 1986 and the ethical review process of
ing’s College London. MR  image acquisition consisted of a fast
pin echo sequence (TR = 3000 ms,  Effective TE = 60 ms,  RARE fac-
or = 32, averages = 10, matrix size = 128 × 128, FOV = 3 cm × 3 cm,
n plane resolution = 0.234 mm  × 0.234 mm,  number of slices = 45,
lice thickness = 0.6 mm,  total scanning time per subject = 16 min).
xamples of the stroke group images are shown in Fig. 1. Variation
n image quality and appearance were apparent. The stroke lesion
s of variable size and position (although always appearing on the
eft side). As in Section 3.2.1, a single sham subject of good image
uality was reoriented to be symmetrical across the mid-line and
et as the canonical reference. All subjects were then registered
o this reference with 6 dof using FLIRT-L, FLIRT-G, CHAINS-I, and
HAINS-D.

. Results

.1. Simulated populations

.1.1. Variable appearance, fixed position population (vA)
The correct registration to the reference was  the identity

ransformation (because there was no positional variation in this
ataset). Therefore, any transformation result that departs from the

dentity constitutes a registration error. We  computed the Residual
isplacement Error (RDE) for each case, which was defined as the
ean voxel displacement over a brain mask defined on the refer-

nce. This value should be equal to 0.0 mm in perfect registration.
Fig. 10(a) summarises the RDE for each member of the vA pop-

lation for the CHAINS methods compared to the FLIRT methods.
ig. 11(b) shows the number of unsuccessful registrations for each
ethod using a threshold of varying RDE as an index of success.
o method suffered from any gross registration failures, which

e arbitrarily defined as RDE > 1.0 mm;  however, there were dif-

erences in performance that were measured by RDE. Summary
tatistics for each method are shown in Table 1.
Min  (mm) 0.13 0.12 0.07 0.13
Max  (mm)  0.64 0.73 0.24 0.66

The CHAINS-I method is the most accurate method over-all;
it also had the smallest minimum and maximum error measured
per case. This suggests that the detail of graph construction (here
with r = 1) is an important factor in performance. Image 4 in Fig. 11
corresponds to the largest lesion in Fig. 6 (93.3 mm radius). Interest-
ingly, the second largest lesion (88.1 mm radius) corresponds with
Image 2 in Fig. 11; this case was  registered directly to the reference
but has a large edge-weight (distance) in the graph. The perfor-
mance for FLIRT-L, FLIRT-G and CHAINS-D were all comparable but
less accurate than CHAINS-I; this indicates that for this popula-
tion, the ability to register through intermediate steps is important
for accuracy. Closer inspection of the individual population mem-
bers revealed that the accuracy difference between CHAINS-D and
CHAINS-I is largely driven by a small number of cases (e.g., subjects
2, 13 and 19 in Fig. 10(a)). The CHAINS-D registration was less accu-
rate than the CHAINS-I registration in some instances, even when
there was  only a single registration step to the reference in both
cases. We attributed this to the use of an accurate reference brain-
mask in the direct-case, which is used to ensure that only brain
features contribute to the registration. In this case, the more accu-
rate mask effectively up-weights the importance of the lesion ROI
compared to that defined in the indirect case (in which the simple
foreground mask includes contextual information from outside the
brain), leading to a less accurate result.

4.1.2. Variable positioning, identical appearance population (vP)
For the vP case, the RDE was  computed using the residual

transformation obtained by composing the known applied trans-
formation (forward) with the transformation recovered (reverse)
using each registration method. For perfect registration, the resid-
ual transformation should again be the identity matrix giving
RDE = 0.0 mm.

Fig. 12(a) summarises the RDE for each member of the vP pop-
ulation in the CHAINS methods compared to the FLIRT methods.
Fig. 12(b) presents the number of successful registrations for each
method using RDE as an index of success. Summary statistics for
each method are shown in Table 2.

This registration scenario is essentially what FLIRT-G was devel-
oped to solve; this is reflected by its strong performance. As
expected, the performance of FLIRT-L is much worse and 10 cases
had an RDE > 1.0 mm and can be considered failed registrations.
Neither CHAINS-I nor CHAINS-D were significantly less accurate
than FLIRT-G, although it is clear from Fig. 12(a) and (b) that
Mean (mm)  12.00 0.23 0.25 0.26
s.d.  (mm)  12.97 0.15 0.09 0.13
Min  (mm) 0.05 0.06 0.14 0.06
Max  (mm)  33.13 0.54 0.52 0.54
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Fig. 12. Registration error in the vP cohort: (a) for each 

.1.3. Variable appearance, variable positioning population (vAP)
For the vAP case, the RDE is computed as for the vP case. For

erfect registration, the residual transformation should again be
he identity matrix giving RDE = 0.0 mm.

