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Background. Ovarian cancer (OC) is a malignancy exhibiting high mortality in female tumors. Glycosylation is a posttranslational
modification of proteins but research has failed to demonstrate a systematic link between glycosylation-related signatures and
tumor environment of OC. Purpose. This study is aimed at developing a novel model with glycosylation-related messenger
RNAs (GRmRNAs) to predict the prognosis and immune function in OC patients. Methods. The transcriptional profiles and
clinical phenotypes of OC patients were collected from the Gene Expression Omnibus and The Cancer Genome Atlas
databases. A weighted gene coexpression network analysis and machine learning were performed to find the optimal survival-
related GRmRNAs. Least absolute shrinkage and selection operator regression (LASSO) and Cox regression were carried out to
calculate the coefficients of each GRmRNA and compute the risk score of each patient as well as develop a prognostic model.
A nomogram model was constructed, and several algorithms were used to investigate the relationship between risk subtypes
and immune-infiltrating levels. Results. A total of four signatures (ALG8, DCTN4, DCTN6, and UBB) were determined to
calculate the risk scores, classifying patients into the high-and low-risk groups. High-risk patients exhibited significantly poorer
survival outcomes, and the established nomogram model had a promising prediction for OC patients’ prognosis. Tumor purity
and tumor mutation burden were negatively correlated with risk scores. In addition, risk scores held statistical associations
with pathway signatures such as Wnt, Hippo, and reactive oxygen species, and nonsynonymous mutation counts. Conclusion.
The currently established risk scores based on GRmRNAs can accurately predict the prognosis, the immune
microenvironment, and the immunotherapeutic efficacy of OC patients.

1. Introduction

Ovarian cancer (OC) is one of the most common gynecolog-
ical neoplasms with the fourth highest incidence and third
highest mortality in the world [1]. Consecutive ovulation,
low immunity, hormonal fluctuations, and aberrant reactive
oxygen production can contribute to the pathogenesis [2]. In
addition, the tumorigenesis of OC is reported to be highly
associated with BRCA1 dysfunction [3, 4]. Since ovaries
are located in deep pelvic cavities, it is difficult to detect
OC in the early stages [5]. Consequently, almost 70% of
OC patients have already progressed to advanced stages with

distant metastases present at the time of diagnosis [6, 7].
Despite advances in OC therapies, the 5-year survival rate
for OC is still less than 50%, which is significantly lower than
the 85% rate for breast cancer [8]. Approximately 70% of
OC individuals will develop a recurrence after surgery, and
about 75% of high-grade serous ovarian cancer (HGSOC)
patients will experience chemoresistance against cisplatin,
oxaliplatin, carboplatin, etc. [9, 10]. Identifying novel risk
factors that regulate tumorigenesis, migration, and prolifera-
tion will contribute to early diagnosis and personalized
interventions for OC treatment. Hence, it is imperative to
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explore the biological pathologic mechanisms and develop a
reliable prognostic prediction model for OC patients.

Glycosylation is a posttranslational modification of pro-
teins; the main types of which are N-linked and O-linked
occurring in the endoplasmic reticulum (ER) and Golgi

complex, respectively; it demonstrates complicated mecha-
nisms due to its variations based on the expression of glyco-
sylating enzymes [11]. The transfer of N-acetyl glucosamine
phosphate to the dolichol phosphate can result in N-linked
glycosylation, which is mediated by various
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Figure 1: The workflow of this study.
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Figure 2: Continued.
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glycosyltransferases in the ER [12]. O-linked glycosylation is
more complex than the N-linked one for the unknown initi-
ation emerging from the consensus sequence [12]. The O-
linked modification pattern takes place in the intracellular
nuclear and cytoplasmic compartments and does not elon-
gate to create complex structures like other types of glycosyl-
ation [13]. It has been reported that glycosylation plays a
regulatory role in cell differentiation, neoplastic progression,
and immune control of malignant tumors [14, 15]. Aberrant
glycosylation has been considered an important indicator of
immune modulation induced by tumor and metastasis since
it can generate antigens as targets for tumor-specific T cells
[16, 17]. Several lines of evidence from clinical practice of
OC suggest that glycosylation changes in proteins such as
immunoglobulin G, α1-acid glycoprotein, and ceruloplas-
min. All of this contributes to promoting or obstructing
tumorigenesis and invasion [18, 19].

