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Major depressive disorder (MDD) is a prevalent, chronic, and relapse-prone psychiatric disease. However, the intermediate
molecules resulting from stress and neurological impairment in different brain regions are still unclear. To clarify the
pathological changes in the dentate gyrus (DG) and anterior cingulate cortex (ACC) regions of the MDD brain, which are the
most closely related to the disease, we investigated the published microarray profile dataset GSE84183 to identify unpredictable
chronic mild stress- (UCMS-) induced differentially expressed genes (DEGs) in the DG and ACC regions. Based on the DEG
data, functional annotation, protein-protein interaction, and transcription factor (TF) analyses were performed. In this study,
1071 DEGs (679 upregulated and 392 downregulated) and 410 DEGs (222 upregulated and 188 downregulated) were identified
in DG and ACC, respectively. The pathways and GO terms enriched by the DEGs in the DG, such as cell adhesion, proteolysis,
ion transport, transmembrane transport, chemical synaptic transmission, immune system processes, response to
lipopolysaccharide, and nervous system development, may reveal the molecular mechanism of MDD. However, the DEGs in the
ACC involved metabolic processes, proteolysis, visual learning, DNA methylation, innate immune responses, cell migration, and
circadian rhythm. Sixteen hub genes in the DG (Fn1, Col1a1, Anxa1, Penk, Ptgs2, Cdh1, Timp1, Vim, Rpl30, Rps21, Dntt,
Ptk2b, Jun, Avp, Slit1, and Sema5a) were identified. Eight hub genes in the ACC (Prkcg, Grin1, Syngap1, Rrp9, Grwd1, Pik3r1,
Hnrnpc, and Prpf40a) were identified. In addition, eleven TFs (Chd2, Zmiz1, Myb, Etv4, Rela, Tcf4, Tcf12, Chd1, Mef2a, Ubtf,
and Mxi1) were predicted to regulate more than two of these hub genes. The expression levels of ten randomly selected hub
genes that were specifically differentially expressed in the MDD-like animal model were verified in the corresponding regions in
the human brain. These hub genes and TFs may be regarded as potential targets for future MDD treatment strategies, thus
aiding in the development of new therapeutic approaches to MDD.

1. Introduction

Major depressive disorder (MDD) is a chronic mental illness
affecting individuals worldwide with a high morbidity rate. It
often leads to a reduction in the patient’s quality of life or
even death. Humans may suffer from depression at any stage,
from childhood to old age [1]. The World Health Organiza-
tion predicts that depression will become the main cause of
human disability and one of the main disease burdens. At
present, although some antidepressant drugs have been suc-
cessfully used in the clinic, they are effective in only 30%-
40% of patients with depression and often have various side

effects [2]. These antidepressants are based on different
hypotheses regarding the etiology of depression, such as
monoamine dysfunction, neurogenesis, the corticotrophin-
releasing factor (CRF) receptor, ketamine, and the N-
methyl-D-aspartate (NMDA) receptor. These hypotheses
explain the causes of depression to different degrees and pro-
vide different targets for the development of new antidepres-
sant drugs. The drugs developed based on these hypotheses
have different targets and modes of action but are still not
fully effective in treating depression [1–3]. Due to the com-
plexity of the disease, new antidepressant drug development
has had a high failure rate in recent decades. Therefore, it is
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necessary to conduct an in-depth study on the pathogenesis
of the disease and find new therapeutic targets. However,
the intermediate molecules resulting from stress and neuro-
logical impairment in different brain regions are still unclear.

MDD is associated with dysfunction in multiple brain
regions, including the cortex, midline, amygdala, nucleus
accumbens, and hippocampus [4]. Early research empha-
sized that MDD is closely related to lesions in the hippocam-
pal CA3 area [5]. However, the dentate gyrus (DG) in the
hippocampus reportedly plays a major role in the antidepres-
sant effect of the selective serotonin reuptake inhibitor (SSRI)
class [6]. The DG has a fundamental role in emotional regu-
lation and behavior [7, 8]. Recent studies have indicated that
long-term depression can lead to reduced DG volumes in
animals and clinical subjects [9, 10]. The abovementioned
studies have demonstrated that the DG plays a key role in
MDD. In addition, the anterior cingulate cortex (ACC) is
considered to be an information processing center for
emotion, social interaction, and cognition [11–13]. Studies
have shown that the ACC is closely related to depression
in adolescents. ACC functional changes may be due to
genetic changes [14], environmental poverty [15], or expo-
sure to stress [16] or abuse [17]. Although the DG and
ACC are considered two key areas of the brain involved
in MDD, the molecular mechanisms and key genes under-
lying their pathogenicity are still unclear and need to be
further studied [18, 19].

