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Immunogenic cell death (ICD) is a form of regulated cell death (RCD) induced by various
stresses and produces antitumor immunity via damage-associated molecular patterns
(DAMPs) release or exposure, mainly including high mobility group box 1 (HMGB1),
calreticulin (CRT), adenosine triphosphate (ATP), and heat shock proteins (HSPs).
Emerging evidence has suggested that ionizing radiation (IR) can induce ICD, and the
dose, type, and fractionation of irradiation influence the induction of ICD. At present, IR-
induced ICD is mainly verified in vitro in mice and there is few clinical evidence about it. To
boost the induction of ICD by IR, some strategies have shown synergy with IR to enhance
antitumor immune response, such as hyperthermia, nanoparticles, and chemotherapy. In
this review, we focus on the molecular mechanisms of ICD, ICD-promoting factors
associated with irradiation, the clinical evidence of ICD, and immunogenic forms of cell
death. Finally, we summarize various methods of improving ICD induced by IR.

Keywords: immunogenic cell death, ionizing radiation, ferroptosis, necroptosis, damage-associated molecular
patterns, nanoparticles, hyperthermia, chemotherapy
Abbreviations: ASC, Apoptosis-associated speck-like protein containing a caspase recruit domain; ATP, Adenosine
triphosphate; Bip, Binding immunoglobulin protein; cDAMPs, Constitutive damage-associated molecular patterns;
cGAMP, Cyclic GMP-AMP; cGAS, Cyclic GMP-AMP synthase; CRT, Calreticulin; CTL, Cytotoxic T lymphocyte; CXCL,
C-X-C motif chemokine ligand; DAMPs, Damage-associated molecular patterns; DC, Dendritic cell; dsDNA, Double-strand
DNA; ER, Endoplasmic reticulum; Fas, Factor related apoptosis; FasL, Factor related apoptosis ligand; HFRT,
Hypofractionated radiation therapy; HMGB1, High mobility group box 1; HSPs, Heat shock proteins; HT, Hyperthermia;
ICD, Immunogenic cell death; iDAMPs, Inducible damage-associated molecular patterns; IFN-I, Type I interferon; IFN-g,
Type g interferon; IL-1b, Interleukin-1b; IL-6, Interleukin-6; IR, Ionizing radiation; IRF3, Interferon regulatory factor 3; mFX,
Modified dose of FOLFIRINOX; MHC I, Major histocompatibility complex class I; MLKL, Mixed lineage kinase domain-like
protein; NLRP3, NOD-like receptor protein 3; NSCLC, Non-small cell lung cancer; P2RX7, P2X purinoceptor 7; P2RY2,
Purinergic receptor P2Y2; RBE, Relative biological effectiveness; RCD, Regulated cell death; RCT, Radiochemotherapy; RIPK1,
Receptor-interacting serine/threonine-protein kinase 1; ROS, Reactive oxygen species; RT, Radiotherapy; SBRT, Stereotactic
body radiotherapy; STING, Stimulator of interferon genes; TBK1, TANK-binding kinase 1; TCR, T-cell receptor; TIL, Tumor-
infiltrating lymphocyte; TLR4, Toll-like receptor 4; TNF-a, Tumor necrosis factor-a.
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INTRODUCTION

As a major modality in clinical cancer treatment, radiotherapy
(RT) cures or palliates cancer in more than 50% of patients (1).
However, radiation resistance of some cancers remains a clinical
problem (2). Therefore, it is urgent to find effective ways to solve
this problem. RT utilizes ionizing radiation (IR) to induce cell
death directly through damaging double-strand DNA (dsDNA)
(1). Moreover, IR has the potential to produce antitumor
immunity, which is suggested by the discovery of the abscopal
effect (3). The abscopal effect refers to the retarded growth
of distant metastases following irradiation of the primary
tumor (4). IR drives an antitumor immune response through
a series of mechanisms [such as the upregulation of major
histocompatibility complex (MHC) class I molecules,
intercellular adhesion molecule-1, and factor-related apoptosis
(Fas)], one of which is the induction of immunogenic cell death
(ICD) (5).