Fig. 14(a) summarises the RDE for each member of the vAP pop-
lation for the CHAINS methods compared to the FLIRT methods.
ig. 14(b) shows the number of successful registrations for each
ethod using the RDE as an index of success. Summary statistics
or each method are presented in Table 3.
These results are harder to interpret because all methods fea-

ured mis-registrations with large RDEs, which skew the results

able 3
he Residual Displacement Error (mm)  for each registration method tested on the
AP population.

vAP FLIRT-L FLIRT-G CHAINS-I CHAINS-D

mean (mm)  10.04 88.69 1.33 1.19
s.d.  (mm) 13.19 395.46 3.77 4.28
Min  (mm) 0.05 0.05 0.10 0.08
Max  (mm)  35.54 1768.83 16.26 19.38
rror / mm

t, (b) failures as a function of the RDE failure threshold.

shown in Table 3. Therefore, Table 4 presents the summary statis-
tics for each method after these mis-registrations (defined as
RDE > 1.0 mm as before) were removed. It also lists the number
of such mis-registrations for each method. FLIRT-L has the lowest
mean RDE after 8 mis-registrations have been removed; however,
FLIRT-L cannot be considered a reliable technique for general use.
Both FLIRT-G and CHAINS-D have only one mis-registration (cases
1 and 2, respectively), though CHAINS-D was more accurate (but

not significantly more accurate overall (unpaired, two-tailed t-test,
p > 0.5)) and yielded half of the maximum RDE (of successful regis-
trations) observed in FLIRT-G (Fig. 15).

Table 4
The Residual Displacement Error (mm) for each registration method tested on the
vAP population with mis-registrations (defined as RDE > 1.0 mm)  removed.

vAP FLIRT-L FLIRT-G CHAINS-I CHAINS-D

Mean (mm)  0.15 0.27 0.23 0.24
s.d.  (mm)  0.07 0.21 0.09 0.12
Min  (mm)  0.05 0.05 0.10 0.08
Max  (mm)  0.22 0.91 0.43 0.47
N  (MISREG) 8 1 2 1
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Fig. 13. The CHAINS registration graph with r = 2 for the vP cohort.

.2. Investigating the graph selection criterion and the rank
arameter

First, the vA,  vP and vAP registration experiments were rerun
ith the graph selection made on the basis of the dmin graph-fitness

easure, rather than the default dmean. This resulted in the same

ank/graph choices for the vA and vAP cohorts as in the original
xperiments. For the vP cohort, using the dmin graph-fitness mea-
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ig. 14. Registration error in the vAP cohort: (a) for each subject, (b) failures as a
unction of the RDE failure threshold.
Fig. 15. The CHAINS registration graph with r = 4 for the vAP cohort.

sure selected the r = 6 graph compared to the r = 2 graph using dmean,
but registration accuracies were not significantly different (p > 0.3,
paired, two-tailed t-test).

Next, the registrations of the vAP cohort were repeated for
CHAINS-I and CHAINS-D with the rank, r, set to odd numbers in
the range 1–19 (odd numbers purely to reduce the number of com-
putations). The fitness measures of the generated graphs presented
in Fig. 16(a) show a weak dependence on rank and favour the lower
rank cases. The automatic rank selection used in Section 4.1.3 chose
rank = 4 for this experiment on the basis of the highest mean NMI
and minimum NMI  of the resulting graph. The iterative nature of
graph construction results in identical output graphs (and therefore
identical registration results) for the initial ranks 1–5. Fig. 16(b) also
shows the resulting registration accuracies as a function of rank.
The RDE is stable and not strongly dependent on rank for small val-
ues. In this cohort, an accurate registration result is also found for
r = 19 that would not have been predicted from the graph fitness
measures. It must be emphasised that the behaviour of the reg-
istration using different ranks is a complex function of cohort size
and population diversity and it is unclear to what extent behaviours
will generalise to other cohorts.