Genetic analyses of dermal cells and blood have led to
the identification of numerous genes related to MDD
genetic susceptibility [20–23]. However, these data may
not reflect whether the stress environment affects the
expression of these molecules in the brain or their role
in the pathological changes in different brain regions in
MDD. Therefore, it is necessary to analyze the gene
expression in brain regions related to depression, especially
the DG and ACC regions [24–26]. High-throughput
sequencing technology has become an effective method
to explore pathogenesis and identify the key genes under-
lying the pathogenicity of various diseases [27–29]. In this
study, we downloaded the microarray profile dataset
GSE84183 from the Gene Expression Omnibus (GEO)
database and identified unpredictable chronic mild stress-
(UCMS-) induced differentially expressed genes (DEGs)
in the DG and ACC regions. Gene Ontology (GO) and
pathway enrichment analyses of the DEGs were con-
ducted, and protein-protein interaction networks were
then constructed and analyzed. The hub genes were iden-
tified, and the functions of the modules with the hub
genes were analyzed. Then, the transcription factors poten-
tially regulating these hub genes were screened. Finally, the
published Human Protein Atlas (HPA) database was used
to verify the expression of hub genes in the corresponding
regions in the human brain. Receiver operating
characteristic (ROC) curve analysis was performed to ana-
lyze the specificity of the differential expression of hub
genes in mice with UCMS-induced depression. Our
research may provide new clues for exploring the patho-
logical mechanism of MDD and finding drug targets for
MDD treatment.

2. Materials and Methods

2.1. Gene Expression Profiles. The gene expression profile
dataset GSE84183 used in this study was downloaded from
the GEO database (http://www.ncbi.nlm.nih.gov/geo/), and
all data were all based on the GPL13912 (Agilent-028005
SurePrint G3 Mouse GE 8x60K Microarray) platform. This
platform provided gene expression profile data of 16 DG
and 16 ACC tissue samples (8 UCMS-exposed +8 controls)
and UCMS-exposed mice subjected to unpredictable chronic
mild stress procedures for nine weeks [30]. All data were nor-
malized by quantile normalization. The ggplot2 R package
was used to display the background correction and normali-
zation of the data [31].

2.2. Identification of UCMS-Induced DEGs in the DG and
ACC. In this study, we used the empirical Bayes t-test
(eBayes) to identify UCMS-induced DEGs in the DG and
ACC [32]. Among them, DEGs with a fold change > 1:5
(∣log2 ðfold changeÞ ∣ >0:585) and fold change > 1:2
(∣log2 ðfold changeÞ ∣ >0:263) in the DG and ACC were used
for comparative studies, which were performed using the
limma R package for data processing and analysis [32]. A
heat map of common DEGs in both the DG and ACC was
produced using the “pheatmap” package (version 1.0.10) of
R [33]. PCA of UCMS-induced DEGs in the DG and ACC
was conducted, and the results showed that the distribution
between the control group (8 samples) and the UCMS group
(8 samples) was significantly different (Figure S2). In
addition, PCA of DEGs in the DG and ACC showed that
the overall distribution of samples was significantly
different between the groups (Figure S3). According to the
comparative analysis results of DEGs in the DG and ACC,
those with a fold change > 1:5 in the DG and a fold change
> 1:2 in the ACC were used for subsequent series analysis.

2.3. Functional and Pathway Enrichment Analyses of DEGs in
the DG and ACC. To investigate the biological functions of
DEGs in the DG and ACC, the online software DAVID 6.8
(https://david.ncifcrf.gov/summary.jsp) was used for Gene
Ontology (GO) analysis. DEGs were subjected to functional
enrichment analysis of biological processes (BPs), molecular
functions (MFs), and cellular components (CCs). The online
database GenomeNet Database Resources (https://www
.genome.jp) was applied for the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis. P values < 0.05
were considered statistically significant. GO and KEGG anal-
yses were used to perform a comprehensive functional anal-
ysis of DEGs in the DG and ACC [34].

2.4. Comprehensive Analysis of PPI Networks and Modules.
To analyze the interactions between the proteins encoded
by DEGs in the DG and ACC, the STRING (https://string-
db.org/) database was used to predict the interactions
between the proteins encoded by DEGs [35]. The active
interaction sources included Textmining, Experiments,
Databases, Coexpression, Neighborhood, Gene Fusion, and
Cooccurrence, with a confidence score > 0:4 being defined
as significant. Then, the PPI network was constructed by
Cytoscape software (version 3.5.1) [36]. The topological
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properties of the PPI network, including the node degree and
betweenness centrality, were determined. The significance of
a gene in the network was evaluated by measuring its
“betweenness centrality” and “degree,” and the gene nodes
with the top scores for both betweenness centrality and
degree were identified as hub genes. Furthermore, module
analysis was performed by using the PEWCC plugin (version
1.0) to explore the clustering modules, which included the
hub genes in the vast PPI network (join parameter > 0:5,
overlap threshold > 0:8) [37]. Finally, the ClueGO plugin
(version 2.5.6) was used to analyze the biological functions
of the clustering modules, and P < 0:05was considered statis-
tically significant [32, 38].

