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Abstract

The human brain network is modular—comprised of communities of tightly interconnected 

nodes1. This network contains local hubs, which have many connections within their own 

communities, and connector hubs, which have connections diversely distributed across 
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communities2,3. A mechanistic understanding of these hubs and how they support cognition has 

not been demonstrated. Here, we leveraged individual differences in hub connectivity and 

cognition. We show that a model of hub connectivity accurately predicts the cognitive performance 

of 476 individuals in four distinct tasks. Moreover, there is a general optimal network structure for 

cognitive performance—individuals with diversely connected hubs and consequent modular brain 

networks exhibit increased cognitive performance, regardless of the task. Critically, we find 

evidence consistent with a mechanistic model in which connector hubs tune the connectivity of 

their neighbors to be more modular while allowing for task appropriate information integration 

across communities, which increases global modularity and cognitive performance.

Main

The human brain is a complex network that can be parsimoniously summarized by a set of 

nodes representing brain regions and a set of edges representing the connections between 

brain regions. In network models of fMRI data, each edge represents the strength of 

functional connectivity—the temporal correlation of fMRI activity levels—between the two 

nodes (Figure 1). This network model can be used to study global and local brain 

connectivity patterns. Brain networks contain communities—groups of nodes that are more 

strongly connected to members of their own group than to members of other groups(Figure 

1)1,4,5. This feature of networks is termed modularity and can be quantified by the 

modularity quality index Q (see Methods for equation).

Modularity is ubiquitously observed in complex systems in Nature—a modular structure is 

observed consistently across the brains of very different species, from c elegans to humans6. 

Given its ubiquity, modular network organizations are potentially naturally selected because 

they reduce metabolic costs. Functional and structural connectivity is metabolically 

expensive7-11. A modular architecture with anatomically segregated and functionally 

specialized communities reduces the average length and number of connections—the 

network’s wiring cost. Moreover, the brain’s genotype-phenotype map is modular, forming 

groups of phenotypes, including brain communities (e.g., the visual community)12,13, that 

are co-affected by groups of genes14. Modularity, at the genetic and phenotypic level, allows 

systems to quickly evolve under new selection pressures15,16.

As we noted in earlier work2, modularity potentially increases fitness in information 

processing systems 17-19 and network simulations show that modularity allows for robust 

network dynamics, in that the connections between nodes can be reconfigured without 

sacrificing information processing functions, a process necessary for the evolution of a 

network20. Artificial intelligence research has shown that modular networks also solve tasks 

faster and more accurately and evolve faster than non-modular networks 21 with lower 

wiring costs than non-modular networks22. Critically, modularity is also behaviorally 

relevant—modularity predicts intra-individual variation in working memory capacity23 and 

how well an individual will respond to cognitive training24,25.

Within each of these communities, local hubs exist that have strong connectivity to their own 

community. The within community strength can be used to measure a node’s locality (see 

Methods for equation; Figure 1 for a schematic). A high within community strength reflects 

Bertolero et al. Page 2

Nat Hum Behav. Author manuscript; available in PMC 2019 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that a node has strong connectivity within its own community and is thus a local hub. Local 

hubs are ideally wired for segregated processing. Because the connections of local hubs are 

predominantly concentrated within their own community and their functions are likely 

specialized and segregated, damage to local hubs tends to cause relatively specific cognitive 

deficits26,27 and does not significantly alter the modular organization of the network27. 

Supporting their more segregated and discrete role in information processing, their activity 

levels do not increase as more communities are involved in a task1.

Yet, a completely modular organization renders the brain extremely limited in function—

without connectivity between communities, information from, for example, visual cortex 

could never reach motor cortex and therefore visual information could not be used to inform 

movements. Thus, how is information integrated across these mostly segregated 

communities? The interdependence between modular communities and integration is a 

modern rendition of one of the first observations in neuroscience—Cajal’s conservation 

principle, which states that the brain has been naturally selected and is thus organized by an 

economic trade-off between minimizing the wiring cost of the network, which leads to 

modularity, and more costly connectivity patterns that increase fitness, like the integrative 

functions afforded by connections between communities 28-30.

Connector hubs have diverse connectivity across different communities. The participation 

coefficient can be used to measure a node’ diversity (see Methods for equation, Figure 1 for 

a schematic). A high participation coefficient reflects that a node has connections equally 

distributed across the brain’s communities and is thus labeled a connector hub. Connector 

hubs are ideally wired for integrative processing1,28,31-34. In human brain networks, 

connector hubs have a particular cytoarchitecture35, are implicated in a diverse range of 

cognitive tasks36,37, and are physically located in anatomical areas at the boundaries 

between many communities33. Moreover, damage to connector hubs causes widespread 

cognitive deficits26 and a decrease in the modular structure of the network27. During 

cognitive tasks, connector hubs appear to coordinate connectivity changes between other 

pairs of nodes—activity in connector hubs predicts changes in the connectivity of other 

nodes, particularly the connectivity between nodes in different communities38-40. Connector 

hubs are also strongly interconnected to each other, forming a diverse club—tightly 

interconnected connector hubs5. Connector hubs also have connections to almost every 

community in the network. Thus, they have access to information from every community. 

Finally, connector hubs exhibit increased activity if more communities are engaged in a task, 

which suggests that connector hubs are involved in processes that are more demanding as 

more communities are engaged1.

Connector hubs might be Nature’s cheapest solution to integration in a modular network. 

Generative models suggest that the diverse club—tightly interconnected connector hubs—

potentially evolved to balance modularity and efficient integration5. However, given the 

amount of wiring required to link to many different and distant communities, connector 

hubs’ connectivity pattern dramatically increases wiring costs11. Despite this cost, connector 

hubs potentially provide a necessary function—connector hubs could be the conductor of the 

brain’s neural symphony.
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A parsimonious mechanistic model of these findings is that connector hubs tune connectivity 

between communities. Neuronal tuning refers to cells selectively representing a particular 

stimulus, association, or information. We introduce the mechanistic concept of network 

tuning, in which connections between nodes are organized to achieve a particular network 

function or topology, like the integration of information across communities or decreased 

connectivity between two communities. We propose that diverse connectivity across the 

network’s communities allows connector hubs to tune connectivity between communities to 

be modular but also allows for task appropriate information integration across communities. 

This facilitates a global modular network structure in which local hubs and nodes within 

each community are dedicated to mostly autonomous local processing. The modular 

network structure afforded by diversely connected connector hubs—connector hubs that are 

wired well for network tuning—is potentially optimal for a wide variety of cognitive 

processes. Thus, despite their cost, strong and diverse connector hubs might be critically 

necessary for integrative processing in complex modular neural networks.

Local and connector hubs have been exhaustively studied by network science and their 

functions have been inferred from their topological locations in the network5. Moreover, 

individuals’ brain network connectivity has been shown to be predictive of task 

performance41-45,46 and is able to “fingerprint” individuals47. However, no study has 

leveraged these individual differences to test a mechanistic model of hub function and direct 

evidence supporting a mechanistic model of these hubs and how they support human 

cognition remains absent. Moreover, it is currently unknown if there is a hub and network 

structure that is optimal for a diverse set of tasks or if different hub and network structures 

are optimal for different tasks. Here, we analyze how individual differences in the locality 

and diversity of hubs during the performance a task relates to network connectivity, 

modularity, and performance on that task as well as subject measures collected outside of the 

scanner, including psychometrics (e.g., fluid intelligence, working memory) and other 

behavioral measures (e.g., sleep quality and emotional states). We test a mechanistic model 

in which connector hubs tune their neighbors’ connectivity to be more modular, which 

increases the global modular structure of the network and task performance, regardless of 

the particular task.