4.3. Real populations

4.3.1. Global optimisation test using Parkinson’s disease model
rat population

This experiment does not test registration accuracy per se,  but
assesses the ability of each technique to maximise image similarity,
i.e., to find a global optimum of the registration cost function. In the
absence of a gold standard for registration, gross mis-registration
was defined as cases with unequivocal gross translation and/or
rotation of brain structures away from alignment and were judged
by careful visual assessment. Using this criterion, we  found one
extreme failure for FLIRT-G in which the brain was transformed
almost completely out of the field-of-view; this failed case, which
had NMI  = 1.023 for FLIRT-G (failed) and NMI = 1.18 for CHAINS-D
(succeeded), was  removed from subsequent analysis. We  com-

puted the NMI  between each of the remaining images and the
reference for each registration technique (Table 5) and compared
these using paired two-tailed t-tests. CHAINS-D resulted in the
largest mean and maximum NMI, but was  not significantly different
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Table 6
The entries at row i and column j show the number of times the registra-
tion graph featured a connection from image j to image i when choosing
each  of the 12 images as the reference. The shaded entries show the con-
nections made for the graph with the automatically chosen reference
(Image 8).

F R O M
1 2 3 4 5 6 7 8 9 10 11 12

1 7 1

2 3 3 3 2

3 1 4 1 3

4 8 1 8 6 4

T 5 8 3 5 6 6 1 5

O 6 1 5 5 6

7 4 5 1 7

8 4 8

9 2 7 9

10 5 6 10

11 1 1 1 11
ig. 16. Experiments varying the rank of the CHAINS registration applied to the vA
 function of rank. The Rank = 4 graph was chosen automatically.

p > 0.31) than FLIRT-G overall. FLIRT-L was not significantly differ-
nt (p > 0.87) than FLIRT-G, indicating that for this experiment, the
LIRT-G global search did not result in significantly better optimi-
ation. The CHAINS-D NMI  was significantly larger (p < 0.025) than
he CHAINS-I NMI; this indicates that in this case, the composition
f registrations provided by CHAINS-I did not on its own  result in
he best optimisation, but provided an excellent starting point for
he CHAINS-D local search.

Fig. 17 shows that the graph for this relatively small population
efines pair-wise registrations for the majority of scans. The sin-
le case that failed with FLIRT-G is number 12 in the figure. This
xperiment shows that in a population of small contrast varia-
ion, CHAINS-D was as good as FLIRT-G in maximising NMI  and
ucceeded in registering one additional case where FLIRT-G failed.

.3.2. Graph dependence on the selected reference in the
arkinson’s model population

The connectivity properties of the graphs generated using each
mage as the reference are summarised in Table 6. The number of
imes each pair of images is connected in the set of graphs is shown.
t can be observed that there is considerable structure in the con-
ectivity and consistency in the way that many image connections
re selected by the majority of graphs constructed. Additionally,
ther possible image connections are never selected. This suggests
hat the specifically chosen reference is not crucial to the per-
ormance of the technique because the strongest connections are
hosen consistently.

.3.3. Stroke-model rat population
Gross mis-registration was again judged by visual assessment

s in Section 4.3.1. This assessment was conducted conservatively
o account for the wide variety observed in image appearance
nd anatomical involvement in the stroke group. The number of

is-registrations for the stroke-group and the entire group are

ummarised in Table 7.
We computed mean and standard deviation images of the regis-

ered volumes in each case and show an example slice for the four

able 5
he NMI  statistics of the PD model population computed post-registration for four
egistration techniques.

NMI  FLIRT-L FLIRT-G CHAINS-I CHAINS-D

Mean 1.21 1.21 1.08 1.25
s.d.  0.20 0.09 0.03 0.20
Min  1.04 1.16 1.04 1.16
Max  1.79 1.49 1.17 1.85
12 5 5 12
1 2 3 4 5 6 7 8 9 10 11 12

6-dof cases in Fig. 18. Visual inspection of this figure shows that
CHAINS-D produced a sharper mean image and reduced variance
maps compared to the other methods. Fig. 19 shows the example
results for volumes registered using CHAINS-D that correspond to
the images in Fig. 1. Registration graphs for the CHAINS 6-dof and
9-dof cases are shown in Supplementary Figs. 1 and 2.

Supplementary material related to this
article found, in the online version, at
http://dx.doi.org/10.1016/j.jneumeth.2013.03.015:

In the absence of gold-standard registrations to use for compar-
isons, we used a region overlap criterion as a quantitative measure
of relative registration performance. As part of the manual analysis

of the original study, regions of interest were drawn around the vis-
ible lesion in the 39 stroke scans. After registration using FLIRT-G
and CHAINS, we  computed the average percentage of lesion voxels

Table 7
The number of mis-registrations reported in the stroke population.