2.5. Construction of the Hub Gene-TF Regulatory Network.
To further study the transcriptional regulation mechanism
of the hub genes, the online software programs NetworkAna-
lyst (https://www.networkanalyst.ca/) [39] and TRRUST
(https://www.grnpedia.org/trrust/) [40] were used to predict
transcription factors (TFs) of the hub genes. Among them,
NetworkAnalyst predicts the transcription factors of target
genes based on ENCODE ChIP-seq data. Only peak intensity
signals < 500 and predicted regulatory potential scores < 1
were used (using the BETA Minus algorithm). The TRRUST
database was derived from 11,237 PubMed articles. Tran-
scription factors that can simultaneously regulate the tran-
scriptional expression of more than two hub genes were
selected for the construction of the hub gene-TF regulatory
network, and Cytoscape software (version 3.5.1) was used
to construct the network [36].

2.6. Validation of Hub Genes. The Human Protein Atlas
(HPA) (https://www.proteinatlas.org/) was used to validate
the expression of the hub genes in the corresponding regions
of the human brain [41]. Receiver operating characteristic
(ROC) curve analysis was performed to analyze the specific-
ity of the differential expression of hub genes in UCMS-
exposed mice using the R package “pROC.” The area under
the curve (AUC) value was used to distinguish UCMS-
exposed mice from control mice [42].

3. Results

3.1. Identification of UCMS-Induced DEGs in the DG and
ACC. The boxplot indicated that the GSE84183 data exhib-
ited good normalization (Figure S1). The gene expression
profiles of the DG and ACC samples from UCMS-exposed
and control mice were used for comparative analysis
(Tables S1 and S2). A total of 1071 DEGs (679 upregulated
and 392 downregulated) and 13 DEGs (7 upregulated and 6
downregulated) were identified in the DG and ACC,
respectively, all having a fold change > 1:5. Only 4 DEGs (3
upregulated and 1 downregulated) were identified in both
the DG and ACC. There were 4116 DEGs (1825
upregulated and 2291 downregulated) and 410 DEGs (222
upregulated and 188 downregulated) identified in the DG
and ACC, respectively, all with a fold change > 1:2. There
were only 103 DEGs in common between the DG and
ACC, among which 67 genes were upregulated and 36

genes were downregulated (Figure 1). Hierarchical
clustering analysis showed that these 103 DEGs were
clustered between the DG and ACC, indicating that these
103 DEGs have different modes of expression between the
DG and ACC (Figure S4). To investigate a certain number
of DEGs with high fold changes in the DG and ACC, we
selected those with a fold change > 1:5 in the DG and those
with a fold change > 1:2 in the ACC for subsequent
analysis. There were only 48 DEGs in common between the
DG and ACC. Among them, 42 genes were upregulated
(4.9%) and 6 genes were downregulated (1%).

3.2. Functional and Pathway Enrichment Analyses of DEGs in
the DG and ACC. Gene Ontology (GO) and pathway enrich-
ment analyses showed that the DEGs that were upregulated
in the DG were mainly involved in cell adhesion, proteolysis,
ion transport, transmembrane transport, chemical synaptic
transmission, immune system processes, and responses to
lipopolysaccharide. Their molecular functions included cal-
cium ion binding, calmodulin binding, transporter activity,
ion channel activity, protease binding, and heparin binding.
The main pathways were mainly associated with neuroactive
ligand-receptor interactions, extracellular matrix-receptor
interactions, and complement and coagulation cascades.
DEGs downregulated in the DG were mainly involved in bio-
logical processes such as multicellular organism develop-
ment, nervous system development, cell differentiation,
responses to drugs, and negative regulation of neuronal apo-
ptotic processes. Molecular functions were mainly associated
with protein and calcium ion binding. The main pathways
involved were the calcium signaling, thyroid hormone syn-
thesis, and hematopoietic cell lineage pathways (Tables S3
and S4).