ICD is a type of regulated cell death (RCD) driven by cellular
stressors, including chemotherapy, IR, targeted anticancer
agents, photodynamic therapy, and high hydrostatic pressure.
It initiates CD8+ T cell-mediated adaptive immune response
through damage-associated molecular patterns (DAMPs)
emission (6–8). The induction of ICD by IR depends on the
type of radiation, radiation dose, fractionation schedule, and
tumor types. In addition, ICD such as necroptosis and
ferroptosis can improve the radiosensitivity of tumor cells (9,
10). Thus, ICD inducers might be an auxiliary treatment method
to produce synergistic antitumor effect combined with RT. In
recent years, immunotherapy has been a hotspot in cancer
treatment and ICD activation might be a promising cancer
therapy modality.

Herein, we mainly discuss the mechanism of IR-driven ICD,
factors related IR-induced ICD, and clinical evidence. Lastly, we
summarize the methods of enhancing IR-induced ICD.

THE MECHANISM OF IR-DRIVEN ICD

The induction of ICD requires three factors:

1. Inducible damage-associated molecular patterns (iDAMPs):
cytokines [such as interleukin-6 (IL-6)] and chemokines
[such as C-X-C motif chemokine ligand 1 (CXCL1),
CXCL2, CXCL10, and CC chemokine receptor 2];

2. Tumor-associated or tumor-specific antigens;

3. Constitutive damage-associated molecular patterns
(cDAMPs): high mobility group box 1 (HMGB1),
calreticulin (CRT), adenosine triphosphate (ATP), heat
shock proteins (HSPs), and so on (11).

Irradiating tumor cells result in reactive oxygen species (ROS)
production and collateral endoplasmic reticulum (ER) stress
effects, which are required for cDAMPs release or exposure
(12, 13). Specifically, cDAMPs involve HMGB1 and ATP
release, CRT relocation, and HSPs exposure (14). cDAMPs act
as “find me” signals (ATP and HMGB1) or “eat me” signals
Frontiers in Immunology | www.frontiersin.org 2
(HSPs and CRT) to mobilize antigen-presenting cells (APCs)
such as dendritic cells (DCs), macrophages, and their precursors
to tumor cells with the help of chemokines (15). The activation
and maturity of APCs especially DCs depend on the interaction
of cDAMPs and pattern recognition receptors (PRRs) on these
cells. PRRs include P2RX7 (P2X purinoceptor 7), P2RY2
(purinergic receptor P2Y2), CD91, CD40, and TLR4 (toll-like
receptor 4) (16). Belonging to the ionotropic purinergic P2X
subfamily, P2RX7 is a 595aa protein expressed on almost all
immune cells and promotes IL-18 and IL-1b secretion via the
NLRP3/ASC/caspase-1 (NLRP3: NOD-like receptor protein 3;
ASC: apoptosis-associated speck-like protein containing a
caspase recruit domain) pathway when combined with ATP
(17, 18). Interaction of ATP with P2RY2 promotes the
recruitment of immature DCs, monocytes or macrophages,
and neutrophils (6). CD91, also known as low-density
lipoprotein receptor-related protein 1, is a endocytic and cell
signaling receptor expressed on the surface of both normal and
tumor cells (19). The CRT–CD91 interaction leads to the release
of TNF-a (tumor necrosis factor-a) and IL-6 (20). CD91 also
combines with HSP90 to facilitate cross-presentation (21). CD40
is a costimulatory molecule belonging to the TNF receptor
superfamily and mainly expressed on APCs (22). HSP70
binding to CD40 results in CD8+ cytotoxic T-cell activation
(6). As part of the TLR family, TLR4 is mostly expressed on the
surface of innate immune cells and recognizes pathogen-
associated molecular patterns like lipopolysaccharide and
cDAMPs like HMGB1 to elicit immune responses (23).
HMGB1-TLR4 stimulates the release of pro-inflammatory
cytokines (24). More importantly, combining cDAMPs with
PRRs on DCs activates DCs to engulf tumor cells, process
tumor antigens, and express these tumor antigens along with
MHC-I molecules on the plasma membrane (25). Once activated
and maturing, DCs migrate to tumor-draining lymph nodes.
Secreted from mature DCs, IL-6, IL-1b, TNF-a, and type g
interferon (IFN-g) promote the differentiation of T cells into the
CD8+ phenotype. Then, CD8+ T cells are activated by antigen
cross-presentation from DCs to become cytotoxic T lymphocytes
(CTLs) (20). Ultimately, CTLs induce tumor cell apoptosis
through the release of perforin and granzyme B, or a
combination of Fas ligand (FasL) with Fas (Figure 1) (11, 26).