There are also emerging prognostic models for OC with
biomarkers associated with post-translational regulatory
mechanisms such as alternative splicing and N6-

methyladenosine modification [20, 21]. However, as an
important hallmark among over 300 protein posttranscrip-
tional modifications [22], only a few studies regarding glyco-
sylation in OC have been reported. A translational study
revealed that the expression levels of 210 glycosyltransferase
genes could distinguish six cancer types, including breast,
ovarian, glioblastoma, kidney, colon, and lung [23]. Pan
et al. identified novel subtypes of HGSOC with
glycoproteomics-based signatures for clinical prediction
using consensus clustering and verified that the variation
in glycan types would coordinate with tumor heterogeneity
based on proteomics [24]. Recently, a prognostic model
based on glycosylation-related genes for proficient mismatch
repair in colorectal cancer has been proposed, from which it
can be inferred that glycosylation is capable of serving as a
hallmark for prognostic prediction [25]. Nonetheless, the
mentioned research has failed to demonstrate a systematic
link between glycosylation-related signatures and tumor
environment of OC.
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Figure 2: Discovery of prognostic GRmRNAs by WGCNA. (a) The distribution and trends of scale free topology model fit and mean
connectivity along with soft threshold. (b) The clustering of genes among different modules by the dynamic tree cut and merged
dynamic method. The gray modules represent unclassified genes. (c) The average correlations among multiple modules and clinical
features. The colors of the cells indicate the strength of the correlation, and the numbers in parentheses represent the P value of the
correlation test. (d) 19 overlapped GRmRNAs from the glycosylation-related gene list and WGCNA were obtained. (e) Significant
survival differences between the high- and low-expression groups of GRmRNAs by log-rank test (GRmRNAs: glycosylation-related
mRNAs; WGCNA: weighted gene coexpression network analysis).
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With these inadequacies and challenges of OC research,
this research is aimed at investigating the clinicopathologic
features of glycosylation-related messenger RNAs
(GRmRNAs) for the prognostic and tumor microenviron-
ment (TME) prediction of patients with OC. Based on the
established risk prognostic model, the associations with risk
scores, tumor immune-infiltration, and hallmark signatures
were analyzed. Furthermore, we also explore the correlations
between risk subtypes and mutation characteristics. These
findings were based on transcriptomics to provide a novel
insight into the role of glycosylation in ovarian cancer and
contribute to precision treatment.

2. Materials and Methods

2.1. Data Acquisition and Processing. All the datasets
included in this study were available online to the public.
The transcriptional RNA sequencing (RNA-seq) data of
patients with ovarian cancer, including 427 samples, clinico-
pathologic data, and simple nucleotide variation (SNV)
information were retrieved from The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/). The RNA-seq pro-
file in fragments per kilobase million (FPKM) was processed
into log2-transformed transcripts per million (TPM).
Another cohort of gene expression data of 101 aggregated
samples and corresponding clinical characteristics were
obtained from GSE63885 [26] in the Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) data-
base. A total of 636 glycosylation-related (GR) genes (Sup-
plementary Table 1) were downloaded from the Molecular
Signatures Database (MSigDB, http://www.gsea-msigdb
.org/gsea/msigdb/), a web-based assembling of annotated
gene sets for biologic function analysis. The levels of tumor
immune-infiltration estimated by different methods
containing CIBERSORT, CIBERSORT-ASB, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC were extracted from
the TIMER (http://timer.cistrome.org) [27] web server for
TME investigations.

2.2. Identification of Prognostic GRmRNAs. A weighted gene
coexpression network analysis (WGCNA) [28] was per-
formed on GSE63885 based on its expression levels and phe-
notypes with follow-up time, vital status, tumor grade, FIGO
stage, tumor size, and clinical status (Supplementary
Table 2) to screen for hub genes. We quantified the
goodness of fit by using a scale-free topology model and
integrating it with mean connectivity to determine the
optimal soft threshold. Multiple modules were detected
automatically at first, and then, the topological overlap
measure was calculated to estimate the adjacencies and

Table 1: Clinicopathologic information of training set and test set.

Covariates Type TCGA (n = 375) Training (n = 208) Test n = 167ð Þ P

Vital status
Alive 146 (38.93%) 80 (38.46%) 66 (39.52%) 0.834a

Dead 229 (61.07%) 128 (61.54%) 101 (60.48%)

Age
≤60 206 (54.93%) 105 (50.48%) 101 (60.48%) 0.053a

>60 169 (45.07%) 103 (49.52%) 66 (39.52%)

Grade

G1 1 (0.27%) 1(0.48%) 0 (0%) 0.577b

G2 42 (11.2%) 20 (9.62%) 22 (13.17%)

G3 321 (85.6%) 181 (87.02%) 140 (83.83%)

G4 1 (0.27%) 1 (0.48%) 0 (0%)

Unknown 10 (2.67%) 5 (2.4%) 5 (2.99%)

Stage

Stage I 1 (0.27%) 1 (0.48%) 0 (0%) 0.451b

Stage II 22 (5.87%) 13 (6.25%) 9 (5.39%)

Stage III 292 (77.87%) 158 (75.96%) 134 (80.24%)

Stage IV 57 (15.2%) 33 (15.87%) 24 (14.37%)

Unknown 3 (0.8%) 3 (1.44%) 0 (0%)
aPearson’s chi-square test; bFisher’s exact test.

Table 2: The quantified importance of prognostic glycosylation-
related messenger RNAs by machine learning.