The upregulated DEGs in the ACC were mainly involved
in biological processes such as metabolic processes, proteoly-
sis, visual learning, long-term memory, and DNA methyla-
tion. The molecular functions were mainly associated with
serine-type peptidase and endopeptidase activity. In addi-
tion, toxoplasmosis-related pathways were involved. The
downregulated DEGs in the ACC were mainly involved in
biological processes such as negative regulation of transcrip-
tion, positive regulation of gene expression, innate immune
responses, cell migration, and circadian rhythm. The molec-
ular functions were mainly associated with protein binding,
hydrolase activity, and sequence-specific DNA binding. The
main pathways involved were proteoglycans in cancer and
signaling pathways regulating the pluripotency of stem cells
(Tables S3 and S4).

3.3. Comprehensive Analysis of PPI Networks and Modules.
The PPI network of upregulated genes in the DG consisted
of 400 nodes and 990 edges (Figure 2) (Table S5), with R‐
squared = 0:245 and correlation = 0:628 for betweenness
centrality and R‐squared = 0:888 and correlation = 0:861 for
the node degree (Figure S5). Ten hub genes had the top
scores for betweenness centrality (range 0.0315 to 0.2065)
and the node degree (range 16 to 44), including Fn1,
Col1a1, Anxa1, Penk, Ptgs2, Cdh1, Timp1, Vim, Rpl30, and
Rps21 (green node in Figure 2). After cluster analysis, the
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ten hub genes were divided into three modules, with Fn1,
Col1a1, Penk, Ptgs2, Cdh1, Timp1, and Vim being
clustered in module 1, which mainly involved biological
processes such as degradation of the extracellular matrix,
protease binding, and posttranslational protein
phosphorylation (Figure 3(a)). Anxa1, Timp1, and Penk
were clustered in module 2, which mainly involved

functions such as positive regulation of behavior and
peptide ligand-binding receptors (Figure 3(b)). Rpl30 and
Rps21 were clustered in module 3, which mainly involved
ribosomal and cytoplasmic translation (Figure 3(c)).

The PPI network of downregulated genes in the DG con-
sisted of 125 nodes and 159 edges (Figure 4(a)) (Table S5),
with R‐squared = 0:228 and correlation = 0:435 for the
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Figure 1: Venn diagram based on the overlapping UCMS-induced DEGs between the DG and ACC. (a) DEGs with a fold change > 1:5 in
both the DG and ACC; (b) DEGs with a fold change > 1:2 in both the DG and ACC; (c) DEGs with a fold change > 1:5 in the DG and
with a fold change > 1:2 in the ACC.

Figure 2: Protein-protein interaction network of upregulated genes in the DG. The green nodes are hub genes (betweenness centrality:
0.0315-0.2065, degree: range 16-44).
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Figure 3: Modules and functional enrichment analysis of the protein-protein interaction (PPI) network of upregulated genes in the DG. (a)
Module 1 and functional enrichment analysis of the protein-protein interaction (PPI) network. (Left panel) Module 1 in the protein-protein
interaction (PPI) network. The yellow nodes are hub genes. (Right panel) Functional enrichment of module 1. (b) Module 2 and functional
enrichment analysis of the protein-protein interaction (PPI) network. (Left panel) Module 2 in the protein-protein interaction (PPI) network.
The yellow nodes are hub genes. (Right panel) Functional enrichment of module 2. (c) Module 3 and functional enrichment analysis of the
protein-protein interaction (PPI) network. (Left panel) Module 3 in the protein-protein interaction (PPI) network. The yellow nodes are hub
genes. (Right panel) Functional enrichment of module 3.
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betweenness centrality and R‐squared = 0:738 and
correlation = 0:650 for the node degree (Figure S6). Six hub
genes had top scores for betweenness centrality (range
0.118 to 0.374) and the node degree (range 5 to 9),
including Dntt, Ptk2b, Jun, Avp, Slit1, and Sema5a (red
node in Figure 4(a)). After cluster analysis, the six hub
genes were divided into four modules. Slit1 and Sema5a
were clustered into module 1. Ptk2b was included in
module 2. Avp was included in module 3. Jun and Dntt
were clustered into module 4. The functional enrichment
analysis of these four modules showed that the functions
were associated with positive regulation of smooth muscle
contraction, axon extension in axon guidance, and the
ionotropic glutamate receptor signaling pathway
(Figure 4(b)).

The PPI network of upregulated genes in the ACC con-
sisted of 56 nodes and 64 edges (Figure 5(a)) (Table S5),
with R‐squared = 0:215 and correlation = 0:387 for the

betweenness centrality and R‐squared = 0:914 and
correlation = 0:913 for the node degree (Figure S7). Five
hub genes had top scores for betweenness centrality (range
0.2 to 1.0) and the node degree (range 5 to 7), including
Prkcg, Grin1, Syngap1, Rrp9, and Grwd1 (green node in
Figure 5(a)). After cluster analysis, the five hub genes were
divided into two modules, with Prkcg, Grin1, and Syngap1
being clustered in module 1. Rrp9 and Grwd1 were
clustered in module 2, and functional enrichment analysis
of these two modules showed that the functions were linked
to factors such as responses to anesthetics, visual behavior,
and responses to bronchodilators (Figure 5(b)).