N (MISREG) FLIRT-L FLIRT-G CHAINS-I CHAINS-D

6 dof STROKE 14 6 6 0
6  dof ALL 17 6 11 0
9  dof STROKE 15 7 4 0
9  dof ALL 18 8 4 0

http://dx.doi.org/10.1016/j.jneumeth.2013.03.015
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ig. 17. (a) The registration graph for the Parkinson’s disease cohort. Note that mos
y  FLIRT-G failed completely. (b) The registered (CHAINS-D) scans corresponding to

hat were located inside the brain region drawn on the canonical
eference (Table 8).
The overlap percentages should be interpreted with caution; it
s possible for two brains to be mis-registered such that the lesion
egion of interest still coincides with the brain region – just not the

able 8
he average percentage of labelled lesion voxels located within the reference
rain region after registration. These results do not include the failed registrations
eported in Table 7.

Registration Lesion overlap % FLIRT-L FLIRT-G CHAINS-I CHAINS-D

6 dof STROKE 88.3 90.6 88.9 90.6
9  dof STROKE 87.0 88.8 87.5 88.7
s have simple pair-wise registrations to the reference. The registration of Image 12
.

correct part of the brain region. A high lesion-brain overlap is neces-
sary, but not sufficient, for good registration. For instance, all six of
the registration failures for FLIRT-G were stroke scans with a lesion
overlap of 0% indicating complete mis-registration. However, of the
three registration failures for CHAINS-I, one was registered from
the stroke group but still had a lesion overlap of 91%. Nevertheless,
these results support the case for CHAINS as a useful registration
strategy for image populations with intensity abnormalities.

5. Discussion
In this paper we have presented a practical framework –
CHAINS – for solving difficult image registration problems involv-
ing populations of diverse appearance and spatial configuration.
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Fig. 18. Mean and standard-deviation images o

pecifically, we considered cases in which there were wide varia-
ions in appearance due to pathologically or other intensity-based
ariations occurring together with wide variations in position-
ng or morphology. CHAINS analyses the population as a whole
nd uses a composition of well-defined pair-wise registrations
o obtain transformations between arbitrary pairs of images. In
his way it avoids problems associated with capture-range and
oorly defined correspondences. CHAINS is a meta-algorithm in
he sense that the registration component (including the distance

easure) is essentially arbitrary. CHAINS provides a framework
or scheduling, analysing, choosing and assembling transforma-
ions obtained using the registration across a population. We  used
imulated MR  images of hyper-intense brain tumours in humans
o separate the effects of structure and appearance and show
he strengths and limitations of standard registration techniques.
n rodent populations modelling Parkinson’s disease and stroke,
HAINS performed well despite both image positioning variability
nd image content variability.

We have used a well-known affine-registration algorithm
FLIRT) as a benchmark in our experiments; however, our work
s not meant to imply that FLIRT is poor registration software.
ather, we have found that certain classes of image registration
roblems, specifically those concerning populations with highly

ariable appearance, benefit from registration with an alternative
ptimisation strategy based on learned characteristics of the pop-
lation. Our motivation was to develop a generic approach that
ould be used in concert with existing registration techniques and

Fig. 19. Example scans from the stroke population 
2 registered rat brains from the stroke cohort.

adapted to highly diverse image populations. One important appli-
cation is spatial normalisation of brain images with focal lesions as
in our stroke model exemplar. In human studies, one solution to
this problem has been the use of cost function masking (Andersen
et al., 2010; Brett et al., 2001; Crinion et al., 2007) in which lesion
volumes are explicitly excluded from contributing to registration
cost function optimisation. In multiple sclerosis applications in
which multiple small lesions are observed, a method for lesion “in-
painting” to make MR  brain images appear more normal and reduce
registration bias has been described (Sdika and Pelletier, 2009). Our
approach has the potential to remove bias from the registration of
lesion volumes without the need for an explicit mask definition on
each volume or alteration of the source images. This could be par-
ticularly important in applications in which registration is used to
detect subtle remodelling away from the area of pathology as in
(Walters et al., 2003).

There are many potential methods for constructing registration
graphs and it is not clear which choice of “optimal” graph is best
for registration. We  investigated the stability of registration results
with respect to the rank parameter and found that, at least in our
data, our method for choosing rank based on a graph fitness mea-
sure also produced the lowest amount of registration error. We  also
investigated the effect of the reference scan choice on graph con-

nectivity and found that the resulting graphs were highly clustered
such that certain pair-wise connections were very likely to occur
regardless of the reference chosen. Additionally, a much larger set of
possible pair-wise connections never occurred. This suggests that

registered by FLIRT-G and CHAINS-D (6 dof).
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he graph construction method we adopted is likely to be robust
o reference choice and automatic rank selection, although more
ork in this area is warranted. For instance, at present, we  do not
enalise graphs with long chains, even though they might prove
ore susceptible to accrued registration error. In addition, a study