LASSO Ridge XGBoost
Random
forest

AdaBoost

ALG8
0.255
(3)

0.276
(3)

95 (8) 0.108 (6) 0.088 (5)

CSNK1D
0.025
(8)

0.065
(8)

112 (5) 0.141 (1) 0.225 (1)

DCTN4
0.587
(1)

0.609
(1)

120 (3) 0.113 (5) 0.169 (2)

DCTN6
0.406
(2)

0.442
(2)

100 (7) 0.139 (2) 0.161 (3)

F8
0.108
(6)

0.124
(6)

114 (4) 0.117 (3) 0.125 (4)

FUCA1
0.113
(5)

0.134
(5)

88 (9) 0.090 (8) 0.027 (9)

NAPG
0.177
(4)

0.217
(4)

135 (2) 0.076 (9) 0.086 (6)

UBA1
0.022
(9)

0.061
(9)

148 (1) 0.101 (7) 0.069 (7)

UBB
0.089
(7)

0.092
(7)

106 (6) 0.115 (4) 0.049 (8)

The number in the parentheses represented the rankings of weight.
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similarities among different modules subjected to average
hierarchical clustering by the measurement of Euclidean
distance. Namely, topologically similar modules were
combined into a neocluster. A correlation exploration was
performed to assess the correlations between module genes
and phenotypes. Modules with relatively strong positive
correlations with survival time and vital status were
selected. Then, overlapping genes of WGCNA and
glycosylation were identified for Kaplan-Meier (KM)
analysis. The optimal cutoff of each GRmRNA was
determined by the “survminer” package, and patients were
divided into the high- and low-expression groups. Only
significant signatures by the log-rank test were considered
to have prognostic implications and were enrolled in the
study. We then used five machine learning methods to
estimate the importance of survival associated with
GRmRNAs, including two linear models involving least
absolute shrinkage and selection operator (LASSO)
regression [29] and ridge regression [30], besides a
nonlinear model (XGBoost) [31], an ensemble learning
method (random forest) [32], and a boosting algorithm
(AdaBoost) [33]. GRmRNAs with relatively higher weight
were considered to contribute to the prognosis of OC
patients.

To further determine the GRmRNAs responsible for the
prognosis and establish a prognostic risk model, we ran-

domly classified patients into a training set and a test set at
a ratio of 11 : 9 using the “caret” package [34], and the ran-
domness was verified by a chi-square test. The training set
was submitted to LASSO Cox regression to screen for opti-
mal GRmRNAs (OGRmRNAs) at the least of partial likeli-
hood deviance. Based on the regression coefficients and the
expression levels of OGRmRNAs, the formula for risk scores
could be formed as

Risk scorej = 〠
n

i=1
αikij, ð1Þ

where αi represents the regression coefficient of the ith gene,
and kij represents the expression of the ith gene in the jth
sample. Patients were then stratified into the high- and
low-risk groups at the median cutoff of risk scores. The dif-
ferences between the two risk subtypes were estimated by the
log-rank test in both the training and test sets.

2.3. Estimation of Model Effectiveness and Establishment of
Combined Diagnosis. The differences in age, stage, and grade
between risk subtypes were estimated by a chi-square test.
Principal component analysis (PCA) and t-distribution sto-
chastic neighbor embedding (tSNE) algorithms were utilized
to evaluate the ability of discrimination in the developed
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Figure 3: Screening for OGRmRNAs. (a) Profiles of LASSO regression regarding partial likelihood deviance, lambda. The lines indicate the
95% confidence interval of the regression, and the dotted line represents the optimal number of variables. (b) The association with regression
coefficients and log-transformed lambda. Each line represents a variable. (c, d) Survival differences between the high- and low-risk groups in
the training set and test set. The table below the survival curves represents the number of patients alive in each year. (e, f) The risk curves
and the distribution of patients in the training set and test set. Samples were ordered according to the risk scores from low to high. The dots
in the lower part represent the distribution of cases. (OGRmRNAs: optimal glycosylation mRNAs; LASSO: least absolute shrinkage and
selection operator).

7Oxidative Medicine and Cellular Longevity



Risk
Age⁎⁎
Grade
Stage

Risk
High
Low

Age⁎⁎
<= 65
> 65

Grade
G1
G2
G3
G4

Stage
Stage I
Stage II
Stage III
Stage IV

(a)

Lo
w

 ri
sk

H
ig

h 
ris

k

D
ea

d
A

liv
e

> 
65

<=
 6

5

Risk Status Age

(b)

−3

−2

−1

0

1

2

−4 −2 0 2
PC1

PC
2

Risk
High
Low

(c)

−20

0

20

−20 −10 0 10 20

tSNE1

tS
N

E2

Risk
High
Low

(d)

G1
G2

G3

G4

Grade
High

Risk⁎⁎⁎

Stage II

Stage III

Stage IV

Stage I

Stage⁎

Age⁎⁎
0 20 40 60 80 100

Points

Total points

50 60 70 80 90 100 110 120 140130 150

0.40.150.040.010.002
Pr (Time < 1) 

0.920.40.10.020.004
Pr (Time < 3) 

0.9980.850.40.10.020.004
Pr (Time < 5) 

128

0.0385

0.189

0.415

9030

Low

(e)

0.00

0.05

0.10

0.00 0.03 0.06 0.09
Risk threshold

N
et

 b
en

efi
t

Risk
Age
Grade

Stage
All
None

(f)

Figure 4: Continued.
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model. To determine the independent prognostic value of
the model, we conducted a univariate and multivariate Cox
proportional hazard regression with age, stage, grade, and
risk scores. Furthermore, a nomogram was created to predict
the probability of 1-, 3-, and 5-year survival of OC patients.
A decision curve analysis (DCA) was performed to ascertain
the net benefits of the prognostic risk model in clinical
practice.