The PPI network of downregulated genes in the ACC
consisted of 43 nodes and 56 edges (Figure 6(a)) (Table S5),
with R‐squared = 0:002 and correlation = 0:095 for the
betweenness centrality and R‐squared = 0:630 and
correlation = 0:834 for the node degree (Figure S8). Three
hub genes had top scores for betweenness centrality (range
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Figure 4: Protein-protein interaction network and modules of downregulated genes in the DG. (a) Protein-protein interaction network of
downregulated genes in the DG. The red nodes are hub genes (betweenness centrality: 0.118-0.374, degree: range 5-9). (b) Modules and
functional enrichment analysis of the protein-protein interaction (PPI) network. (Left panel) Modules 1-4 in the protein-protein
interaction (PPI) network. The yellow nodes are hub genes. (Right panel) Functional enrichment of modules 1-4.
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0.2 to 0.5624) and the node degree (degree = 5), including
Hnrnpc, Prpf40a, and Pik3r1 (red node in Figure 6(a)).
After cluster analysis, the three hub genes were divided into
two modules; Hnrnpc and Prpf40a were clustered in
module 1, and Pik3r1 was included in module 2. Functional
enrichment analysis of these two modules showed that the
functions involved signaling by Erb-b2 receptor tyrosine
kinase 2 (ERBB2) and spliceosomes (Figure 6(b)).

3.4. Construction of the Hub Gene-TF Regulatory Network.
The transcription factors Chd2, Zmiz1, Myb, Etv4, Rela,
and Tcf4 were predicted to regulate more than two of the
hub genes upregulated in the DG, including Fn1, Ptgs2,
Vim, Rpl30, and Rps21 (Figure 7(a)). The transcription fac-

tors Tcf12, Chd1, and Mef2a were predicted to regulate more
than two of the hub genes downregulated in the DG, includ-
ing Dntt, Ptk2b, and Jun (Figure 7(b)); no transcription fac-
tor genes were predicted to regulate more than two of the
hub genes upregulated in the ACC. The transcription factors
Ubtf and Mxi1 were predicted to control more than two of
the hub genes downregulated in the ACC, including Hnrnpc,
Prpf40a, and Pik3r1 (Figure 7(c)).

3.5. Validation of Hub Genes. Human Protein Atlas analysis
indicated that the hub genes Fn1, Anxa1, Vim, and Rps21
(upregulated in the DG); Ptk2b, Jun, and Prkcg (downregu-
lated in the DG); Grin1 and Rrp9 (upregulated in the
ACC); and Prpf40a (downregulated in the ACC) were

(a)
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Module 2

response to anesthetic (57.14%):
:
:

response to bronchodilator (14.29%)
visual behavior (14.29%)

1
2
3

2

31

(b)

Figure 5: Protein-protein interaction network and modules of upregulated genes in the ACC. (a) Protein-protein interaction network of
upregulated genes in the ACC. The green nodes are hub genes (betweenness centrality: 0.2-1.0, degree: range 5-7). (b) Modules and
functional enrichment analysis of the protein-protein interaction (PPI) network. (Left panel) Modules 1-2 in the protein-protein
interaction (PPI) network. The yellow nodes are hub genes. (Right panel) Functional enrichment of modules 1-2.
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expressed in the corresponding regions of the human brain at
moderate or high levels (Figure 8).

ROC analysis showed that the differential expression of
these hub genes, including Fn1, Anxa1, Vim, Rps21, Ptk2b,
Jun, Prkcg, Grin1, Rrp9, and Prpf40a, was specific in MDD-
like animals (AUC values were greater than 0.85; Fn1: AUC
= 0:891, Anxa1: AUC = 0:859, Vim: AUC = 0:891, Rps21:
AUC = 1:00, Ptk2b: AUC = 0:938, Jun: AUC = 0:938, Prkcg:
AUC = 0:938, Grin1: AUC = 0:891, Rrp9: AUC = 0:984, and
Prpf40a: AUC = 0:891) (Figure 9).