We leveraged the size and richness of fMRI data from 476 (S500 release) subjects that 

participated in the Human Connectome Project48. A network was built for each subject using 

fMRI data collected during seven different cognitive states (Resting-State, Working 

Memory, Social Cognition, Language & Math, Gambling, Relational, Motor, see Methods). 

Thus, each subject has seven different networks for analysis. Each edge represents the 

strength of functional connectivity between each pair of 264 nodes49. In every network, Q 
and a division of nodes into communities was calculated (see Methods). Next, in every 

network, for each node, locality and diversity was measured. Within community strength 

measures a node’s locality and the participation coefficient measures a node’s diversity, 

respectively (see Methods for equations). Figure 1 displays this processing workflow.

In the proposed mechanistic model of hub connectivity, connector hubs, via their diverse 

connectivity, tune the network to preserve or increase global modularity and local hubs’ 

locality, which, in turn, increases task performance. If this model is true, hubs’ connectivity 
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in the network and network modularity should be predictive of task performance. Thus, the 

first test of this model involved using hub diversity and locality, network connectivity, and 

modularity to predict task performance. A predictive multilayer perceptron model (three 

layers plus the input layer and the output layer (enough for non-linear relationships); eight 

neurons per layer (one per feature, with two layers containing 12 neurons, allowing for 

higher dimensional expansion)) was used to predict subjects’ task performance 

(Supplementary Figure 1, Figure 2). Known as deep neural networks, these predictive 

models are constructed by tuning the weights between neurons across adjacent layers to 

achieve the most accurate relationship between the features (input) and the value the model 

is trying to predict (output). The predictive model’s features (n=8) captured how well 

subjects’ nodes’ diversity and locality, network connectivity (i.e., edge weights in the 

network), and modularity (Q) are optimized for the performance of a task. For example, for 

the feature that captures how optimized the diversity of subjects’ nodes’ are for task 

performance, for each node, the Pearson r across subjects between that node’s participation 

coefficients (which measures diversity) and task performance values was calculated 

(Supplementary Figure 1a). We call this r value the node’s diversity facilitated performance 

coefficient. The feature, then, for a given subject, is the Pearson r across nodes between each 

node’s diversity facilitated performance coefficient and each node’s participation coefficient 

in that subject, representing how optimized the diversity of that subject’s nodes’ are for 

performance in the task (Supplementary Figure 1). Critically, for each subject’s feature 

calculation, the diversity facilitated performance coefficients are calculated without that 

subject’s data. The same procedure is executed for locality (using the within community 

strengths) and edge weights; instead of participation coefficients, within community 

strengths or edge weights are used. Finally, the Q values of the networks are included in the 

model.

The predictive model was fit for each of the four cognitive tasks that subjects performed in 

the Human Connectome Project for which performance was measured (Working Memory, 

Relational, Language and Math, Social tasks; see Methods for task performance measures). 

For this and other subject performance analyses, we could not analyze the Gambling, Motor, 

or Resting-State tasks, as there was no performance measured for these tasks. Each 

predictive model was fit to the subjects’ networks constructed during the performance of 

each task as well as the resting state (four features from each). The inclusion of the resting-

state and the cognitive task state allowed the model to capture the subjects’ so-called 

intrinsic network states as well as the subjects’ task driven network states. Using a leave-

one-out cross-validation procedure, the features were constructed, and the model was fit 

with data from all subjects except one. The predictive model was then used to predict the 

left-out subject’s task performance (Supplementary Figure 1c). To test the accuracy of the 

model, the Pearson r between the observed and predictive performance of each subject was 

calculated (Figure 2, Supplementary Figure 2).

This predictive model significantly (p<0.001, Bonferroni corrected (n tests = 4)) predicted 

performance in all four tasks (Figure 2). Also, using a predictive model with only nodes’ 

diversity and locality and modularity features (i.e., ignoring individual connections in the 

network) did not dramatically decrease the models’ prediction accuracies (Supplementary 

Figure 2a,b). Given that head motion is a concern when analyzing fMRI data, scrubbing 
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techniques were applied to remove motion artifacts from the fMRI data and the mean frame-

wise displacement was regressed out from task performance. Neither of these additional 

analyses dramatically decreased the predictive models’ prediction accuracies 

(Supplementary Figure 2c-f). Finally, in each task, modularity (Q) alone was only weakly 

correlated with task performance (Working Memory, Pearson’s r (dof=471):0.303, p<0.001, 

CI:0.219,0.383; Relational, Pearson’s r (dof=455):0.106, p:0.095, CI:0.014,0.196; Language 

& Math, Pearson’s r (dof=469):0.085, p:0.259, CI:−0.005,0.174; Social, Pearson’s r 
(dof=471):0.084, p:0.275, CI:−0.006,0.173, all confidence intervals=95%). These results 

suggest that the diversity and locality of nodes, in combination with the modular 

connectivity structure of the network, are highly predictive of task performance.

The Human Connectome project contains psychometrics and other behavioral measures 

collected outside of the MRI scanner; for clarity and to differentiate these measures from the 

task performance measures and the tasks’ corresponding networks, we call these “subject 

measures” 50. If a particular hub and network structure is generally optimal for many 

different types of cognition and many different behaviors (a component of the mechanistic 

model of hub function), then the tasks’ optimal hub and network structures should be 

similarly optimal across subject measures—sub-optimal for negative measures like poor 

sleep, sadness, and anger and optimal for positive measures like life satisfaction and 

processing speed.

For each task, the predictive model constructs features that capture how optimal each 

subject’s hub and network structure is for performance on that task. Using the subjects’ 

networks from a given task, the predictive model of hub and network structure can construct 

features that capture how optimal each subject’s hub and network structure is for a given 

subject measure collected outside of the scanner instead of task performance. This was 

executed using the networks from each of the four tasks for all subject measures. Thus, the 

predictive model constructs features that capture how optimal each subject’s hub and 

network structure (measured during the performance of a task (e.g. Working Memory)) is for 

a given subject measure (e.g., Delayed Discounting). The correspondence between the 

features in the two models—how similarly optimal subjects’ hub and network structure are 

for the task and a given subject measure—can then by calculated by, across subjects, 

computing the correlation between the features in the two predictive models. Specifically, 

for each feature, the correlation, across subjects, between the feature in the predictive model 

fit to task performance (e.g., Working Memory) and that feature in the predictive model that 

was fit to a subject measure (e.g., Delayed Discounting) is computed. The mean correlation 

across the edge, locality, and diversity features (n=6, three features from resting-state and 

three features from the task) is then calculated, which we call feature correspondence. The Q 
feature was ignored, as the Q feature remains constant regardless of what the model is fit to. 

Thus, this value determines if each task’s optimal hub and network structure is optimal for 

other subject measures and if all the tasks’ optimal hub and network structures are similarly 

optimal for other subject measures.

For each task, the hub and network structures that were optimal for that task were typically 

also optimal for positive subject measures and sub-optimal for negative subject measures 

(Supplementary Figure 3). Next, the similarity by which two tasks’ optimal hub and network 

Bertolero et al. Page 6

Nat Hum Behav. Author manuscript; available in PMC 2019 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



structures generalized to other subject measures can be measured by correlating the feature 

correspondence values (for example, the Working Memory and Social columns in 

Supplementary Figure 3). High Pearson r correlations were found between all tasks (r 
(dof=45) values between 0.82 and 0.96, p<0.001 Bonferroni corrected (n tests = 4), Figure 

2b). Finally, the predictive model was able to significantly predict most subject measures 

(Supplementary Figure 4). These results demonstrate that, if an individual has a particular 

brain state during a given task, as defined by the connectivity of the network’s hubs, that is 

optimal for that given task, it also likely optimal for other subject measures. Critically, 

different tasks’ optimal hub and network structures are similarly optimal for other subject 

measures. Moreover, these findings demonstrate that the predictive model captures hub 

connectivity patterns in the network that are relevant for behavior and cognition in general, 

instead of overfitting hub connectivity patterns that are only related to a particular cognitive 

process or behavior.