We also estimated the expression differences of
OGRmRNAs between normal tissues and tumor tissues in
OC with data retrieved from UCSC Xena (http://xena.ucsc
.edu/) in TPM formation. To reveal the stemness feature,
the mRNA expression-based stemness index (mRNAsi)
was computed using one-class logistic regression with a
machine learning algorithm [35] and compared between
the high- and low-expression groups of OGRmRNAs at the
median cutoff. Coexpressed genes with OGRmRNAs were
determined with a threshold of 0.7, and they were enrolled
in Gene Ontology (GO) containing biological processes, cel-
lular components, and molecular functions, and Kyoto
Encyclopedia of Genes and Genomes (KEGG) functional
enrichment analysis. Single-sample gene set enrichment
analysis (ssGSEA) [36] was employed to quantify the corre-
lations between OGRmRNA expression levels and tumor

immune infiltrating. Moreover, GSEA was performed with
the gene matrix of “c2.cp.kegg.v7.4.symbols.gmt” to identify
the significantly enriched pathways in the high- and low-risk
groups, respectively, in the application GSEA (version 4.0.3)
downloaded from MSigDB, and we cross-checked the results
with the “clusterProfiler” package [37].

2.4. Investigations on the Correlation of TME and Risk
Scores. TME has important implications for the regulatory
mechanisms of immune cells. We mainly investigated the
relationships between prognostic risk and the depth of
immune-infiltration. The TIMER database was used to
explore the correlations between risk scores and immune
responses quantified by six methods. The differences in
immune function and infiltration of leukocytes between
the high- and low-risk groups were estimated by performing
the ssGSEA [36] algorithm. In addition, the Pearson correla-
tion coefficients between risk scores and distinct tumor
immune infiltrations as well as the proportion of infiltrations
in each sample with statistical significance were calculated
by the CIBERSORT algorithm (1000 permutations). More-
over, the Wilcoxon rank-sum test was applied to compare
the expression differences of typical immune checkpoint
molecules between the two risk subtypes. The information
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Figure 4: Estimation of model effectiveness and a nomogram prediction. (a) Different stratifications of clinical phenotypes in the high- and
low-risk groups. (b) Connections among risk subtypes, vital status, and age stratifications. (c, d) Principal component analysis and t
-distribution stochastic neighbor embedding for sample discrimination in the first two dimensions. (e) Nomogram for 1-, 3-, and 5-year
overall survival prediction. The red line shows an example of how to predict the prognosis. (f, g) DCA of 1-year and 3-year survival
probability. The upper lines indicate more net benefit (∗∗∗P < 0:001, ∗∗P < 0:01, and ∗P < 0:05).

Table 3: Independent analysis of all patients.

Characteristics
Univariate Multivariate

HR 95% CI P HR 95% CI P

Age 1.024 1.010-1.039 0.001 1.021 1.006-1.036 0.006

Grade 1.186 0.784-2.056 0.543 1.357 0.767-2.401 0.295

Stage 1.078 0.761-1.527 0.672 1.140 0.788-1.649 0.486

Risk score 1.603 1.163-2.208 0.004 1.540 1.101-2.154 0.012

HR: hazard ratio; CI: confidence interval.
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on immune subtypes of OC was obtained from Thorsson’s
study [38], in which the overlapping immune subtypes
included C1 (wound healing), C2 (IFN-gamma dominant),
and C4 (lymphocyte depleted). The differences in risk scores
among the three subtypes were measured. In addition, to
quantify the relationship between tumor purity and risk
scores, we employed “estimation of stromal and immune
cells in malignant tumors using expression data” (ESTI-
MATE) algorithm [39] including three types of scores:
immune score, stromal score, which represented the nontu-
mor proportion, and their addition consisting of the ESTI-
MATE score.

2.5. Exploration of Risk Subtypes and Molecular
Characteristics. The difference in tumor mutational burden
(TMB) between the high- and low-risk groups was analyzed.
Furthermore, we collected several important pathway signa-
tures potentially interacting with OC, including Wnt, Hippo,
Hedgehog, Notch, TGF-β, PI3K/Akt, EMT, JAK_STAT,
interleukin-8, NF-κB, interferon, and ROS (Supplementary
Table 3). Gene set variation analysis (GSVA) was adopted
to calculate the enrichment score, which was then used to
quantify the connection between risk scores and pathways.
The landscape of top mutated genes in the two risk groups
was shown with their mutation types and frequencies by
maftools. Afterward, multiple mutation types were
stratified into two novel statuses, including
nonsynonymous mutation and synonymous mutation [40].