4. Discussion

Quantitative analysis of the mRNA expression in DG and
ACC samples from UCMS-exposed mice and control mice
showed that the number of DEGs in the DG was significantly

greater than that in the ACC. The number of DEGs with the
same level of fold change in the ACC was substantially less
than that in the DG; there were only 13 DEGs in the ACC
and up to 1071 DEGs with a fold change > 1:5. These results
demonstrated that the DG is far more affected than the ACC
under the same degree of environmental pressure. To inves-
tigate a certain number of DEGs with high fold changes in
the DG and ACC, which may be associated with the main
pathological changes in UCMS-exposed mice, the DEGs with
a fold change > 1:5 in the DG and a fold change > 1:2 in the
ACC were selected for subsequent functional analysis. In
the functional enrichment analysis, more than a dozen genes
upregulated in both the DG and ACC were shown to be
involved in the proteolysis biological process. Several studies
have indicated that proteolysis modulates synaptic plasticity,
which may lead to hippocampal long-term depression (LTD)
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Module 2

signaling by ERBB2 (66.67%):
: spliceosome (33.33%)

1

1

2

2

(b)

Figure 6: Protein-protein interaction network and modules of downregulated genes in the ACC. (a) Protein-protein interaction network of
downregulated genes in the ACC. The red nodes are hub genes (betweenness centrality: 0.2-0.5624, degree = 5). (b) Modules and functional
enrichment analysis of the protein-protein interaction (PPI) network. (Left panel) Modules 1-2 in the protein-protein interaction (PPI)
network. The yellow nodes are hub genes. (Right panel) Functional enrichment of modules 1-2.
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[43, 44] and to the development of fear memory in the pre-
frontal cortex [45, 46]. It was also reported that stress could
increase LTD and decrease plasticity in the hippocampus
[47]. Therefore, proteolysis may be a significant pathological
change induced by UCMS in both the DG and ACC. These
genes involved in proteolysis may be responsible for the pro-
gression of depression. The DG is also affected by other bio-
logical processes that regulate neural structure and function,
such as cell adhesion, chemical synaptic transmission, and
neuroactive ligand-receptor interaction. Some studies have
shown that cell adhesion plays a vital role in depression-
related behavior [48–50]. It is well documented that MDD
is linked to excitation inhibition imbalance due to disrupted
synaptic transmission [51]. A multidata source-based priori-
tization analysis showed that neuroactive ligand-receptor
interactions are the core pathways related to MDD [52]. In
addition, MDD also involves biological processes that may
cause neuronal damage, including the inflammatory
response to lipopolysaccharide, calcium ion binding, cal-
modulin binding, and complement cascades. Consistent with
the results of this study, many studies have reported that
depression is closely related to neuroinflammation [53, 54].
Excitotoxicity involving aberrant calcium ion binding is a
main neuropathological process in various neurodegenera-
tive disorders [55]. Calmodulin activity reportedly regulates
group I metabotropic glutamate receptor-mediated signal
transduction and synaptic depression [56]. The complement
system plays an essential role in synaptic plasticity and cogni-
tive functions [57]. However, the ACC mainly involves bio-
logical processes such as metabolic processes, visual
learning, long-term memory, and DNA methylation. These
actions are thus far linked to only nerve function changes
and are not known to be involved in biological processes
related to nerve cell damage. Among these processes, consis-
tent with our reports, metabolic disturbances in the prefron-
tal cortex are known to be involved in various types of
depression [58–60]. Visual learning was linked to the devel-

opment of MDD [61, 62]. Neural anomalies have been shown
to characterize depressed individuals during the suppression
of long-termmemories [63]. DNAmethylation is regarded as
a key epigenetic mechanism in MDD [64]. Dozens of down-
regulated genes in the DG were enriched in the biological
processes of neuronal repair. These included cell differentia-
tion, multicellular organism development, and nervous sys-
tem development, which may play essential roles in the
advancement of MDD [65]. Some downregulated genes in
the DG were shown to involve negative regulation of the neu-
ronal apoptotic process, which is responsible for the progres-
sion of MDD [66]. Additionally, some genes downregulated
in the DG were shown to be involved in responses to drugs,
which has not yet been associated with MDD. However, the
ACC mainly involves biological processes such as innate
immune responses, cell migration, regulation of stem cell
pluripotency, and circadian rhythm function. Among them,
innate immune systems alter the pathophysiology of depres-
sion [67]. Circadian rhythm disturbances are significant for
the development of depression [68]. There is less information
on the roles of cell migration and stem cell pluripotency in
depression, which may involve neuroplasticity. The down-
regulation of stem cell pluripotency may underlie the pro-
gression of MDD [19].