Having established relationships between hub locality and diversity, modularity, and task 

performance, we sought to test the mechanistic claim that diverse connector hubs increase 

modularity by analyzing how individual differences in a node’s diversity within the network 

are predictive of individual differences in brain network modularity (Q; see Methods for 

mathematical definition). Typically, the result of damage to a region can be used to infer the 

function of that region—if a region is damaged and modularity deceases, the region is 

putatively involved in preserving modularity. Here, we analyze the other direction—when a 

hub is diversely connected across the brain (i.e., strong), if modularity increases, the region’s 

diverse connectivity is putatively involved in preserving modularity (Supplementary Figure 

5).

Thus, we first tested if, across subjects, a node’s participation coefficients are positively 

correlated with modularity (Q). For each node, the Pearson r between that node’s 

participation coefficients and the network’s modularity values (Q) across subjects was 

calculated. Intuitively, higher r values indicate that the node’s diversity (i.e., the participation 

coefficient) is associated with higher network modularity. This is an important feature that 

can be used to distinguish the roles of different brain regions. For ease of presentation, we 

refer to each node’s r value as the diversity facilitated modularity coefficient, as it measures 

how the diversity of the node’s connections facilitates (we use this term to remain causally 

agnostic) the modularity of the network. For every node, the Pearson r between the within 

community strengths and Q values across subjects was also calculated. Intuitively, higher r 
values indicate that the node’s locality (i.e., the within community strength) is associated 

with higher network modularity. We refer to each node’s r value (between within community 

strengths and Q values across subjects) as the locality facilitated modularity coefficient, as it 

measures how the locality of the node’s connections facilitates the modularity of the 

network.

We performed these computations separately for all seven distinct cognitive states. In all 

states, the diversity facilitated modularity coefficients of connector hubs (top 20 percent 

highest participation coefficient nodes) were shown to be significantly higher than other 

nodes in a Bonferroni-corrected independent two-tailed t-test (Figure 3a, Working Memory 

t(dof:262):7.182, p<0.001, Cohen’s d:1.104, CI:0.062,0.117, Gambling t(dof:262):4.101, p:
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0.0004, Cohen’s d:0.63, CI:0.025,0.052, Language & Math t(dof:262):7.292, p<0.001, 

Cohen’s d:1.12, CI:0.062,0.102, Motor t(dof:262):7.354, p<0.001, Cohen’s d:1.13, CI:

0.088,0.13, Relational t(dof:262):4.457, p:0.0001, Cohen’s d:0.685, CI:0.038,0.075, Resting 

State t(dof:262):3.947, p:0.0007, Cohen’s d:0.606, CI:0.029,0.096, Social t(dof:262):3.716, 

p:0.0017, Cohen’s d:0.571, CI:0.022,0.051. P values Bonferroni corrected (n tests=7), all 

confidence intervals=95%). Moreover, in all cognitive states, the locality facilitated 

modularity coefficients of local hubs (top 20 percent highest within community strength 

nodes) were shown to be significantly higher than other nodes in a Bonferroni-corrected 

independent two-tailed t-test (Figure 3b, Working Memory t(dof:262):5.415, p<0.001, 

Cohen’s d:0.832, CI:0.045,0.093, Gambling t(dof:262):4.959, p<0.001, Cohen’s d:0.762, CI:

0.034,0.074, Language & Math t(dof:262):6.428, p<0.001, Cohen’s d:0.988, CI:0.045,0.085, 

Motor t(dof:262):9.822, p<0.001, Cohen’s d:1.509, CI:0.101,0.146, Relational t(dof:262):

6.131, p<0.001, Cohen’s d:0.942, CI:0.036,0.07, Resting State t(dof:262):0.966, p:1.0, 

Cohen’s d:0.148, CI:−0.014,0.038, Social t(dof:262):4.54, p:0.0001, Cohen’s d:0.698, CI:

0.026,0.06. P values Bonferroni corrected (n tests = 7), all confidence intervals=95%). While 

the diversity facilitated modularity coefficients of connector hubs were not always positive, 

they were typically close to or above zero. This means that a diverse connector hub can be 

associated with increased integrative connectivity between communities without decreasing 

the modularity of the network. To more fully understand the relationship between nodes’ 

diversity and the networks’ modularity, the Pearson r between each node’s mean 

participation coefficient across subjects (which defines a connector hub) and the node’s 

diversity facilitated modularity coefficient was calculated (Supplementary Figure 6). 

Moreover, the Pearson r between each node’s mean within community strength across 

subjects (which defines a local hub) and the node’s locality facilitated modularity coefficient 

was calculated (Supplementary Figure 6). In every task, there was a significant positive 

correlation between a node’s mean participation coefficient and that node’s diversity 

facilitated modularity coefficient (Supplementary Figure 6a). In every task, there was also a 

significant positive correlation between a node’s mean within community strength and its 

locality facilitated modularity coefficient (Supplementary Figure 6b). These analyses 

demonstrate that connector hubs’ strong diverse connectivity to many communities and local 

hubs’ strong local connectivity is associated with higher brain network modularity, 

regardless of the subjects’ cognitive state. Thus, these results are consistent with the 

mechanistic model of connector hub function, where connector hubs preserve the modular 

structure of the network via diverse connectivity.

We confirmed the reliability and reproducibility of these results and demonstrated that they 

are not driven by analytically necessary relationships. First, the mean participation 

coefficient and within community strength was calculated in one half of the subjects and the 

diversity and locality facilitated modularity coefficients were calculated in the other half of 

the subjects, testing 10,000 splits (Supplementary Figure 7). Next, four null models were 

tested to ensure the current results were not driven by analytically necessary relationships 

(Supplementary Figure 8). Other analyses ensured the current results are not driven by the 

number of communities (Supplementary Figure 9, Supplementary Figure 10). Finally, to 

justify the use of the Pearson r to calculate the coefficients, the relationship between nodes’ 

diversity and Q was confirmed as typically linear (Supplementary Figure 11).
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Having found evidence supporting a mechanistic model in which connector hubs tune their 

neighbors’ connectivity to be more modular, thereby increasing the global modular structure 

of the network, we next asked if diverse hubs concurrently facilitate higher modularity and 

higher task performance. To address this question, the Pearson r between each node’s 

participation coefficient (or within community strength) and task performance was 

calculated. A positive r at a node indicates that a subject with a higher participation 

coefficient (or within community strength) at that node performs better on the task. We refer 

this r value as the node’s diversity facilitated performance coefficient for participation 

coefficients, and locality facilitated performance coefficient for within community strengths. 

Note that these are the same r values used in the construction of the predictive performance 

model features (Supplementary Figure 1). However, for the predictive model, we calculated 

these r values with the subject whose behavior was to be predicted held out. Here, we 

calculate these r values across all subjects.

