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Abstract: Spinal mobility assessment is essential for the diagnostic of patients with ankylosing
spondylitis. BASMI is a routine clinical evaluation of the spine; its measurements are made with
goniometers and tape measures, implying systematic errors, subjectivity, and low sensitivity. There-
fore, it is crucial to develop better mobility assessment methods. The design, implementation, and
evaluation of a novel system for assessing the entire spine’s motion are presented. It consists of
16 magnetic and inertial measurement units (MIMUs) communicated wirelessly with a computer. The
system evaluates the patient’s movements by implementing a sensor fusion of the triaxial gyroscope,
accelerometer, and magnetometer signals using a Kalman filter. Fifteen healthy participants were
assessed with the system through six movements involving the entire spine to calculate continuous
kinematics and maximum range of motion (RoM). The intrarater reliability was computed over
the observed RoM, showing excellent reliability levels (intraclass correlation >0.9) in five of the six
movements. The results demonstrate the feasibility of the system for further clinical studies with
patients. The system has the potential to improve the BASMI method. To the best of our knowledge,
our system involves the highest number of sensors, thus providing more objective information than
current similar systems.

Keywords: spine; inertial measurement units; Kalman filter; human movement; ankylosing spondylitis

1. Introduction

Ankylosing spondylitis (AS) is among the 200 specific disorders comprising rheumatic
diseases, which are some of the leading causes of morbidity in the world. AS mainly affects
the spine, the sacroiliac joint, and entheses [1]. AS is a chronic degenerative disease that
begins with inflammatory back pain and severe inflammation of the sacroiliac joints. In
more advanced stages, it can also affect the cervical spine. Chronic inflammation of the
axial joints generates bony bridges, called syndesmophytes, which can join two vertebrae,
limiting the movement of the spine and, in more severe states, limiting lung capacity [2,3].

The prevalence of AS in the Mexican population is around 0.6% to 0.9% [4]. Burgos-
Vargas et al. [5] reported that the incidence of new cases of AS in their study of the
Mexican population occurred mainly in young adults between 15 and 30 years. Despite
the prevalence and the importance of the affected musculoskeletal structures, its diagnosis
can be delayed by 3–11 years [6]; the Assessment of Spondyloarthritis International Society
(ASAS) has designed evaluation and diagnostic criteria for patients with high suspicion [7].
The current medical tests include (a) blood tests, (b) medical imaging (CAT and MRI),
(c) inflammatory activity (BASDAI index), (d) functional capacity (BASFI index), and (e)
metrology (Bath Ankylosing Spondylitis Metrology Index “BASMI”).
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The BASMI correlates with the patients’ functional disability and includes a series
of five parameters to assess the spine and hip mobility. The measures contemplate cer-
vical rotation, tragus-to-wall distance, lumbar side flexion, modified Schober Test, and
intermalleolar distance (Figure 1) [8].

Figure 1. BASMI measurements: (a) cervical rotation (observed from a view perspective above of
the subject head); (b) modified Schober test; (c) tragus-to-wall distance; (d) lumbar side flexion;
(e) intermalleolar distance.

Mobility assessment of the spinal joint and the sacroiliac articulations is essential
for diagnosis and evaluation of the patient’s state. However, medical experts apply the
BASMI index using a measuring tape and goniometers to obtain the measurements. Thus,
systematic and subjective errors can appear as a function of medical experience, the correct
use of the instruments mentioned above, erratic or compensatory movements of patients,
or observation errors. All of these factors cause the BASMI measurements to lack accuracy
and repeatability, according to some studies of the current clinical assessment [9–11].

In addition, the use of measuring tapes and goniometers makes the BASMI lose
sensitivity to changes in the patient’s status and progress; on the other hand, the spine
and the sacroiliac joints generate complex movements, which cannot be evaluated with
the BASMI method. Therefore, it is important to research and develop new technology-
based mobility assessment methods to extensively assess the joints directly with adequate
precision and repeatability, along with sensitivity to changes in information.

Optical marker-based systems have been the most widely used for tracking motion
and evaluating spinal mobility [12,13]. Garrido-Castro et al. [14] established a new index
(UCOASMI) correlating BASMI with optical measurements. Even though these systems
have shown great accuracy and reliability, they are expensive, viable only indoors, and need
a complex setup with external sources such as cameras and spaces explicitly conditioned
for these purposes, limiting their use in standard clinical conditions.

In recent years, magnetic and inertial measurement unit (MIMU)-based systems have
gained attention for human motion analysis. MIMUs have been applied in several clinical
areas such as gait tracking [15], fall-risk detection [16], upper-limb human motion [17],
diseases in the lower limb [18,19], rehabilitation [20,21], sports [22], spinal loads [23], and
ergonomics [24]. Specifically, few studies that showed the feasibility of applying these
systems in spinal mobility assessment have been reported [25,26].

MIMU-based systems for spine mobility assessment present some advantages; they are
completely self-contained, allow ambulatory tracking, and can be unobtrusively attached
to the patient’s spine. Unlike traditional assessing methods, MIMUs can measure the con-
tinuous variation of angles in dynamic movements and maximum range of motion [27,28].
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Some works studied the accuracy of MIMU-based systems, correlating them with optical
systems; they showed a high level of agreement between methods and greater feasibility of
MIMU systems in clinical practice [29–31].