Comprehensive analysis of the PPI network and modules
showed that the hub genes and their corresponding modules
in the DG and ACC were different. The modules with upreg-
ulated hub genes in the DG mainly involved degradation of
the extracellular matrix and positive regulation of behavior.
Hippocampal extracellular matrix alterations were shown to
be involved in the progression of depression [69]. The aber-
rant regulation of behavior may directly lead to depressive-
like behavior [70, 71]. The modules with upregulated hub
genes in the ACC mainly involved responses to anesthetics
and visual behavior. Visual learning was previously associ-
ated with the development of MDD [61, 62]. There are few
reports on the role of responses to anesthetics in depression

(a) (b)

(c)

Figure 7: Hub gene-transcription factor (TF) regulatory network. The red nodes denote the hub genes, and the green diamonds denote the
transcription factors. (a) Target gene-TF regulatory network of upregulated hub genes in the DG. (b) Target gene-TF regulatory network of
downregulated hub genes in the DG. (c) Target gene-TF regulatory network of downregulated hub genes in the ACC.
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being associated with the progression of MDD. The modules
with downregulated hub genes in the DGmainly involved the
positive regulation of smooth muscle contraction and axon
extension in axon guidance-related genes. The downregula-
tion of genes associated with the positive regulation of
smooth muscle contraction directly affects behavioral control
[70, 71]. The downregulation of genes related to axon exten-
sion in axon guidance affects neuroplasticity. Many studies
have shown that the inhibition of neural plasticity is associ-
ated with the pathogenesis of MDD [19]. The modules with
downregulated hub genes in the ACC mainly involved sig-
naling by Erb-b2 receptor tyrosine kinase 2 (ERBB2). Fur-
thermore, mGluR1-dependent long-term depression in
rodent midbrain dopamine neurons is reportedly regulated

by Neuregulin 1/ErbB signaling [72]. Therefore, these mod-
ules may be involved in the pathogenesis of MDD.

In the PPI network, upregulated genes in the DG, such as
Fn1, Col1a1, Anxa1, Penk, Ptgs2, Cdh1, Timp1, Vim, Rpl30,
and Rps21, were identified as hub genes showing the highest
node degree and betweenness values. Fn1 is a biomarker of
the inflammatory response and is also regarded as an indica-
tor of Alzheimer’s disease progression [73, 74]. It has been
reported that Col1a1 is an indicator of neurotoxicity [75].
Anxa1 plays a crucial role in chronic corticosterone-
induced depression-like behaviors and impairment in
hippocampal-dependent memory [76]. Penk knockout mice
are resistant to chronic mild stress effects, suggesting that
Penk enhances the reactivity to chronic stress [77]. Ptgs2

Fn1

(a)

Anxa1

(b)

Vim

(c)

Rps21

(d)

Ptk2b

(e)

Jun

(f)

Prkcg

(g)

Grin1

(h)

Rrp9

(i)

Prpf40a

(j)

Figure 8: Validation of the hub genes by immunohistochemistry data from the HPA database (hub genes: (a) Fn1, (b) Anxa1, (c) Vim, (d)
Rps21, (e) Ptk2b, (f) Jun, (g) Prkcg, (h) Grin1, (i) Rrp9, and (j) Prpf40a).
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Figure 9: Continued.
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has been reported to be a vital biomarker of neuroinflamma-
tion in Alzheimer’s disease [77]. Cdh1 reportedly inhibits the
proliferation and activation of oligodendrocyte precursor
cells after mechanical stretch injury [78]. Timp1 overexpres-
sion damages hippocampal long-term potentiation (LTP).
The dysregulation of Timp1 expression may be the basis of
abnormal cognitive abilities [79]. The upregulated expression
of Vim is an indicator of astrocyte activation and reactive
glial hyperplasia in response to injury, ischemia, or neurode-
generation [80]. Therefore, the upregulated expression of
these genes in the DG may be responsible for the develop-
ment of MDD, and these genes may be new therapeutic tar-
gets in MDD. In addition, Rpl30 and Rps21 are both
ribosomal proteins involved in rRNA processing [81]. These
two genes were the upregulated hub genes in the DG that
were related to MDD and have not been related to neurolog-
ical function in the brain. Downregulated genes in the DG,
such as Dntt, Ptk2b, Jun, Avp, Slit1, and Sema5a, were iden-
tified as hub genes. It has been reported that Ptk2b mediates
amyloid-β-induced synaptic dysfunction and loss, but its role
in MDD has not been reported [82]. It was documented that
inhibition of Jun kinase ameliorates depressive-like behaviors
and reduces the activation of proinflammatory cytokines
induced by central lipopolysaccharide (LPS) infusion [83].
Avp is well known to be involved in the progression of
MDD [84, 85]. Therefore, UCMS exposure can activate the
expression of genes in the DG that are involved in the path-
ogenesis of MDD but can also inhibit the expression of genes
in the DG that can reduce nerve damage. When UCMS expo-
sure cannot reduce the activities of these genes due to genetic
mutations, these genes may lead to the progression of MDD.
In addition, Dntt, Slit1, and Sema5a were identified as down-
regulated hub genes in the DG that were related to MDD,
which has not been documented to be associated with neuro-
logical function in the brain. Upregulated genes in the ACC,
such as Prkcg, Grin1, Syngap1, Rrp9, and Grwd1, were iden-
tified as hub genes. Genetic variants in Prkcg may play essen-
tial roles in the development of MDD [86, 87]. Grin1
receptor deletion within CRF neurons was shown to enhance
fear memory [88]. Increased Grin1 mRNA expression was
previously associated with reduced depression-like behavior
in a mouse model of neglect [89]. Syngap1 plays critical roles