f connectivity properties across all reference choices (as in Table 6)
ight form the basis of future graph construction methods.
In Section 1, we mentioned the work of Jia et al. (2012) as being

onceptually similar to our approach. They described an image
egistration technique based on a directed graph approach that
ptimally selects the reference image and the registration paths
rom each image to that reference. Practically, the key difference
etween their work and ours is the implicit assumption in their
ork that affine-registration is successful before their technique

s applied to map  shape differences. Their evaluation is of images
rom normal volunteers and dementia patients; Jia et al. focused
n brain shape differences rather than image content differences
n their approach. In methodological terms, the graph construc-
ion techniques between their method and ours are not directly
omparable despite some superficial similarities. An examination
f the merits of different graph constructions for registration is an
mportant experiment for the future. In our experiments, to date,

e found that the most advantageous aspects of our approach came
n tackling content variation rather than shape variation.

Other approaches to image registration where there are cor-
espondence inconsistencies caused by pathology have been
eported. One recent area of study has been the problem of regis-
ering a normal brain atlas to MR  images of brain tumour patients.

 common approach has been to use a model of tumour growth
o simulate the appearance of pathology in the normal atlas,
hus establishing a plausible correspondence (Gooya et al., 2011;
yriacou et al., 1999; Zacharaki et al., 2009, 2008). A conceptually
imilar approach is used in Foskey et al. (2005) to resolve corre-
pondence inconsistencies in image-guided prostate radiotherapy
hat may  be caused by the presence of varying amounts of bowel
as. Image deformation is used to shrink the imaged gas pocket
o a point, thus restoring the surrounding tissue to a consistent
osition and morphology. A similar but complementary strategy
as used (Gao et al., 2006) to introduce artificial gas pockets in
T radiotherapy planning images to ensure correspondence with
aily acquired images. A more subtle challenge is that of tissue con-
rast changes over time in serial imaging, which may  be caused by
eurodegenerative processes (Studholme et al., 2006). To address
his, a regional measure of Mutual Information has been derived
uch that local contrast changes are not overwhelmed by global
ffects when computing the registration. A useful approach for
pplications in which there are morphological but not topological
ifferences has been reported; in these instance, parametric rep-
esentations, rather than voxel representations, of the objects of
nterest are warped together to establish correspondence (Meier
nd Fisher, 2002). This relies on existing segmentations of the
bjects to be registered, however, which may  limit scalability to
arge studies.

The adoption of the chain graph is both a potential strength and
eakness of our approach. The rooted tree chain graph defines

n unambiguous set of registrations between any image in the
opulation and the reference frame. However, if any single reg-

stration defined by the graph fails, then all registration paths that
nclude that failed registration will also fail. The likelihood of this
ituation occurring in practice depends on the size of the image
opulation compared with its diversity and is difficult to quantify.

n the experiments reported here, we have found little evidence

hat this is a significant problem in modest population sizes, even
hose with rather diverse appearances. In practice, we  can also
llow the user to tag specific images as “difficult” to ensure they
re always defined as leaf nodes on the resulting graph so that they
nce Methods 216 (2013) 62– 77

have no incoming edges and other registrations are not dependent
on them. The longer term solution is to relax the acyclic condition
and allow multiple (but not exhaustive) registration paths between
each image and the reference; transformation inconsistency can be
used to detect and reject registration failures. This would also add
robustness to poor quality or challenging images by introducing
redundancy. The increase in algorithmic complexity to achieve this
would be considerable and removes the attractive “meta-feature”
of the current algorithm.

6. Conclusions

With the rapid growth in size and ambition of imaging-based
studies, there is a need for registration algorithms that exploit the
structure of the imaged population to provide robustness against
variations in image structure, appearance and scanner details.
CHAINS is one such practical framework that can be easily adapted
to use any registration algorithm. We  have demonstrated its value
in diverse populations of simulated brain lesions, simulated vari-
able positioning, and pre-clinical Parkinson’s disease and stroke
model populations.
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Appendix A. The custom schedule file used with FLIRT To
force a local parameter search

# FLIRT schedule file to run single-resolution local search with
no optimisation

# 8 mm scale
setscale 8
clear S
clear P
# 4 mm scale
setscale 4
# 2 mm scale
setscale 2
# 1 mm scale
setscale 1
setoption smoothing 1
setoption boundguess 1
# Set identity transformation
clear UF
setrow UF 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
# Optimise from this position (which includes any user init

matrix)
clear U
optimise MAXDOF UF:1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 rel 100
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