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ABSTRACT

A common research task in COVID-19 studies often involves the prevalence estimation of certain medical out-

comes. Although point estimates with confidence intervals are typically obtained, a better approach is to esti-

mate the entire posterior probability distribution of the prevalence, which can be easily accomplished with a

standard Bayesian approach using binomial likelihood and its conjugate beta prior distribution. Using two re-

cently published COVID-19 data sets, we performed Bayesian analysis to estimate the prevalence of infection fa-

tality in Iceland and asymptomatic children in the United States.
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INTRODUCTION

Many COVID-19 studies are interested in estimating the prevalence

of certain medical outcomes of interest. Typically, the prevalence

was reported as a point estimate accompanied by a 95% confidence

interval (95% CI). For example, in a study recently published by

Gudbjartsson et al,1 the authors estimated the prevalence of

COVID-19 deaths in Iceland, obtaining the infection fatality risks of

0.1% (95% CI 0.0–0.3%), 2.4% (95% CI 0.6–6.2%), and 11.2%

(95% CI 3.6–24.0%) for those 70 years old or younger, those be-

tween 70 and 80 years of age, and those older than 80, respectively.

In another recent study published by Sola et al,2 the authors esti-

mated the prevalence of infected children without any COVID-19

symptoms for multiple regions in the United States, showing a

pooled asymptomatic prevalence of 0.65% (95% CI 0.47–0.83%).

There are three main limitations with the traditional biostatisti-

cal methods used to obtain the above estimations. First, the above

studies only obtained point estimates for the prevalence inferred

from the available data. Although point estimates may be the most

likely values of the unknown prevalence, values other than the point

estimates may also have a non-negligible high probability. Since

there always exists uncertainty associated with any inferred values

for prevalence, the uncertainty should be ideally measured by a

probability distribution that assigns a precise probability to every

possible value of the unknown prevalence (ie, values with higher
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likelihood get higher probability). Second, even though 95% CIs

were reported, it is important to note that 95% confidence intervals

do not represent a range of values with a 95% probability in con-

taining the point estimates.3 Instead, 95% CIs are a range produced

by a statistical procedure that, in repeated sampling, has a 95%

probability of containing the true value of the unknown parameter.3

In other words, confidence intervals evaluate the reliability of the

statistical procedures rather than the parameters.4 In addition, confi-

dence intervals do not provide a probabilistic measurement of the

uncertainty associated with the possible values for prevalence. Since

no probability was assigned to any value within the range of the

confidence intervals, it is not possible to evaluate which value is

more likely than others. Third, the above estimations cannot incor-

porate prior existing knowledge of prevalence into the analysis,

which may be critical for obtaining accurate estimations when the

true prevalence is low and the available sample size is relatively

small.5 Therefore, we would like to advocate the use of Bayesian

methods for researchers who work in this important field for

COVID-19 research, as it enables them to overcome the above limi-

tations by deriving a probability for every possible value of the un-

known parameter of interest.

BAYESIAN MODELING

Two essential elements are required in any Bayesian model: (1) like-

lihood functions for describing the mathematical relationship be-

tween observed data and unknown parameters and (2) prior

probability distributions for unknown parameters. As mentioned

above, a common parameter of interest in COVID-19 studies is the

unknown prevalence of certain medical outcomes, for example, the

prevalence of death or asymptomatic status in people who were

infected by the SARS-CoV-2 virus. Let h, y, and N denote the un-

known prevalence, the observed number of medical outcomes of in-

terest (eg, the number of death or asymptomatic infection), and the

total sample size, respectively. The mathematical relationship

among h, y, and N can be described with the following binomial

likelihood function:6

y � Binomial ðh;NÞ (1)

In Eq. (1), only h is the unknown parameter, whose possible val-

ues are typically modeled using a beta probability distribution:6

h � Beta ða;bÞ (2)

The beta distribution in Eq. (2) has two shape parameters, a and

b, whose values represent different degrees of prior knowledge or

belief on the likely values of h. In COVID-19 studies, researchers are

typically faced with no prior data to derive informative prior proba-

bility distributions. In that case, both a and b can be set to 1 as a flat

noninformative prior distribution for h, which essentially means

that h has an equal chance to be any value between 0 and 100%.

Based on the likelihood function and prior probability distribu-

tion, a probability distribution for the unknown parameters (called

posterior probability distribution in Bayesian terminology) is de-

rived either analytically or sampled through Markov chain Monte

Carlo (MCMC) techniques.6 In reality, many Bayesian models do

not have an analytical solution and thus require specialized software

for MCMC sampling (eg, WinBUGS,7 OpenBUGS,8 JAGS,9 Stan10).