in synaptic development, structure, function, and plasticity in
association with neurodevelopmental disorders [90]. There-
fore, the increased expression of these genes in the ACC
may reduce the occurrence of depressive disorders induced
by UCMS. When UCMS exposure cannot increase the activ-
ities of these genes due to genetic variants, these genes may
lead to the development of MDD. In addition, Rrp9 and
Grwd1 were the two upregulated hub genes in the ACC that
were related to MDD, which has not been documented to be
associated with neurological function in the brain. Downreg-
ulated genes in the ACC, such as Pik3r1, Hnrnpc, and
Prpf40a, were identified as hub genes. Knockdown of Pik3r1
reportedly inhibits the activity of splenic macrophages asso-
ciated with hypersplenism [91]. Therefore, Pik3r1 may be
associated with neuroinflammation involved in MDD. In
addition, Hnrnpc and Prpf40a were the two downregulated
hub genes in the ACC related to MDD, which has not been
documented to be associated with neurological function in
the brain.

In the hub gene-TF regulatory network analysis, which
was performed to identify transcription factors that have an
important influence on the pathological mechanism of
MDD, transcription factors capable of simultaneously regu-
lating the transcriptional expression of more than two hub
genes were identified. Identification of these genes will have
a significant effect on finding possible new therapeutic targets
in MDD. The transcription factor Chd2 was predicted to
upregulate the expression of Rpl30 and Rps21 and was previ-
ously demonstrated to be necessary for neural circuit devel-
opment and long-term memory [92]. Zmiz1 was shown to
play a key role in neural development in a syndromic neuro-
developmental disorder [93]. Myb was associated with Par-
kinson’s disease [94]. Etv4 was shown to be involved in
vesicular glutamate transporter 3 expression and neurite out-
growth of dorsal root ganglion neurons induced by BNDF
[95]. Downregulation of Rela in the hippocampus was shown
to be involved in preventing major oxidative damage in a
chronic model of unpredictable mild stress induced by BDNF
[96]. Therefore, the upregulation of Rela in the DG may be
involved in the pathogenesis of MDD. The expression of
Tcf4 may be significant in the pathomechanism of recurrent
depressive disorder [97]. Enhanced expression of Tcf12 in
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Figure 9: Receiver operating characteristic (ROC) curves and area under the curve (AUC) statistics to evaluate the specificity of differential
expression of the hub genes in the UCMS animal model (hub genes: (a) Fn1, (b) Anxa1, (c) Vim, (d) Rps21, (e) Ptk2b, (f) Jun, (g) Prkcg, (h)
Grin1, (i) Rrp9, and (j) Prpf40a).
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the rat hippocampus was shown to be associated with cogni-
tive function, synaptic plasticity, and pathology [98]. Chd1
depletion robustly enhanced TDP-43-mediated neurodegen-
eration and promoted the formation of stress granules [99].
Mef2a was shown to play a key role in the differentiation
and maturation of rat neural stem cells into neurons [100].
Reducing Mef2a activity was shown to be involved in Parkin-
son’s disease features in model animals [101]. Ubtf was
reportedly associated with neurodegeneration in childhood
[102]. Mxi1 is known to be essential for neurogenesis in
Xenopus [103].

5. Conclusions

In conclusion, DEG and GO ontology enrichment analyses of
the DG and ACC may reveal the molecular mechanism of
MDD. Hub genes in the DG, including Fn1, Col1a1, Anxa1,
Penk, Ptgs2, Cdh1, Timp1, Vim, Rpl30, Rps21, Dntt, Ptk2b,
Jun, Avp, Slit1, and Sema5a, were identified. Hub genes in
the ACC, such as Prkcg, Grin1, Syngap1, Rrp9, Grwd1,
Pik3r1, Hnrnpc, and Prpf40a, were identified. The transcrip-
tion factor genes Chd2, Zmiz1, Myb, Etv4, Rela, Tcf4, Tcf12,
Chd1, Mef2a, Ubtf, and Mxi1 may regulate more than two
hub genes in the DG and ACC. Our findings provide clues
for further exploring molecular mechanisms and developing
new therapeutic approaches to MDD.
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