IR also induces ICD via the IFN-I response. Nucleic dsDNA is
damaged by IR and released from the nucleus to aggregate in the
cytoplasm. Cytosolic dsDNA is sensed by cyclic GMP-AMP
(cGAMP) synthase (cGAS), resulting in cGAMP generation.
Consequently, the STING–TBK1–IRF3 pathway (STING:
stimulator of interferon genes; TBK1: TANK-binding kinase 1;
IRF3: interferon regulatory factor 3) is activated, causing IFN-I
production and its release from inside to outside the cell (27). The
interaction between IFN-I and its receptor on DCs promotes DCs
maturation, increases the expression of costimulatory molecules
on DCs, and enhances the migration ability of DCs to tumor-
draining lymph nodes, eventually promoting antitumor
immunity mediated by CD8+ T cells (28). IFN-I also stimulates
macrophages to secrete inflammatory factors and restrains the
immunosuppressive ability of CD4+CD25+FOXP3+ Tregs (29).
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IR-ASSOCIATED FACTORS ABOUT
ICD ACTIVATION

IR-driven ICD is not only correlated with tumor genetic
background and tumor microenvironment but also linked with
post-irradiation time, and the type, dose, and fractionation
schedule of radiation (2, 30, 31).

Within a certain range, IR induces ICD in a time-dependent
manner. Three radical beams (proton, photon, and carbon ion)
drive CRT exposure in four human carcinoma cell lines (CNE-2,
A549, U251, and Tca8113), and CRT exposure raises with an
increase in post-irradiation time (12, 24, and 48 h) (32). In
addition, a study found that the increase in HSP70 and HMGB1
Frontiers in Immunology | www.frontiersin.org 3
started 24 and 48 h, respectively, in MC-38 cells following
irradiation with 213Bi (33).

To compare ICD induction by different types of IR (carbon-
ion, proton, and photon irradiation), the relative biological
effectiveness (RBE) must be taken into consideration. RBE is
defined as the ratio of physical doses that lead to the same
biological effect (34). The RBE value of proton and photon is
regarded as 1.1, but carbon ion is 2–3 (34, 35). Certainly, the RBE
value is related with the type of tumor cells. Therefore, the
equivalent biological dose (the product of physical dose and
RBE) of carbon ion is more than twice that of proton and photon
at the same physical dose in the CNE-2 cell line. Yangle Huang
et al. confirmed that carbon-ion induced more CRT exposure
FIGURE 1 | Mechanism of IR-driven ICD. Tumor cells release cDAMPs, chemokines, and tumor antigens following IR. Chemokines attract macrophages and
immature DCs to tumor cells. cDAMPs like ATP, CRT, HSP70/90, and HMGB1 bind to corresponding receptors (P2RX7/P2RY2, CD91, CD40/CD91, and TLR4,
respectively) on DCs leading to their activation. Recruited DCs can engulf and process tumor antigens. Mature DCs present tumor antigens to surface MHC-I
molecules and then migrate to tumor-draining lymph nodes. There, DCs produce IL-6, IL-1b, TNF-a, and IFN-g and cross-present antigens to boost T-cell
differentiation to CTLs. CTLs can migrate to the tumor site and kill malignant cells by releasing perforin, granzyme B, or through the stimulation of the Fas/FasL
pathway. ATP, Adenosine triphosphate; cDAMPs, Constitutive damage-associated molecular patterns; CRT, Calreticulin; CTL, Cytotoxic T lymphocyte; DC, Dendritic
cell; Fas, Factor-related apoptosis; FasL, Factor-related apoptosis ligand; HMGB1, High mobility group box 1; HSP, Heat shock protein; ICD, Immunogenic cell
death; IFN-g, Type g interferon; IL-1b, Interleukin-1b; IL-6, Interleukin-6; IR, Ionizing radiation; MHC I, Major histocompatibility complex class I; P2RX7, P2X
purinoceptor 7; P2RY2, Purinergic receptor P2Y2; TCR, T-cell receptor; TLR4, Toll-like receptor 4; TNF-a, Tumor necrosis factor-a.
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than proton and photon at low physical dose (2, 4 Gy) due to
higher equivalent biological dose of carbon-ion (32). Moreover,
the successful activation of ICD requires irradiation dose to be
within a precise range; IR doses below or above this threshold
produce undesirable immune responses (36). Proton and photon
promote CRT exposure in a dose-dependent manner, whereas
carbon ion induces more CRT exposure at 4 Gy than 2 and 10
Gy, perhaps owing to the decrease and inhibition of ICD
induction by carbon-ion at 2 and 10 Gy separately (32).