The changes between the low- and high-risk scores were
examined by correlation coefficients and different tests.

2.6. Statistical Analysis. All statistical tests and bioinformat-
ics analysis were conducted by R (versions 3.6.3 and 4.1.1),
including the two-sample Wilcoxon rank-sum test and
Kruskal-Wallis for continuous data, Pearson chi-square test
and Fisher’s exact test for categorical data, log-rank test for
KM analysis, and (LASSO) Cox proportional hazard regres-
sion to estimate the hazard ratios (HRs) and 95% confidence
interval (CI). For correlation explorations, the Pearson cor-
relation coefficients were used. Machine learning predictive
models were developed by Python (version 3.8.0) libraries
“XGBoost (version 1.2.1)” and “sklearn (version 0.22.1),”
technical details of which have been described previously.
A two-tailed P < 0:05 for all unadjusted comparisons and
an adjusted P < 0:05 for functional enrichment analysis were
considered statistically significant.

3. Results

3.1. Identification of Prognostic GRmRNAs. The workflow of
this study is shown in Figure 1. In WGCNA, we determined
the soft threshold of 6 by calculating the scale-free model fit
and mean connectivity (Figure 2(a)). Different module genes
in the dynamic tree cut were reclustered through a topolog-
ical similarity strategy, where genes were assembled into
fewer modules as shown in Figure 2(b). The relationships
between modules and clinical phenotypes implied that the
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Figure 5: Validation of OGRmRNAs. (a) Expression changes of GRmRNAs between normal and tumor tissues. The lines on the bars
indicate the values between the median plus and minus the standard error. (b–e) Associations between OGRmRNAs and immune-
infiltrating levels. The color represents the significance. The redder, the more significant. The circle size represents the correlation
coefficients (OGRmRNAs: optimal glycosylation mRNAs; ∗∗∗P < 0:001).
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modules in steel blue (r = 0:33, P < 0:001), brown4 (r = 0:26,
P = 0:009), and light steel blue1 (r = 0:28, P = 0:004) had rel-
atively strong correlations with follow-up time. The red
module had a slightly positive correlation with survival sta-
tus (Figure 2(c)), genes which were used to be analyzed in
the following steps. As shown in Figure 2(a), a total of 19
overlapped genes from the glycosylation-related gene list
and WGCNA were obtained. By performing KM analysis,
9 prognostic GRmRNAs, including ALG8 (P = 0:004),
CSNK1D (P = 0:037), DCTN4 (P = 0:008), DCTN6
(P = 0:005), F8 (P = 0:013), FUCA1 (P = 0:010), NAPG
(P = 0:014), UBA1 (P = 0:033), and UBB (P = 0:004) exhib-
ited statistical significance in survival differences at the opti-
mal cutoff (Figure 2(e)).

3.2. Determination of OGRmRNAs and Validation. The
detected randomness of the split for the training set and test
set is shown in Table 1. LASSO regression, ridge regression,
XGBoost, random forest, and AdBoost were utilized to sort
the importance of weights in the prognosis based on 9

survival-related GRmRNAs. As shown in Table 2, ALG8,
DCTN4, DCTN6, F8, NAPG, and UBB held greater weight
and they were included to develop the prognostic risk model.
A LASSO Cox regression was performed and four OGRmR-
NAs were selected depending on the optimal value of
lambda (Figures 3(a) and 3(b)). Hence, the risk scores could
be calculated according to the formula:

Risk score = −0:1277 × E ALG8ð Þ + 0:1256 × E DCTN4ð Þ − 0:1528 × E DCð
ð2Þ

where Eð∙Þ represents the expression of OGRmRNAs.
Patients were then separated into the high-risk and low-
risk groups at the median value of their risk scores (Supple-
mentary Table 4). KM analysis revealed that OC patients
experienced significantly different survival outcomes in
both the training set (P < 0:001, Figure 3(c)) and the test
set (P = 0:014, Figure 3(d)). Risk curves also indicated that
patients with low risk had better survival outcomes
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Figure 6: Biological functions and TME landscape. (a) Significant enriched pathways in the high- and low-risk groups. The extremum
located in the left part indicates a positive association between risk scores and pathway activity, and vice versa. (b) The relationships of
risk and tumor immune-infiltrations according to the evidence from the TIMER database. (c, d) The differences of tumor infiltrating of
16 cell types and score of immune pathways between the risk groups by ssGSEA. The lines in the boxes represent the median values.
The black dots represent outliers. Asterisks indicate significance. (e) The associations between risk and immune-infiltrations by
CIBERSORT algorithm. (f) Proportions of multiple tumor-infiltrating cells (TME: tumor microenvironment; ssGSEA: single-sample gene
set enrichment analysis).
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(Figures 3(e) and 3(f)). The chi-square test illustrated that
old patients had significantly higher risk scores than those
under 65 years of age (P < 0:01, Figure 4(a)). The Sankey
diagram showed the degree of connection among risk
subtypes, survival status, and age that old patients were
more likely to have worse outcomes (Figure 4(b)). PCA
and tSNE demonstrated that patients were differentiated
well in two dimensions based on the risk scores
(Figures 4(c) and 4(d)), which indicates that the model has
a promising ability to stratify risk subtypes. By performing
Cox regression, we found that age
(hazard ratio ðHRÞ = 1:021, 95%confidence interval ðCIÞ =
1:006-1.036, P = 0:006) and risk scores (HR = 1:540, 95%CI
= 1:101-2.154, P = 0:012) could serve as independent
prognostic factors (Table 3). A nomogram model was
established to predict 1-, 3-, and 5-year survival, where age