In all tasks, the diversity facilitated performance coefficients of connector hubs (top 20 

percent strongest) were shown to be significantly higher than other nodes in a Bonferroni-

corrected independent two-tailed t-test, with only the Language & Math task at p=0.0677 

after Bonferroni correction (uncorrected p=0.0169) (Figure 3c, Working Memory t(dof:262):

5.378, p<0.001, Cohen’s d:0.826, CI:0.03,0.071, Language & Math t(dof:262):2.404, p:

0.0677, Cohen’s d:0.369, CI:0.005,0.04; Relational t(dof:262):2.959, p:0.0135, Cohen’s d:

0.455, CI:0.01,0.037; Social t(dof:262):4.744, p<0.001, Cohen’s d:0.729, CI:0.025,0.053. 

All p values Bonferroni corrected (n tests=4), all confidence intervals=95%). The locality 

facilitated performance coefficients of local hubs (top 20 percent strongest) were shown to 

be significantly higher than other nodes in a Bonferroni-corrected independent two-tailed t-
test (Figure 3d, Working Memory t(dof:262):2.712, p:0.0285, Cohen’s d:0.417, CI:

0.008,0.054, Language & Math t(dof:262):2.864, p:0.0181, Cohen’s d:0.44, CI:0.006,0.043; 

Relational t(dof:262):0.327, p:1.0, Cohen’s d:0.05, CI:−0.016,0.021; Social t(dof:262):

1.862, p:0.2547, Cohen’s d:0.286, CI:0.0,0.031. All p values Bonferroni corrected (n 
tests=4), all confidence intervals=95%). Moreover, the correlation between each node’s 

diversity facilitated performance coefficient and each node’s mean participation coefficient 

was positive and significant (Supplementary Figure 6), suggesting that, for connector hubs, a 

higher participation coefficient is associated with higher task performance. The Pearson r 
correlation between each node’s locality facilitated performance coefficient and each node’s 

mean within community strength was also positive and significant (Supplementary Figure 6; 

all tasks except Relational, Bonferroni (n tests=4) p=0.081, uncorrected p=0.02), suggesting 

that, for local hubs, a higher within community strength is also associated with higher task 

performance. Finally, there was a significant positive correlation between a node’s diversity 

facilitated modularity coefficient and a node’s diversity facilitated performance coefficient 

(Figure 3e) as well as a significant positive correlation between a node’s locality facilitated 

modularity coefficient and a node’s locality facilitated performance coefficient (Figure 3f). 

Thus, diverse connector hubs facilitate higher task performance in proportion to how much 

they facilitate higher modularity, suggesting a strong link between the increased modularity 

afforded by diverse hubs and increased task performance.

Next, we tested the mechanistic network tuning claim of the model: “do connector hubs 

increase Q by tuning the connectivity of their neighbors’ edges to be more modular?” This 
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relationship should only hold for connector hubs, not local hubs, as previous studies suggest 

that connector hubs tune connectivity between communities and maintain a modular 

structure1,36,38-40. We therefore examined connector hubs for which their diversity 

facilitated modularity coefficients were positive. This analysis had two aspects. First, do 

connector hubs increase modularity by tuning within community edge strengths? Second, 

are connector hubs tuning the within community edge strengths of their neighbors in order 

to increase global modularity?

In order to test the first aspect of the neural tuning mechanism—if within community edges 

are tuned by connector hubs in order to increase global modularity—we used a canonical 

division of nodes into communities (Figure 4d displays this division, see Methods for link to 

division36,49). We assessed, for each edge in the network, how the edge’s weights related to 

modularity values (Q) across subjects (Figure 4a). Next, we calculated how well each 

connector hub’s participation coefficients correlate with each edge’s weights across subjects 

(Figure 4b). Higher Q values and higher connector hub participation coefficients are 

associated with decreased connectivity between the visual, sensory/motor hand, sensory/

motor mouth, auditory, ventral attention, dorsal attention, and cingulo-opercular 

communities. These communities were also more strongly connected to fronto-parietal, 

default mode, salience, and sub-cortical communities in networks with higher modularity 

values and higher connector hub participation coefficients.

Given these observations, we sought to find the edges that mediate between connector hubs’ 

increased participation coefficients and modularity (Q), as these are the edges that connector 

hubs likely tune in order to increase Q. Specifically, a mediation analysis was performed for 

each connector hub, with an edge weight mediating the relationship between the connector 

hub’s participation coefficients and the Q indices of the networks across subjects. An edge’s 

mediation value of a connector hub’s participation coefficients and Q is the regression 

coefficient of the edge’s weights by the connector hub’s participation coefficients across 

subjects multiplied by the regression coefficient of Q indices by the edge’s weights, 

controlling for the connector hub’s participation coefficients, across subjects. Each edge’s 

mean mediation value across connector hubs is shown in Figure 4c. We found that edges 

between the visual, sensory/motor hand, sensory/motor mouth, auditory, ventral attention, 

dorsal attention, and cingulo-opercular communities, as well as edges between those 

communities and the fronto-parietal, default mode, and sub-cortical communities, mediate 

the relationship between connector hubs’ participation coefficients and Q indices. These 

results are consistent with a mechanistic model in which diverse connector hubs tune 

connectivity to increase segregation between sensory, motor, and attention systems, which 

increases the global modularity of the network.

Next, we tested the second aspect of the network tuning mechanism—if the relationship 

between a connector hub’s participation coefficients and Q indices is mediated primarily by 

that connector hub’s neighbors’ edge pattern increasing Q. Neighbors were defined based on 

edges present between the two nodes in a graph at a density of 0.15 (as it was our densest 

cost explored). The mediation values calculated above each represent an edge mediating 

between a node i’s participation coefficients and Q values. Thus, for each connector hub i, 
there is the set of arrays of absolute mediation values of node i’s neighbors’ edges (n=263 
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for each neighbor j’s array) and the set of arrays of the absolute mediation values of node i’s 

non-neighbors’ edges (n=263 for each non-neighbor j’s array). Edges of node i in every 

array were ignored, as we were only interested in how the participation coefficients of 

connector hub i modulate Q via the mediation of j’s connectivity to the rest of the network, 

not j’s connectivity to connector hub i (thus, n=264-1). If a connector hub is primarily 

modulating Q via the tuning of its neighbors’ edges, then the absolute mediation values in 

the neighbors’ arrays should be greater than the absolute values in the non-neighbors’ arrays. 

The distribution of t-values between the two sets of arrays for all connector hubs (neighbors 

versus non-neighbors) is shown in Supplementary Figure 12; across tasks, the mediation 

values were consistently and significantly higher for connector hubs’ neighbors’ edges than 

non-neighbors edges. Moreover, these same t-values can be calculated for local hubs, using 

the within community strength instead of the participation coefficient; thus, an edge 

mediates between a local hub’s within community strengths and Q. Across tasks, connector 

hubs’ neighbors’ mediation t values were shown to be higher than local hubs’ neighbors’ 

mediation t values with a two-tailed independent student’s t-test (t(dof:1358): 3.892, p:

0.0001, Cohen’s d:0.219, CI:1.887,6.62), demonstrating that this result is specific to 

connector hubs. All distributions were confirmed as normal (k2>100.0, p<0.00001 for all 

tasks). We also performed an alternative analysis that confirmed these relationships (see 

Methods, Supplementary Figure 13). These results suggest that each connector hub, not 

local hub, tunes their neighbors’ connectivity to be more modular. A connector hub’s high 

diversity facilitated modularity coefficient does not largely reflect diffuse global connectivity 

changes. Instead, connector hubs are likely connected in a way that allows them to directly 

tune the connectivity of their neighbors to be more modular, thereby increasing global 

network modularity. Thus, the locality facilitated modularity coefficients are likely a 

downstream effect of connector hub modulation. Supporting this interpretation, we found 

that, when connector hubs have high participation coefficients, local hubs have high within 

community strengths (Supplementary Figure 14).