However, for the prevalence estimation in many COVID-19 studies,

the posterior probability distribution can be easily derived analyti-

cally. Specifically, beta prior distributions have a special mathemati-

cal relationship with binomial likelihoods (beta distributions are

called conjugate priors for binomial likelihoods),6 so that the poste-

rior distribution for h is also a beta distribution with the two shape

parameter values updated as (aþ y) and (bþN � y), respectively.

APPLICATION TO COVID-19 DATA

We have applied the above binomial and beta model to perform

Bayesian analysis on two recently published COVID-19 data sets

(Table 1). Since we did not have any prior knowledge on the infec-

tion fatality rate or the asymptomatic prevalence, we used a nonin-

formative beta prior (ie, both its shape parameters, a and b, were set

to the value of 1). We then plugged in the necessary numbers to cal-

culate the posterior distributions by updating the parameters of the

beta distributions (Table 1). For example, for the age group 0–70

years old in Iceland, there were three deaths (y) out of a total of

3012 infections (N), so the posterior probability distribution of the

infection fatality risk for this age group is beta(3þ1, 1þ3012 � 3).

Similarly, out of a total of 15 311 infected children (N) in the West

region of United States, 120 were asymptomatic (y), so the posterior

distribution for the prevalence of asymptomatic children in the West

region of U.S. is beta(1þ120, 1þ15 311 � 120).

After obtaining the posterior distributions (ie, the beta distribu-

tions with updated parameters), we can visualize the distributions

by randomly sampling from them and plotting the samples. Figures 1

and 2 depict the posterior distributions for infection fatality rates in

Iceland and the prevalence of asymptomatic children in the United

States, respectively, which provide a complete probabilistic land-

scape for those parameters. Besides plotting, the posterior distribu-

tions are also often characterized by summary statistics, for

Table 1. Bayesian analysis of two published COVID-19 data sets

Study

Age groups

(years old)

Death (y) Infection (N) Prior

Beta(a, b)

Posterior

Beta(aþ y, bþN � y)

Posterior median

(95% credible interval) (%)

Infection fatality rates in Iceland1 0–70 3 3012 Beta(1) Beta(4, 3010) 0.12 (0.04–0.29)

70–80 3 128 Beta(1) Beta(4, 126) 2.84 (0.85–6.65)

>80 4 38 Beta(1) Beta(5, 35) 11.87 (4.30–24.22)

Study Regions ASX (y) Infection (N)

Prior

Beta(a, b)

Posterior

Beta(a1y, b1N 2 y)

Posterior median

(95% credible interval), %

Asymptomatic (ASX) children in U.S.2 West 120 15311 Beta(1) Beta(121, 15192) 0.79 (0.66 - 0.94)

Midwest 40 5217 Beta(1) Beta(41, 5178) 0.78 (0.56 - 1.04)

South 49 8354 Beta(1) Beta(50, 8306) 0.59 (0.44 - 0.78)

Northeast 41 4159 Beta(1) Beta(42, 4119) 1.00 (0.73 - 1.33)
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Figure 1. The posterior probability densities of infection fatality rate for different age groups in Iceland: (A) 0–70, (B) 70–80, and (C) >80.

Figure 2. The posterior probability density of the prevalence of asymptomatic children in four different US regions: (A) West, (B) Midwest, (C) South, and (D)

Northeast.
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example, medians and 95% credible intervals (Table 1). It is impor-

tant to note that contrary to confidence intervals, credible intervals

represent the likely ranges of the true values of the unknown param-

eter.6 We provided an example R11 programming script (Supple-

mentary File S1) for plotting the posterior distributions and

calculating the summary statistics. Although our current estimations

were based on noninformative prior probability distributions for

prevalence, informative priors can be used if relevant information is

available. In fact, our current estimates can become informative pri-

ors for future updates using the same Bayesian framework.

DISCUSSION

Bayesian analyses are often perceived as complicated. It is true that

applying Bayesian analyses may require highly customized modeling

procedures. For example, we have recently published COVID-19 re-

lated studies using Bayesian approaches,12,13 which required (1) de-

veloping customized likelihood functions and (2) the estimation of

the posterior distributions by MCMC. However, as illustrated above

via the reanalysis of the two published COVID-19 data sets, estimat-

ing prevalence can be easily achieved using a simple Bayesian model

based on binomial likelihood and its beta conjugate prior, which is

mathematically straightforward and well applicable for prevalence

estimation in real-world data analysis. As researchers around the

world are gathering more and more COVID-19 data for estimating

the prevalence of various medical outcomes, we hope that Bayesian

approaches will be widely utilized. In our own experience, the pre-

sented Bayesian model is a stepping stone for beginners to appreciate

the power of Bayesian approaches before learning more complicated

models (eg, Bayesian hierarchical modeling) and computational

techniques (eg, MCMC).

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American Medical Infor-

matics Association online.
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