(P < 0:01), stage (P < 0:05), and risk (P < 0:001)
demonstrated significance (Figure 4(e)). The DCA curves
analysis nomogram was performed, implying that the
combined model of 1-year and 3-year survival probability
showed the optimal net benefit compared to a single
indicator (Figures 4(f) and 4(g)).

3.3. Validation of OGRmRNAs. The Wilcoxon rank-sum test
showed that ALG8 (P < 0:001) had a higher expression level
in tumor tissues compared with normal tissues, while
DCTN4 (P < 0:001), DCTN6 (P < 0:001), and UBB
(P < 0:001) had lower expression levels in tumor tissues
(Figure 5(a)). According to immune-infiltrating results,
OGRmRNAs presented significantly positive correlations
with immune cells such as helper T cells (Th, r = 0:15, P =
0:005), central memory T cells (Tcm, r = 0:36, P < 0:001),
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Figure 7: Molecular features in risk stratification. (a) The differences of expression levels of immune checkpoints between the high- and
low-risk subtypes. The lines inside the boxes represent the median values, and the lines outside the boxes indicate the 95% confidence
interval. (b) Relationships between immune subtypes and risk scores. The short horizontal lines represent the median values, and the
vertical lines indicate the 95% confidence interval. (c) The correlation between tumor purity and risk scores. The blue lines represent
fitted lines, and the gray area represents the 95% confidence interval. The mountain graphs at the top and stuck to the right represent
the density of distribution. (d) TMB difference in the high and low groups. The lines inside the boxes represent the median values, and
the lines outside the boxes indicate the 95% confidence interval. The black dots show the outliers. (e) Correlations of risk scores and
enriched pathways. The circle in the thermogram shows the correlations among the signaling pathways. Blue represents positive
correlations, while red indicates negative ones.
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and gamma delta T cells (Tgd, r = 0:15, P = 0:004) but
showed negative connections with plasmacytoid dendritic
cells (pDC, r = −0:17, P = 0:001), cytotoxic cells (r = −0:18,
P = 0:001), effective memory T cells (Tem, r = −0:18, P <
0:001), and Tcm (r = −0:11, P = 0:037) shown in
Figures 5(b)–5(e). According to the KW test, overexpressed
ALG8 exhibited significantly higher mRNAsi, whereas
upregulated DCTN4 presented lower mRNAsi (P < 0:001,
Supplementary Figure 1A-B). And all the OGRmRNAs
exhibited significantly different mRNAsi scores among the
low-expression groups, high-expression groups, and
normal tissues (P < 0:001, Supplementary Figure 1A-D). A
total of 225 coexpressed protein coding genes were
determined for functional enrichment analysis
(Supplementary Table 5). GO terms regarding the
metabolic process, catabolic process, nuclear movement
(Supplementary Figure 2A), and KEGG pathways of
spliceosome and RNA degradation (Supplementary
Figure 2B) demonstrated significance.

3.4. Biological Characteristics and TME Investigation. To
explore the biological functions, GSEA was performed in
the high- and low-risk groups, respectively. It demonstrated
that high-risk agents were enriched in the “phos-
phatidylinositol signaling system” while the low-risk genes
were significantly enriched in “oxidative phosphorylation”
and “proteasome” (Figure 6(a)). The results obtained from
the “clusterProfiler” of R foundation are provided in Supple-
mentary Table 6, which indicates that the high-risk group
appeared to inhibit pathways such as “ribosome,”
“systemic lupus erythematosus,” and “type I diabetes
mellitus” but no significant activated terms. The landscape
of antitumor immunity was investigated using expression
data of OC patients. As shown in Figure 6(b), tumor
immune infiltration levels between the high- and low-risk
groups were slightly different. It was notable that
macrophages, plasmacytoid dendritic cells, and CD4+ Th2,
etc. showed lower infiltration abundance in the high-risk

subtype, whereas mast cells had higher levels in the high-
risk subtype. Two distinctive patterns of immune
infiltrations could be observed in the high- and low-risk
groups by the Wilcoxon rank-sum test. Decreased levels of
tumor infiltration of major immune cells (Figure 6(c)) such
as CD8+ T cells (P < 0:01), macrophages (P < 0:01), Th1
cells (P < 0:001), and tumor infiltrating lymphocytes (TILs,
P < 0:01), also decreased levels of immune pathways
(Figure 6(d)) such as cytolytic activity (P < 0:001),
inflammation-promoting (P < 0:001), and coinhibitions of
T cells (P < 0:001) in the high-risk group were reported. By
performing the CIBERSORT algorithm and excluding
samples with no statistical significance, we found that risk
scores wielded negative correlations with almost all tumor
infiltrations (Figure 6(e)). The proportions of immune
infiltrations from 22 cell types in the two risk subtypes
were shown in a bar plot (Figure 6(f)).