In the series of analyses we report here, we explicitly and comprehensively tested a 

mechanistic model by leveraging individual differences in connectivity and cognition in 

humans. Specifically, a model of the diversity and locality of hubs, the modularity of the 

network, and the network’s connectivity was highly predictive of task performance and a 

range of subject measures. Critically, the diversity and locality of nodes optimal for each 

task were also similarly optimal for positive subject measures. Thus, it appears that there is a 

hub and network structure that is generally optimal for cognitive processing. We found 

evidence that diverse connector hubs preserve or increase the modularity of brain networks. 

Moreover, diverse connector hubs tune the connectivity of their neighbors to be more 

modular. Finally, we found that the diversity of connector hubs simultaneously facilitated 

higher modularity and task performance. Thus, connector hubs appear to contribute to the 

maintenance of an optimal modular architecture during integrative cognition without greatly 

increasing the wiring cost or decreasing modularity5,29,51. In sum, these data are consistent 

with a mechanistic model of hub function, where connector hubs integrate information and 

subsequently tune their neighbors’ connectivity to be more modular, which increases the 

global modularity of the network, allowing local hubs and nodes to perform segregated 

processing.
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Across individuals, we found that diverse connector hubs increase modularity and task 

performance, regardless of the task. In all seven tasks, the subjects with the most diversely 

connected connector hubs also had the highest modularity and, in the four tasks for which 

performance was measured, the highest task performance. Thus, we propose that connector 

hubs are likely critical for integrating information and tuning their neighbors’ connectivity to 

be more modular, regardless of the task. Although connector hubs are more active during 

tasks that require many communities1, as their functions are likely more computationally 

demanding during these tasks, it is likely that every task requires the functions of connector 

hubs, as supported by our finding that their diverse connectivity predicts performance in all 

of the tasks analyzed here.

Our findings compliment many previous task-based fMRI studies that have identified 

regions that are more active during a particular cognitive process. We have demonstrated 

that, while different regions are more or less active in different tasks, including connector 

hubs, the diverse connectivity and integration and tuning functions of connector hubs are 

consistently required across different cognitive processes. Our findings are also consistent 

with neuropsychological studies of patients with focal brain lesions. It has been found that 

damage to connector hubs decreases modularity and causes widespread cognitive deficits, 

while damage to local nodes does not decrease modularity and causes more isolated deficits, 

such as hemiplegia, or aphasia26,27. While connector hubs are not likely critical for only one 

specific cognitive process, their functions and diverse connectivity are required to maintain a 

cognitively optimal modular structure across cognitive processes. Thus, as we observed here, 

individual differences in the diversity of connector hubs’ connectivity is predictive of 

cognitive performance across a range of very different tasks. Although diversely connected 

connector hubs are critical for successful performance in many different tasks, any given 

task nevertheless recruits very different cognitive and neural processes; each task likely 

engages connectivity patterns that are specifically optimal to that task. Future analyses 

should seek to understand both the general optimal connectivity patterns of connector hubs 

found here and the connectivity patterns that are optimal to a single task, including if and 

how these connectivity patterns interact.

Methods

Data and Preprocessing

We used fMRI data from the Human Connectome Project48 S500 release. For the task-based 

fMRI data, Analysis of Functional NeuroImages (AFNI) was used to preprocess the 

images52. The AFNI command 3dTproject was used, passing the mean signal from the 

cerebral spinal fluid mask, the white matter mask, the whole brain signal, and the motion 

parameters to the “-ort” options, which removes these signals via linear regression. Within 

AFNI, the “-automask” option was used to generate the masks. The “-passband 0.009 0.08” 

option, which removes frequencies outside of 0.009 and 0.08, was used. Finally, the “-blur 

6” option, which smooths the images (inside the mask only) with a 6mm FWHM filter after 

the time series filtering. Given the short length of the Emotion task (176 frames; Resting-

State:1200, Social: 274, Relational:232, Motor:284, Language:316, Working Memory:405, 

Gambling:253) it was not included in our analyses. For the fMRI data collected at rest, we 
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used the images that were previously preprocessed by the Human Connectome Project with 

ICA-FIX. We also used the AFNI command 3dBandpass to further preprocess these images. 

We used it to remove the mean whole brain signal and frequencies outside 0.009 and 0.08 

(explicitly, “-ort whole_brain_signal.1D -band 0.009 0.08 -automask”). We did not regress 

out stimulus or task effects from the time series of each node, because how nodes’ low 

frequency oscillations respond to stimulus or task effects is meaningful. Moreover, other 

investigators have noted that task effect regression has minimal effects53.

As subject head motion during fMRI can impact functional connectivity estimates and has 

been shown to bias brain-task performance relationships54, performance prediction analyses 

were executed with scrubbing (removing frames with high motion) executed on frames with 

frame-wise displacement greater than 0.2 millimeters, including the frame before and after 

the movement. Frame-wise displacement measures movement of the head from one volume 

to the next, and was computed as the sum of the absolute values of the differentiated rigid 

body realignment estimates (translation and rotation in x, y, and z directions) at every time 

point with rotation values evaluated with a radius of 50 mm54. Frames were removed after 

all preprocessing was executed. Subjects with more than 75 percent of frames removed were 

not analyzed. Moreover, we executed all analyses after regressing out mean frame-wise 

displacement from the task performance values (Supplementary Figure 2).

Graph Theory Analyses

The Power atlas49 was used to define the 264 nodes in our graph because it was the only 

atlas that met all of the following requirements: (1) Given that the homogeneity of nodes in 

this atlas is high and they do not share physical boundaries, it will not overestimate the local 

connectivity of regions, (2) it is the only atlas that is defined based both on functional 

connectivity and studies of task activations making it optimal for our current analyses, (3) it 

accurately divides nodes into communities observed with other approaches (e.g., at the voxel 

level), and this division has been used in many studies33,36,49,55. A canonical division of 

nodes into communities aides in the interpretation and generalizability of our results. It can 

be found at: http://www.nil.wustl.edu/labs/petersen/Resources_files/Consensus264.xls. 

Moreover, we used this division to calculate within and between community edge weight 

changes across subjects. (4) It has anatomical coverage of cortical, subcortical, and 

cerebellar regions.

All graph theory analyses were executed with our own custom python code 

(www.github.com/mb3152/brain_graphs) that uses the iGraph library. All analysis code is 

also publicly available (github.com/mb3152/hcp_performance/). For each task (both LR and 

RL encoding directions were used) and for each subject, the mean signal from 264 regions in 

the Power atlas was computed. The Pearson r between all pairs of signals was computed to 

form a 264 by 264 matrix, which was then Fisher z transformed. We chose Pearson r values 

to represent functional connectivity (i.e., edges) between nodes, for its simplicity in 

interpretation and ubiquity in human network neuroscience56. However, more complex 

statistical measures could be employed, including measures that attempt to estimate the 

directionality of each edge. The LR and RL matrices were then averaged. The mean matrix 

was then thresholded, retaining edge weights, at a range of costs (0.05 to 0.15 at 0.01 
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intervals), a common range and interval in graph theory analyses1,27,33,49. The maximum 

spanning tree was calculated to ensure all nodes had at least one edge. No negative 

correlations were included in our analyses. The matrix was then normalized to sum to a 

common value across subjects, and was used to represent the edges in the graph. Thus, all 

graphs had the same number of edges and sum of edge weights.