IR at different doses produces different types of tumor cell
death. Low-dose x-rays (<5 Gy/fraction) activate mitotic
catastrophe and apoptosis. High-dose x-rays (8—30 Gy/
fraction) induce necrosis and necroptosis (37, 38). Some
studies have investigated the optimal dose and fractionation
schedule of IR to induce ICD. A study observed that in TSA
mammary carcinoma cells, IR enhanced ATP and HMGB1
release and CRT exposure in a dose-dependent manner (2, 5,
10, and 20 Gy) (39). Demaria et al. indicated that single over 5- to
10-Gy x-ray doses were sufficient to produce ICD (40). In
glioblastoma cell lines, HSP70 and HMGB1 release are
stimulated by the classical fractionation schedule (5×2 Gy)
(41). In human prostate cancer cell lines, x-rays induce ATP
and HMGB1 secretion at both 1×10 Gy and 10×1 Gy, but the
latter elicits more HMGB1 release than the former in DU145 and
PC3 cells (42). As mentioned above, dsDNA accumulation in the
cytoplasm induces IFN-I release via the cGAS–STING pathway.
However, Trex1, a DNA exonuclease, can degrade dsDNA.
Therefore, RT elicits IFN-I release at 3×8 Gy but inhibits
release at 1×20 Gy as a result of the activation of Trex1 (43).
THE EVIDENCE OF IR-INDUCED ICD
BIOMARKERS IN THE CLINICAL SETTING

In the clinical setting, it is difficult to prove the induction of ICD in
patients treated with RT. Some clinical studies combined RT with
immunotherapy to verify ICD indirectly according to enhanced
systemic tumor responses (2). In fact, RT-driven antitumor
immunity is not completely attributed to ICD, as mentioned at
the beginning of the review. The current studies might only
indirectly verify ICD by detecting cDAMPs in serum or tumor
tissue resected frompatients after RT (44). One study confirmed that
elevated tumor cell surface expression of CRTwas detected in tumor
samples of patients with renal clear cell carcinoma treated with
stereotactic body radiotherapy (SBRT) (45). TakashiMurakami et al.
suggested that neoadjuvant chemoradiotherapy induces the
overexpression of MHC I-related chain A/B, CRT, and HSP70,
and creates a favorable immunogenic tumor microenvironment
with a lowTreg/tumor infiltrating lymphocyte (TIL) ratio in patients
with pancreatic cancer (46). Yoshiyuki Suzuki et al. indicated that
chemoradiotherapy induced tumor antigen–specific T-cell
responses in patients with esophageal squamous cell carcinoma
along with increased HMGB1 release in serum (47).