3.5. Relationships between Molecular Features and Risk. We
compared several immune checkpoint expression levels
between the high- and low-risk groups by the Wilcoxon
rank-sum test (Supplementary Table 7). It revealed that
targets such as TIGIT (P < 0:05), TNFRSF25 (P < 0:001),
CD27 (P < 0:05), and CD70 (P < 0:05) exhibited significant
differences (Figure 7(a)). The KW test demonstrated that
patients in the C4 had higher risk scores than those in C1
and C2 (P = 0:006, Figure 7(b)). Tumor purity was
estimated by ESTIMATE scores, which is composed of
immune scores and stromal scores. The risk scores were
negatively associated with ESTIMATE scores (r = −0:1, P =
0:043) and immune scores (r = −0:15, P = 0:004), whereas
there was no statistical significance for stromal scores
(Figure 7(c)). TMB, a biomarker of immune checkpoint
inhibitor therapies, had different levels between the high-
and low-risk groups (P = 0:037, Figure 7(d)). In addition,
the high-risk group presented significantly activated
pathway signatures including Wnt (P < 0:001), Hippo
(P < 0:001), Hedgehog (P < 0:05), TGF-β (P < 0:001), and
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Figure 8: Mutation landscape. (a, b) The profiles of the top-25 mutated genes in the high-and low-risk groups. The upper bar shows the
total gene mutation amount and corresponding mutation types. The right bar shows the mutation frequency of the top 25 mutated
genes. (c–e) Associations of nonsynonymous mutation counts, synonymous mutation counts, all mutation counts, risk scores, and their
variations between the low- and high-risk groups. The red lines represent the fitted lines, and the gray area represents the 95%
confidence interval. The dots outside the boxes show the outliers (∗P < 0:05; ns: no significance).
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PI3K/Akt (P < 0:001) while inhibited signatures include NF-
κB (P < 0:001) and ROS (P < 0:05, Figure 7(e)).

3.6. Mutation Landscape Analysis. Furthermore, we exam-
ined the mutation profiles of risk. As shown in
Figures 8(a) and 8(b), TP53, TTN, and CSMD3 had the
highest mutation frequency with the most missense muta-
tion, followed by MUC16. Patients in the high-risk group
had a lower frequency of TP53 mutations. After classifying
different mutation types into nonsynonymous mutation
and synonymous mutation, we estimated their associations
with risk scores. It was illustrated that risk scores had a
slightly negative link with non-synonymous mutation
counts (r = −0:13, P = 0:039; Figure 8(c)), while risk scores
exhibited no significant linear correlations with synonymous
mutation counts and all mutation counts (Figures 8(d) and
8(e)).

4. Discussion

In this study, a total of four GRmRNAs, including ALG8,
DCTN4, DCTN6, and UBB, were selected for the develop-
ment of the prognostic risk model. The relationship between
glycosylation and ALG8 has been studied, particularly in
congenital disorders of glycosylation (CDG). The point
mutations or small deletions of ALG8 will lead to an unfa-
vorable prognosis [41]. It has been reported that ALG8
could perform as a variate of a prognostic model for gastric
cancer [42]. Amplified hotspots on 11q14.1 (NDUFC2,
ALG8, and USP35) led to poor prognosis in estrogen
receptor-negative breast cancer [43]. Our study found that
overexpressed ALG8 was located in OC tissues and was
associated with favorable survival outcomes. A similar result
for CXCL11 was also illustrated in colorectal cancer [44].
According to previous evidence and this study, we speculate
that ALG8 is correlated with a higher proportion of antitu-
mor immune cells, and a lower proportion of protumor
immune cells in OC. Nonetheless, further studies should
be performed.

A previous study has revealed that DCTN4 was upregu-
lated in colon adenocarcinoma and high expression was
associated with prolonged overall survival [45]. DCTN6
has high expression in low-grade glioma but it is associated
with unfavorable survival outcomes [46]. Conversely,
DCTN4 and DCTN6 were both observed to be downregu-
lated in tumor tissues of OC compared with adjacent tissues
in this study. Overexpressed DCTN4 was associated with
poor survival, while DCTN6 was correlated with a satisfac-
tory result for overall survival. The relevant results of UBB
were similar to DCTN6. However, to determine the role of
inhibition or promotion of cancer, analyzing the expression
levels is insufficient since more investigations to confirm the
biological functions should be undertaken. Subsequently,
LASSO Cox regression was used to compute the coefficients
of each gene mentioned above and develop a prognostic risk
system, which could be considered an independent prognos-
tic factor. High-risk patients had a significantly worse prog-
nosis than those in the low-risk group, and more individuals
over 65 years of age were from the high-risk group, which is