For each cost, the InfoMap algorithm57 was run. While this method has been shown to be 

highly accurate on benchmark networks with known community structures, it is still a 

heuristic, as community detection is NP-hard58. While InfoMap does not explicitly 

maximize Q, it has been shown to estimate community structure accurately in several test 

cases59, rendering the Q value, the participation coefficients, and within community 

strengths computed based on the community structure accurate and valid. Moreover, in 

biological networks, InfoMap achieves Q values that are similar to algorithms that maximize 

Q 60; in the current resting-state data, InfoMap Q values and Fast-Greedy Q61 values were 

correlated at Pearson r=0.87 (dof=474, p<0.001, 95% CI: 0.84, 0.89); InfoMap Q values 

were found to be higher than Fast-Greedy Q values with a student’s independent t-test 

(t(dof:952):16.027, p:<0.001, Cohen’s d:0.775, 95% CI:0.024,0.03). InfoMap Q values and 

Louvain Q 62 values were correlated at Pearson r=0.98 (dof=474, p<0.001, 95% CI: (0.97, 

0.98)); Louvain Q values were higher than InfoMap Q values. When comparing InfoMap Q 
values to the distribution that includes both Louvain and Fast-Greedy, two algorithms that 

explicitly maximize Q, InfoMap Q values were shown to be significantly higher with a 

student’s independent t-test (t(dof:1429):5.304, p:<0.001, Cohen’s d:0.222, 95% CI:

0.005,0.011). Regardless, we found that it detects a community structure with Q values 

highly similar to other methods (Supplementary Figure 15). Moreover, previous work has 

demonstrated the stability of community detection and the participation coefficient across 

community detection methods5.

The participation coefficients, within community strengths, and Q were calculated at each 

cost. Q is written analytically as follows. Consider a weighted and undirected graph with n 
nodes and m edges represented by an adjacency matrix A with elements

Aij = edge weight between i and j.

Thus, the strength of a node is given by

ki = ∑i Ai j

And modularity (Q) can be written as:

Q = 1
2m ∑

i ≠ j
Ai j − γpi j δ ci, c j .

Here, pij is the probability that nodes i and j are connected in a random null network
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Pi j =
kik j
2m ,

γ is the resolution parameter, and ci is the community to which node i belongs to and 

δ α, β = 1 if α = β and δ α, β = 0 if α ≠ β

Given a particular community assignment, the participation coefficient of each node can be 

calculated. The participation coefficient (PC) of node i is defined as:

PCi =   1 −   ∑
s = 1

NM
Kis
Ki

2

Where Ki is the sum of i ‘s edge weights, Kis is the sum of i ‘s edge weights to community s, 
and NM is the total number of communities. Thus, the participation coefficient is a measure 

of how evenly distributed a node’s edges are across communities. A node’s participation 

coefficient is maximal if it has an equal sum of edge weights to each community in the 

network. A node’s participation coefficient is 0 if all of its edges are to a single community.

Finally, we calculate the within community strength value for each node as follows:

zi =
ki − ksi

σksi

Where ki is the number of links of node i to other nodes in its community si, ksi is the 

average of k over all the nodes in si, and σksi
 is the standard deviation of k in si. Thus, The 

within community strength measures how well-connected node i is to other nodes in the 

community relative to other nodes in the community.

Each subject’s participation coefficient, within community strength, and Q were the mean of 

those values across the range of costs. All analyses were executed and all prediction models 

were fit separately for each task.

Tasks

The following descriptions for each task have been adapted for brevity from the Human 

Connectome Project Manual63.

Working Memory.—The category specific representation task and the working memory 

task are combined into a single task paradigm. Participants were presented with blocks of 

trials that consisted of pictures of places, tools, faces and body parts (non-mutilated parts of 

bodies with no “nudity”). Within each run, the 4 different stimulus types were presented in 

separate blocks. Also, within each run, 1⁄2 of the blocks use a 2-back working memory task 
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and 1⁄2 use a 0-back working memory task (as a working memory comparison). A 2.5 

second cue indicates the task type (and target for 0-back) at the start of the block. Each of 

the two runs contains 8 task blocks (10 trials of 2.5 seconds each, for 25 seconds) and 4 

fixation blocks (15 seconds). On each trial, the stimulus is presented for 2 seconds, followed 

by a 500 ms inter-task interval (ITI).

Gambling.—Participants play a card guessing game where they are asked to guess the 

number on a mystery card (represented by a “?”) in order to win or lose money. Participants 

are told that potential card numbers range from 1-9 and to indicate if they think the mystery 

card number is more or less than 5 by pressing one of two buttons on the response box. 

Feedback is the number on the card (generated by the program as a function of whether the 

trial was a reward, loss or neutral trial) and either: 1) a green up arrow with “$1” for reward 

trials, 2) a red down arrow next to -$0.50 for loss trials; or 3) the number 5 and a gray 

double headed arrow for neutral trials. The “?” is presented for up to 1500 ms (if the 

participant responds before 1500 ms, a fixation cross is displayed for the remaining time), 

following by feedback for 1000 ms. There is a 1000 ms ITI with a “+” presented on the 

screen. The task is presented in blocks of 8 trials that are either mostly reward (6 reward 

trials pseudo randomly interleaved with either 1 neutral and 1 loss trial, 2 neutral trials, or 2 

loss trials) or mostly loss (6 loss trials pseudo- randomly interleaved with either 1 neutral 

and 1 reward trial, 2 neutral trials, or 2 reward trials). In each of the two runs, there are 2 

mostly reward and 2 mostly loss blocks, interleaved with 4 fixation blocks (15 seconds 

each).

Motor.—Participants are presented with visual cues that ask them to either tap their left or 

right fingers, or squeeze their left or right toes, or move their tongue to map motor areas. 

Each block of a movement type lasted 12 seconds (10 movements), and is preceded by a 3 

second cue. In each of the two runs, there are 13 blocks, with 2 of tongue movements, 4 of 

hand movements (2 right and 2 left), and 4 of foot movements (2 right and 2 left). In 

addition, there are 3 15-second fixation blocks per run.

Language & Math.—The task consists of two runs that each interleave 4 blocks of a story 

task and 4 blocks of a math task. The lengths of the blocks vary (average of approximately 

30 seconds), but the task was designed so that the math task blocks match the length of the 

story task blocks, with some additional math trials at the end of the task to complete the 3.8 

minute run as needed. The story blocks present participants with brief auditory stories (5-9 

sentences) adapted from Aesop’s fables, followed by a 2-alternative forced- choice question 

that asks participants about the topic of the story. For example: “after a story about an eagle 
that saves a man who had done him a favor, participants were asked, “Was that about 
revenge or reciprocity?” The math task also presents trials auditorily and requires subjects to 

complete addition and subtraction problems. The trials present subjects with a series of 

arithmetic operations (e.g., “fourteen plus twelve”), followed by “equals” and then two 

choices (e.g., “twenty-nine or twenty- six”). Participants push a button to select either the 

first or the second answer. The tasks are adaptive to try to maintain a similar level of 

difficulty across participants.
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Social (Theory of Mind).—Participants were presented with short video clips (20 

seconds) of objects (squares, circles, triangles) that either interacted in some way, or moved 

randomly on the screen. After each video clip, participants judge whether the objects had a 

mental interaction (an interaction that appears as if the shapes are taking into account each 

other’s feelings and thoughts), Not Sure, or No interaction (i.e., there is no obvious 

interaction between the shapes and the movement appears random). Each of the two task 

runs has 5 video blocks (2 Mental and 3 Random in one run, 3 Mental and 2 Random in the 

other run) and 5 fixation blocks (15 seconds each).