It has been reported that some cDAMPsmight have the potential
to predict clinical outcomes of patients following RT (44). For
example, HMGB1 was significantly increased in the serum of
Frontiers in Immunology | www.frontiersin.org 4
patients with esophageal cancer after chemoradiation, and its level
was positively correlated with patient survival (47, 48). However,
cDAMPs as double-edged swords can also promote tumor growth, so
elevated cDAMPs expression might be associated with decreased
survival (21). In general, whether high HSP70 levels predict positive
clinical outcomes depends on its position in cells, tumor types, and its
durable upregulation time following RT. It has been confirmed that
intracellular HSP70 suppresses tumor cell apoptosis whereas
membrane-bound and extracellular HSP70 stimulates the innate
and adaptive antitumor immunity to retard tumor growth (49).
Stefan Stangl et al. suggested that high intracellular HSP70
expression and low NK cell infiltration in patients with squamous-
cell carcinoma of the head and neck were linked with unfavorable
outcomes after surgery and radiochemotherapy (RCT) (49). In
contrast, progression-free survival and overall survival were
significantly better after RCT in patients with primary glioblastomas
and having high intracellular HSP70 expression levels (50). Another
studydemonstrated that the level offreeHSP70wasupregulated in the
serum of patients with breast cancer up to 6 weeks after RT, which
might predict an unfavorable prognosis as a result of a chronic
inflammatory response (51).
IMMUNOGENIC FORMS OF CELL DEATH

The types of tumor cell death induced by IR include mitotic
catastrophe and mitotic death, apoptosis, necrosis, senescence,
necroptosis, and ferroptosis (2). Among them, necroptosis and
caspase-independent apoptosis elicited by high levels of radiation
are regarded as immunogenic forms of cell death (52). A
common feature of these cell death types is the release or
exposure of cDAMPs; therefore, the latter are the key
molecules of initiating antitumor immunity (52). In addition, it
is proved that the gold standard for ICD evaluation is to
vaccinate immunocompetent mice with dying syngeneic cancer
cells and then rechallenge them with live cancer cells. An absence
or slowdown of tumor growth would indicate the induction of an
adaptive antitumor immune response (53).

As a form of RCD, necroptosis is mediated by receptor-
interacting serine/threonine-protein kinase 1 (RIPK1), RIPK3,
and mixed lineage kinase domain-like protein (MLKL), and
leads to cellular swelling, membrane disruption, and intracellular
contents release (54, 55). The successful induction of necroptosis
with IR in non-small cell lung cancer (NSCLC) cells depends on
irradiation dose, fractionation schedule, and RIPK3 expression. In
NSCLC cells with low RIPK3 expression, apoptosis and
necroptosis are activated dose-dependently both with <10 Gy/
fraction RT and ≥10 Gy/fraction ablative hypofractionated
radiation therapy (HFRT). In NSCLC cells with high RIPK3
expression, necroptosis is preferentially stimulated by ≥10 Gy/
fraction ablative HFRT. The induction and activation of MLKL
and HMGB1 release are involved both in vitro and in vivo (37).
The release of HMGB1 from necroptotic tumor cells that
underwent ablative HFRT suggests that necroptosis induced by
ablative HFRT is immunogenic and has the potential to activate
immune response although there is very little direct evidence
August 2021 | Volume 12 | Article 705361
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available about it. Indeed, necroptosis has been confirmed as ICD
in that tumor-bearing mice injected with necroptotic fibroblasts
initiate an systemic immune response (56). The activation of the
RIPK1/RIPK3/NF-kB pathway in necroptotic cells results in the
release of cytokines that promote DC activation and stimulate
antitumor immunity mediated by CTLs (56).

Ferroptosis is a form of iron-dependent RCD that is regulated
by lipid, iron, and cysteine metabolism with lipid peroxidation
and lethal ROS accumulation (10, 57). Like necroptosis,
ferroptosis also belongs to regulated necrosis, which can release
cDAMPs to activate antitumor immune response (58, 59). A
study demonstrated that irradiated tumor cells released
microparticles to induce ferroptosis, which promotes cell
surface exposure of CRT, ATP secretion, and macrophage
phagocytosis (60). Although IR induces ferroptosis indirectly
to activate antitumor immune response, there is growing
evidence regarding the induction of ferroptosis by IR in tumor
cells and the immunogenicity of ferroptosis (42, 61, 62). The
connection between IR-induced ferroptosis and antitumor
immunity might be linked to many factors such as radiation
dose and type. The previous studies have indicated that IR
induces tumor cell ferroptosis and ferroptosis improves the
radiosensitivity of tumor cells (10, 63, 64). Based on this, RT
combined with ferroptosis inducers may improve the therapeutic
effect of RT by increasing lipid peroxidation and promoting
immune response rather than DNA damage or caspase
activation (65). Besides cDAMPs, ferroptotic tumor cells may
release oxidized lipids such as arachidonic acid-derived
oxidation products and oxidized phospholipids to regulate
antitumor immunity, but further studies are needed to confirm
this (66).
Frontiers in Immunology | www.frontiersin.org 5
THE METHODS OF ENHANCING
IR-INDUCED ICD