consistent with the previous findings [47]. The functional
enrichment exploration demonstrated that the high-risk
agents were enriched in the “phosphatidylinositol signaling
system.” Phosphatidylinositol-associated signaling pathways
play a vital role in tumor cell apoptosis, proliferation, inva-
sion, and metabolism [48, 49]. The genes in the low-risk
group were mainly enriched in “oxidative phosphorylation”
and “proteasome.” The oxidative phosphorylation pathway
in tumors and the tumor microenvironment is recognized
as a target for novel anticancer therapies. The multimeric
complexes of the oxidative phosphorylation pathway are tar-
gets for small-molecule inhibitors, which can inhibit metab-
olism, induce oxidative damage, and lead to cancer cell
death. It is indicated that strategies to interfere with oxida-
tive phosphorylation should be considered for the treatment
of ovarian tumors [50]. Meanwhile, proteasome activity has
been linked to tumor metastasis, and therapy based on inhi-
biting the proteasome and HDAC6 has been proposed as an
underlying strategy for OC treatment [51, 52]. Simulta-
neously, risk scores were positively correlated with Wnt,
Hippo, Hedgehog, TGF-β, and PI3K/Akt pathways. In con-
trast, risk scores demonstrated a negative correlation with
NF-κB and reactive oxygen species. These results may con-
tribute to studying the interplay between the signaling path-
ways and different risk subtypes of OC patients.

Recently, it has been verified that tumor cells avoid being
killed by immune cells with the aid of glycosylation in the
TME [53]. The explicit interaction of antigens with antibod-
ies is the foundation of the immune response. Glycosylated
antigen-specific antibodies are beneficial in cancer therapy
by augmenting immunity [54, 55]. To unravel the connec-
tion between glycosylation and TME of OC, we used multi-
ple methods to quantify the immune-infiltration levels of
leukocytes and the fraction of immune pathways. OC
patients of the high-risk group demonstrated increased neu-
trophils and mast cells, but the majority of cases showed
decreased cell types such as activated natural killer (NK)
cells, CD8+ T cells, Th1/2 cells, and macrophages. The
results of activated NK cells and macrophages were consis-
tent with previous studies [56, 57] but showed contrary con-
sequences of CD8+ T cells and Th1/2 cells in OC TME [58].
A possible explanation leading to different predictions might
be that the transcriptional data enrolled in this study was in
TPM form, whereas the earlier finding used the FPKM
expression matrix for ssGSEA explorations. Moreover,
decreased tumor-infiltrating lymphocytes (TILs) were pre-
sented in the high-risk group. This is also compatible with
an earlier observation, which showed that OC patients
engaged with more TILs experienced a better prognosis
[59]. Thus, the treatment of OC with autologous TILs is cur-
rently being applied in several centers as an immunothera-
peutic approach.

To further investigate the efficiency of immunotherapy,
we conducted an analysis of immune checkpoints and
TMB. Low-risk patients had increased levels of immune
checkpoints such as TIGIT, CTLA-4, and LAG-3. TIGIT is
usually expressed by T cells and NK cells. Data from several
sources has identified that the CD155/TIGIT and DNAM-1/
TIGIT/CD96 axes play important roles in OC TIGIT-based
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immunotherapy and overexpressed TIGIT would be a com-
pelling indicator for promising OC treatment [60, 61].
Results from other studies revealed that high expressions of
CTLA-4 and LAG-3 were associated with better survival
outcomes after systemic treatment, which broadly supported
the work [62]. Furthermore, TMB had a negative correlation
with risk scores. Therefore, it could conceivably be assumed
that low-risk OC patients might benefit from immune
checkpoint blockade therapies.

However, we recognized several limitations in this study.
Firstly, the data was not prospective and sufficient because it
was obtained from existing public online cohorts. We did
not conduct validation experiments to reveal the links
between risk scores and immune fraction. The supporting
information on transcriptional expression and clinicopatho-
logic characteristics from the real world is still required. Sec-
ondly, the intrinsic weakness of merely considering a single
hallmark to construct a model was inevitable since various
prognostic signatures in OC have been excluded. However,
based on the distinct validation to confirm the effectiveness
of prognostic prediction for OC, the model was acceptable
despite the weakness.

5. Conclusion

In summary, this study firstly established a prognostic risk
model with four GRmRNAs in OC by integrating machine
learning methods and statistical approaches. The prognostic
risk system based on GRmRNAs could accurately predict
prognosis, the immune microenvironment, and the immu-
notherapeutic efficacy of OC patients, where high-risk scores
showed poor prognosis and low immune-infiltration levels.
Glycosylation-related genes may contribute to predicting
prognosis and creating personalized immunotherapies,
while the regulatory mechanism of the interplay between
glycosylation and tumor biology functions is worth studying
further. Our model might be a valuable tool for OC risk clas-
sification, assisting clinicians to adopt the optimal therapeu-
tic strategies for more personalized treatment in clinical
practice.
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