Relational.—The stimuli are 6 different shapes filled with 1 of 6 different textures. In the 

relational processing condition, participants are presented with 2 pairs of objects, with one 

pair at the top of the screen and the other pair at the bottom of the screen. They are told that 

they should first decide what dimension differs across the top pair of objects (differed in 

shape or differed in texture) and then they should decide whether the bottom pair of objects 

also differ along that same dimension (e.g., if the top pair differs in shape, does the bottom 

pair also differ in shape). In the control matching condition, participants are shown two 

objects at the top of the screen and one object at the bottom of the screen, and a word in the 

middle of the screen (either “shape” or “texture”). They are told to decide whether the 

bottom object matches either of the top two objects on that dimension (e.g., if the word is 

“shape”, is the bottom object the same shape as either of the top two objects. For both 

conditions, the subject responds yes or no using one button or another. For the relational 

condition, the stimuli are presented for 3500 ms, with a 500 ms ITI, and there are four trials 

per block. In the matching condition, stimuli are presented for 2800 ms, with a 400 ms ITI, 

and there are 5 trials per block. Each type of block (relational or matching) lasts a total of 18 

seconds. In each of the two runs of this task, there are 3 relational blocks, 3 matching blocks 

and 3 16-second fixation blocks.

Performance measures.

All performance measures were chosen a priori. In the working memory task, we used the 

mean accuracy across all n-back conditions (face, body, place, tool). In the relational task, 

we used mean accuracy across both the matching and the relational conditions. For the 

language task, we took the maximum difficulty level that the subject achieved across both 

the math and language conditions. We did not use accuracy, because the task varies in 

difficulty based on how well the subject is doing, making accuracy an inaccurate measure of 

performance for these tasks. For the social task, given that almost all subjects correctly 

identified the social interactions as social interactions, we used the percentage of correctly 

identified random interactions.

Deep neural network model.

A deep neural network is a supervised learning algorithm that can learn a non-linear 

function for regression or classification. Unlike logistic regression, there are one or more 

non-linear layers, called hidden layers, between the input and the output layer. Thus, the 

model is trained to relate a set of input features to outputs by learning weights between 

neurons across adjacent layers (Supplementary Figure 1). Our implementation uses the 

sklearn python library. Explicitly, a prediction for subject z is calculated as:
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model = sklearn.neural_network.MLPRegressor(hidden_layer_sizes=(8,12,8,12))

model.fit(x[subjects!=z], y[subjects!=z])

prediction = model.predict(x([z])

where x is the set of features across subjects and y is the task performance across subjects.

Analytic quality of diversity and locality facilitated modularity coefficients

To further understand diversity and locality facilitated modularity coefficients, we performed 

an iterative split-half analysis. Specifically, we estimated the mean within community 

strength or participation coefficient of each node in one half of subjects, and each node’s 

locality and diversity facilitated coefficient in the other half, testing 10,000 random splits of 

subjects. All relationships were reliably observed in every cognitive state (Supplementary 

Figure 7). Next, we sought to determine if this relationship was a necessary feature of the 

underlying mathematics, or whether it was a phenomenon specific to the neurophysiology of 

brain networks. To address this question, we tested four null model networks and observed 

that none of them exhibited a significant relationship between mean participation coefficient 

and diversity facilitated modularity coefficient (Supplementary Figure 8). As a third check, 

we assessed whether the number of communities identified in the network was inadvertently 

biasing our results. We observed that the number of communities in each network was 

negatively correlated with the modularity value Q (Supplementary Figure 9). After 

regressing out the number of communities in each network from the modularity value, we 

observed that our findings remained qualitatively unchanged (Supplementary Figure 10). 

Finally, we tested whether the relationships between variables of interest were linear (and 

therefore appropriate to examine with Pearson r correlation coefficients), or nonlinear. To 

address this question, we analyzed individual 1st, 2nd, and 3rd order curve fits of the 

relationship between participation coefficients and modularity values. We observed that 

many relationships were well-captured by a first order fit, with the connector hub’s maximal 

participation coefficients corresponding to maximal Q indices, with only a few showing a 

more nonlinear relationship (Supplementary Figure 11).

Alternative analysis of connector hubs’ tuning the connectivity of their neighbors

We executed an alternative analysis to test if connector hubs tune the connectivity of their 

neighbors to be more modular. For each node i we calculated a matrix, where the j-kth entry 

is the Pearson r correlation coefficient that captures how well the participation coefficients of 

node i correlates with the edge weights between nodes j and k in the network across 

subjects. These Pearson r values allowed us to test whether a node’s participation 

coefficients correlate positively with its neighbors’ increased connectivity to its own 

community and decreased connectivity to other communities. We subtracted the sum of r 
values in the matrix corresponding to node i’s participation coefficients and node j’s 

between community edge weights from the sum of r values in the matrix corresponding to 

node i’s participation coefficients and node j’s within community edge weights. Thus, this 

value measures how well the participation coefficients of node i are correlated with the 

increased modular (within community) connectivity of node j. We used the partition of 
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nodes into communities that was created along with the nodes themselves (Figure 6d)49. 

Edges between node i and node j were ignored in this calculation, as the participation 

coefficients of node i is likely highly correlated with the edge weights between node i and 

node j, and we were only interested in how the participation coefficient of node i modulates 

node j’s connectivity to the rest of the network, not node j’s connectivity to node i. Edges 

that were not positive on average across subjects were not included in this analysis, as the 

interpretation of negative edges in fMRI-based networks is not obvious (results were similar 

only including the top 25 percent of edges (Supplementary Figure 13). Correlations between 

the edge strength between nodes i and j and the amount of modulation of j’s modularity by i 
were calculated such that the set of nodes i were either connector hubs or non-connector 

hubs. A positive correlation means that a node is biased to modulate the connectivity of its 

neighbors versus its non-neighbors to be more modular. In all cognitive states, these 

correlations were only positive and significant (Pearson’s r>0.17, p<0.001, Bonferroni 

corrected (n tests = 7)) for connector hubs (Supplementary Figure 13) suggesting that 

connector hubs tune the connectivity of their neighbors to be more modular.

To test if this relationship existed for local hubs, we calculated a similar matrix, where, for 

each node i, the j-k th entry is the Pearson r value that captures how well the within 

community strengths of node i correlate with the edge weight between nodes j and k in the 

network across subjects. Correlations between the edge strength between nodes i and j and 

the amount of modulation of j’s modularity by the within community strength of i were 

calculated such that nodes i were either local hubs or non-local hubs. None of these 

correlations were robust (−0.1>r<0.1). These analyses add to our conclusion, demonstrated 

in the Results, that connector hubs facilitate higher modularity by tuning the connectivity of 

their neighbors to be more modular.

Statistical Methods

The number of subjects was determined by the number of subjects released by the Human 

Connectome Project at the start of the analyses. As this dataset represented the largest 

dataset of its kind at that time and the number of subjects is greater than many similar 

analyses47, no power analysis was computed. Total N=Working Memory: 475, Gambling: 

473, Relational:458, Motor:475, Language & Math:472, Social:474, Resting State: 476. 

However, as we only analyzed subjects with both Resting-State and the task scans, 

N=Working Memory:473, Relational:457, Language & Math:471, Social:473. This results in 

a unique N=476 across tasks, in that 476 different subjects had a resting state scan and at 

least one task scan. As scrubbing (which removes frames with large head motion) can cause 

too many frames to be removed from the time series, subjects with less than 75 percent of 

remaining frames were not included in the analyses that implemented scrubbing; thus, for 

analyses using scrubbed data, N=Working Memory:351, Relational:335, Language & Math:

348, Social:358.