Many ICD inducers have been developed to promote ICD and
augment antitumor immunity, including cytotoxic drugs like
anthracyclines or again oncolytic viruses (7). There are some
therapies that boost IR-activated ICD, such as nanoparticles,
hyperthermia, or chemotherapy. Table 1 summarizes the
methods that further stimulate ICD upon IR.

As drug delivery carriers, nanoparticles have high tumor-
targeting, permeability and retention effect, and allow to decrease
toxicity by reducing drug dosing (79). As a result, the
development of nanoparticles has become a research hotspot
currently. Nanoparticles are classified into synthetic polymers,
biomimetic materials, and inorganic materials according to
their physical and chemical properties (80). Some smart
nanoparticles are activated by specific conditions such as PH,
light, and hyperthermia to release drugs (80). Accumulating
studies have combined nanoparticles with immunoadjuvants,
chemotherapeutics, photodynamic therapy, or again
photothermal therapy in order to reshape the tumor hypoxic
microenvironment to elicit or enhance ICD (81, 82). These novel
nanoparticles synergized with IR and enhanced antitumor
immune function (83–87). Qian Chen et al. confirmed that
PLGA-R837@Cat nanoparticle-based x-ray radiation inhibited
primary tumors significantly in comparison with RT alone.
Moreover, this method generated strong antitumor immune
responses with enhanced ICD induction; DC activation and
maturation; the secretion of IL-2, IFN-g, and TNF-a; and CTL
infiltration. RT enhanced by PLGA-R837@ Cat combined with
TABLE 1 | Methods promoting RT-induced ICD.

Methods Tumor cells ICD hallmarks References

Nanoparticles
AuNPs MDA MB 231 cells CRT exposure (67)
H@Gd-NCPs CT26 cells CRT exposure

HMGB1 release
ATP secretion

(68)

PLGA-R837@Cat CT26 cells CRT exposure (69)
UCNP-DOX H460 cells ATP secretion (70)
WO2.9-WSe2-PEG 4T1 cells CRT exposure (71)
S-AuNC Tramp C1 cells CRT exposure

HMGB1 release
(72)

ASTX660 MOC1 cells CRT/HSP70 exposure
HMGB1 release

(73)

Hyperthermia B16-F10 cells HSP70/HMGB1 release (74)
HCT15 cells HSP70/HMGB1 release (75, 76)
SW480 cells HMGB1 release (76)

Chemotherapy
mFX PDAC cell lines CRT/ERp57 exposure (77)

HMGB1 release
platinum TSA cells CRT exposure

HMGB1 release
ATP secretion

(39)

Bip inhibition Glioma stem cells CRT exposure
ATP secretion
HMGB1 release

(78)
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anti-CTLA4 checkpoint blockade not only led to complete
elimination of primary tumors but also further retarded the
growth of metastatic tumors with long-term immune memory
protection (69).

Hyperthermia (HT) is a cancer treatment strategy by raising
tissue temperature to 39–45°C for a certain period of time and it
has been reported in many phase II and phase III trials combined
with radiotherapy and chemotherapy (88, 89). HT can not only
cause protein denaturation and aggregation to activate
downstream pathways such as the DNA damage response to
kill tumor cells directly but also induce ICD to reverse tumor
immunosuppressive microenvironment and produce antitumor
immunity (90). HSPs are the most important cDAMPs to initiate
tumor-specific immune responses via TLR4 signaling (16, 90).
One research treated CT26 tumor cells with RT and/or HT, then
injected them subcutaneously into Balb/c, and monitored tumor
growth. Cell treatment with RT at 2 or 5 Gy plus HT delayed
tumor growth whereas irradiation with 2 Gy alone did not
significantly inhibit tumor growth. In an in vitro experiment,
x-radiation in combination with HT promoted the increase of
HSP70 release and the activation, maturation, and cross-
presentation of DCs (75). Fractionated RT (3×2 Gy) retards
tumor growth significantly in B16-F10 tumor-bearing mice when
combined with HT, in comparison with fractionated RT alone.
RT with 2 Gy plus HT increases HSP70 and HMGB1 release
significantly in tumor cells; RT with 3×2 Gy plus HT facilitates
CD8+ T cell, DC, and NK cell infiltration, but inhibits Treg and
MDSC infiltration in the tumors (74).