All confidence intervals (CI) are reported with alpha=0.05. For Pearson r correlation 

coefficients CIs, the interval of r values is given by Fisher transforming r to z, computing the 

interval, and then Fisher reverse transforming the z intervals back to r intervals. For t-tests, 

the confidence interval represents the largest and smallest differences in means across the 
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two distributions. For all t-tests, distributions were confirmed as normal (p<0.001) or 

exhibiting no significant evidence as not normal (k2>0.0) using D’Agostino and Pearson’s 

omnibus test k2. All p values are two sided tests.

All p values that are part of a family of tests are Bonferroni corrected for multiple 

comparisons. For example, we test if two tasks’ hub and network structures are similarly 

optimal for the same subject measures, testing across a large number of subject measures. In 

this case, we applied a Bonferroni correction to the p-values to determine whether the effect 

remained true for particular subject measures. Here, the number of tests is equal to the 

number of subject measures, 47. Individual subject networks were built independently for 

each task and task performance is different for each task. Thus, these tests are not strictly in 

the same family. However, to be conservative, we still Bonferroni corrected these p-values. 

In these cases, the family size is either 4 or 7, depending on the number of tasks analyzed. 

Unless otherwise stated, all p values are Bonferroni corrected.

Many statistical tests are calculated here without reported p values. For example, Pearson r 
values are used to calculate functional connectivity. Here, only the r values are of interest—

more precisely, individual differences in the r values across subjects, and how these 

differences relate to individual differences in cognition. This treatment of multiple 

comparisons in the context of functional connectivity and individual differences in cognition 

is common and recommended47,64. We extend this notion to other analyses here as well. For 

example, we use the Pearson correlation coefficient r to compare how well different nodes’ 

participation coefficients across subjects explain variance in network modularity or task 

performance (the diversity facilitated modularity and performance coefficients). In these 

cases, we relate these r-values to other measures, and are only concerned with how these r-
values explain another distributions’ variance (here, we find a positive correlation between 

these r-values and a node’s mean participation coefficient across subjects). We are not 

concerned with the statistical significance any particular r-value as estimated by the p-value. 

We care about the distribution of r-values, not the distribution of p-values, and we do not 

make any claims about any single r-value. Thus, the p-values are neither reported nor 

corrected for multiple comparisons. This is precisely how functional connectivity is treated 

statistically.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Functional connectivity and network science processing workflow.
a, The mean signal across time is extracted from 264 cortical, sub-cortical, and cerebellar 

regions, three of which are shown here. b, The time series of the three nodes is shown. To 

measure functional connectivity, the Pearson r correlation coefficient between the time series 

of node i and the time series of node j for all i and j is calculated. c, The strongest (e.g., the 

top 5% percent r values) functional connections serve as weighted edges in the graph (a 

range of graph densities was explored, see Methods for details). d, The Infomap community 

detection algorithm is applied, generating a community assignment for each node, displayed 
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here in different colors in a schematic (top) and the mean graph across subjects (bottom). e, 

Given that particular community assignment and network, nodes’ participation coefficients 

are calculated. Red nodes are high participation coefficient nodes, shown here in a schematic 

(top) and the mean graph (bottom). f, Within community strengths are also calculated. 

Purple nodes are high within community strength nodes, shown here in a schematic (top) 

and the mean graph (bottom). The graphs along the bottom are laid out using the force-atlas 

algorithm, where nodes are repelling magnets and edges are springs, which causes nodes in 

the same community to cluster together, nodes that are diversely connected across 

communities (connector hubs) to be in the center of the graph, and nodes that are strongly 

connected to a single community (local hubs) in the middle of that community. d, lower, A 

single community (light blue) and its connections to the rest of the graph is extracted and 

enlarged, with nodes colored by community. Note that the nodes within each community are 

more strongly connected to each other than to nodes in other communities. e, lower, A node 

(and its connections) with a high participation coefficient is extracted and enlarged, with 

nodes colored by community. Note that the connector hub is connected to many different 

communities. f, A node (and its connections) with a high within community strength is 

extracted and enlarged, with nodes colored by community. Note that the local hub is strongly 

connected to its own community.
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Figure 2 |. Hub diversity and locality, modularity, and network connectivity predict cognitive 
performance.
a, for each task, the correlation between task performance and the performance predicted by 

a predictive model of hub diversity and locality, modularity, and network connectivity. Each 

data point represents the (y-axis) true performance (see Methods, each task’s performance 

value scale is unique) of the subject and the (x-axis) predicted performance of the subject by 

the neural network. Shaded areas represent 95 percent confidence intervals. In every task, 

the predictive model significantly predicted task performance (p < 1e-3, Bonferroni 

corrected (n tests=4), N=Working Memory: 473, Relational: 457, Language & Math: 471, 

Social: 473). b, we correlated the tasks’ feature correspondence values (see Supplementary 

Figure 3 for each task’s feature correspondence with each subject measure)—measuring if 

the two tasks’ optimal hub and network structures are also optimal for the same subject 

measures. High correlations mean that the two tasks’ hub and network structures are 

similarly optimal for the same subject measures (all results significant at p < 1e-3, 

Bonferroni corrected (n tests = 4), dof=45, N=47, the number of subject measures, while the 

feature correspondence N =Working Memory: 473, Relational: 457, Language & Math: 471, 

Social: 473).
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Figure 3 |. Connector hubs and local hubs concurrently facilitate increased modularity and task 
performance.
For each task, diversity and locality facilitated modularity coefficients, a measure of how the 

diversity and locality (respectively) of a node facilitates modularity, were calculated. In 

every task, the diversity and locality facilitated modularity coefficients of connector (a) and 

local hubs (b), compared to other nodes, is significantly (except Resting-State for locality) 

higher, demonstrating that strong connector and local hubs facilitate the modular structure of 

brain networks. For each task, diversity and locality facilitated performance coefficients 
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were calculated. In every task the diversity and locality facilitated performance coefficients 

of connector (c) and local hubs (d), compared to other nodes, is significantly (except 

Language for diversity (p=0.0677 after Bonferroni correction (uncorrected p=0.0169)), 

Relational and Social for locality) higher, demonstrating that strong connector and local 

hubs facilitate increased task performance. For a-d, the mean and quartiles are marked in 

each violin. Each task’s distribution of coefficients was tested for normality using 

D’Agostino and Pearson’s omnibus test k2. No evidence was found (k2>0.0 for all tasks) that 

these distributions were not normal. N=264, the number of nodes in the graph. e, The 

correlation between a node’s diversity facilitated modularity coefficient and a node’s 

diversity facilitated performance coefficient. f, The correlation between the node’s locality 

facilitated modularity coefficient and the node’s locality facilitated performance coefficient. 

In panels e,f, N=264, the number of nodes in the graph. Shaded areas represent 95 percent 

confidence intervals. All p values are Bonferroni corrected (n tests = 4).
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Figure 4 |. Connectivity between primary sensory, motor, dorsal attention, ventral attention, and 
cingulo-opercular communities mediate the relationship between connector hubs and 
modularity.
a, Each entry is the Pearson correlation coefficient, r, across subjects (N=476), between 

modularity (Q) and that edge’s weights. b, For each connector hub, the Pearson r between 

the hub’s participation coefficients and each edge’s weights across subjects (N=476) was 

calculated. The matrix in b is the mean of those matrices across connector hubs. c, To 

investigate the relationship between connector hubs’ participation coefficients, edge weights, 

and Q, a mediation analysis was performed for each connector hub, with an edge’s weights 
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mediating the relationship between the connector hub’s participation coefficients and Q 
indices (N=476). Each edge’s mean mediation value between connector hubs’ participation 

coefficients and Q is shown. d, The anatomical locations of each node and community on 

the cortical surface36,49.
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