ASTX660 is an inhibitor of apoptosis protein antagonist,
resulting in cellular Inhibitor of Apoptosis Proteins 1/2
degradation and X-linked inhibitor of apoptosis protein
inhibition (91). Previous research has demonstrated that
ASTX660 can potentiate antitumor immunity by enhancing
the sensitivity of tumor cells to induction of TNFR superfamily
ligation-related apoptosis downstream (92). The combination of
ASTX660 and RT significantly boosts tumor regression through
the function of TNFa, CD8+ T cells, and NK cells (92). Wenda
Ye et al. indicated that ASTX660 further facilitated CRT and
HSP70 exposure and HMGB1 release in MOC1 cells when
combined with IR as compared to ASTX660 alone. In in vivo
experiments, ASTX660 heightened IR-induced ICD modestly to
inhibit tumor generation in 72% of mice in contrast with 50% of
mice treated with IR alone. In addition, ASTX660 combined with
IR promoted clonal expansion of TIL by enhancing DCs
activation and MHC I expression (73).

As a traditional therapy, chemotherapy is widely used in
advanced cancer treatment and functions as the auxiliary
therapy following surgery. Consistent with RT, chemotherapy
induces ICD characterized by CRT exposure, ATP, and HMGB1
secretion through collateral ER stress effects (93). Nevertheless, not
all chemotherapeutics can activate ICD, and chemotherapeutics
certified to have the ability of ICD induction include idarubicin,
epirubicin, doxorubicin, mitoxantrone, oxaliplatin, bortezomib,
and cyclophosphamide (94). Concurrent treatment with a
modified dose of FOLFIRINOX (mFX) and SBRT enhanced
antitumor efficacy and produced long-term systemic antitumor
Frontiers in Immunology | www.frontiersin.org 6
immunity. KCKO cells treated with mFX and SBRT were
subcutaneously injected into mice. The results showed that
percentage of tumor-free mice was 100% and enhanced ICD
was verified in tumor tissue featured by increased HMGB1
release and CRT exposure compared with single treatment.
Treatment with mFX and SBRT boosted the phagocytosis,
maturation, and cross-presentation of DCs and intratumoral
infiltration of CD8+ T cells (77).

Known as a molecular chaperone in the ER, binding
immunoglobulin protein (Bip) plays a key role in the unfolded
protein response to protect cells from denatured proteins and to
suppress apoptosis (95). It has also been reported that Bip
expression is associated with increased tumor progression (96).
Accordingly, Bip inhibition can inhibit tumor growth by enhancing
ER stress to elicit cDAMPs release or exposure to activate
antitumor immunity (78). The combination of Bip inhibition
and 10 Gy IR enhanced IR-induced ICD with increased CRT
exposure, ATP secretion, and HMGB1 release and promoted the
phagocytosis and maturation of DCs. As a vaccine, glioma stem
cells treated with Bip inhibition and IR could delay tumor
generation efficiently, facilitate the proliferation of CD4+ and
CD8+ T cells, and decrease Treg cell infiltration in vivo (78).
CONCLUSION AND PERSPECTIVES

IR can induce ICD in tumor cells to produce an adaptive
immune response mediated by CD8+ T cells. The irradiation
dosage and fractionation schedule for ICD induction have not
been determined, so future research should focus on proper dose
and fractionation to activate ICD efficiently, while keeping side
effects tolerable. Currently, there are few clinical studies on IR-
induced ICD and ICD verification remains indirect. Thus, the
number and function of immune cells activated by cDAMP
should be further detected. In addition, necroptosis and
ferroptosis have dual effects for regulating immune response;
thus, it is pivotal to induce these cell death forms to a beneficial
direction for cancer treatment.
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