Recently, some studies assessed AS patients using MIMU systems. Aranda-Varela et al. [31]
established the IUCOASMI index, correlating the BASMI with their obtained metrics (flex-
ion/extension, lateral flexion, and rotation at lumbar and cervical region) using two ViMove
brand inertial sensors. O’Grady et al. [32] used two ViMove sensors to evaluate the reliabil-
ity in measuring spinal range of motion. They studied the trunk flexion/extension, trunk
lateral flexion, and rotation (not including measures of cervical mobility) under supervised
and unsupervised conditions; they also calculated a normalized index IMU-ASMI and
evaluated its reliability. Franco et al. [33] evaluated five movements, trunk flexion, trunk
extension, trunk lateral flexion, cervical rotation, and cervical flexion/extension, using five
commercial inertial sensors. Gardiner et al. [34] evaluated the maximum range of motion
at the cervical and lumbar spine with two ViMove brand inertial sensors. In previous
works [35,36], the authors presented a preliminary test with only six sensors and evaluated
flexion trunk and lateral flexion in two AS patients.

Even though the studies mentioned above provide accuracy and repeatability to
the measurements, they are limited by the number of sensors they use and, therefore,
the amount of information they can provide for subtle and complex movements. With
this motivation, we developed a novel MIMU-based system for the evaluation of spine
movements. The system consists of an array of 16 small MIMU units specifically designed
to be placed along the entire spine (Figure 2a). We present the results of an experimental
study aimed at validating the reliability and repeatability of the system. To the best of our
knowledge, this is the only MIMU-based system capable of simultaneously monitoring
different movements of the lumbar, thoracic, and cervical areas, considering the spine’s
serial kinematic chain with multiple degrees of freedom in various configurations. Our
results indicate that the system is reliable and feasible for clinical studies and applications.
It paves the way for the design of better clinical evaluation methods, with objective metrics
of spine mobility, especially in rheumatology and orthopedics.

Figure 2. The embodiment of the system: (a) MIMUs over the patient’s spine; (b) frame reference of
the sensors, with the z-axis out of the image. The movements considered in the experimental study:
(c) anterior hip flexion; (d) trunk lateral flexions; (e) trunk axial rotation; (f) cervical axial rotation;
(g) cervical flexion/extension; (h) cervical lateral flexion.
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2. Materials and Methods
2.1. Multi-MIMU System

The proposed system’s architecture consists of 16 small magnetic and inertial units (In-
vensense MPU-9250) and a wireless acquisition control unit. A printed circuit board was de-
signed with the aim of having a sensor with small enough dimensions (11.7 mm × 9.3 mm)
suitable for monitoring subtle movements without limiting mobility. In this way, an array
of multiple sensors can be easily placed in the subjects’ back and head to provide kinetic
information of the entire spine at the cervical, thoracic, and lumbar sites.

Each sensor contains a triaxial accelerometer, a triaxial gyroscope, and a triaxial
magnetometer (±2 g range, ±250◦/s range, ±4800 µT full range, respectively) to evaluate
the subject’s movements in three dimensions. The signals of the sensors were recollected
through a compact and portable wireless control unit mounted in the participant’s hip with
a harness. The harness was designed to be comfortably worn in soft and hygienic material
without limiting mobility during the assessment (Figure 2a).

The control unit consists of a digital signal processor (DSP-Teensy 3.2), interfaced with
the sensors through two eight-channel fast multiplexors (TCA9548A) for I2C communica-
tion. The DSP collects the raw data from the sensors in real time and sends the information
to a computer through a Bluetooth wireless communication protocol. A software desktop
application was implemented to concurrently receive the raw data of the sensors and then
estimate the orientation of each sensor, using a set of instances of a Kalman filter algorithm,
with each instance specifically associated and calibrated per sensor [37]. The complete
solution provides kinematic pose estimation of the participant’s spinal mobility at a frame
rate of 20 Hz per sensor (Figure 3).

Figure 3. Architecture of the control unit of the proposed portable and wireless system.

2.2. Movement Estimation Algorithm

The system comprises 16 MIMUs communicating wirelessly with a computer via a
Bluetooth protocol. Each MIMU contains a triaxial accelerometer, gyroscope, and mag-
netometer. They are placed on different spine segments to evaluate movements in three
dimensions. The tilt angles (roll and pitch) and the heading angle (yaw) are calculated
through the numerical integration of the angular velocity provided by the gyroscope in the
y-, z-, and x-axis according to the reference frame (Figure 2b). It is known that the gyro-
scopes present a drift problem due to the accumulative errors during the recursive calculus.

The problem is solved through the implementation of a sensor fusion of the gyroscope,
accelerometer, and magnetometer signals using a Kalman filter (KF) [38–40]. With the KF,
each MIMU orientation is estimated in two phases; it is first predicted using the gyroscope
signals, and then corrected by the spatial references provided by the accelerometer and
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magnetometer signals. The accelerometers for the tilt angles and the magnetometers for
the heading angle (Figure 4).
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According to the KF proposed by Lee et al. [39] and Ligorio and Sabatini [40] for
estimating the two tilt angles, we implemented a modified algorithm version to include the
heading angle. The purpose is to estimate the vectors SX and SZ from the rotation matrix R,
which allows the coordinate transformation from the sensor frame S to the inertial frame I.
On the basis of the ZYX Euler angles, R is expressed as

R =

 cosαcosβ cosαsinβsinγ− sinαcosγ cosαsinβcosγ + sinαsinγ
sinαcosβ sinαsinβsinγ + cosαcosγ sinαsinβcosγ− cosαsinγ
−sinβ cosβsinγ cosβcosγ

, (1)

where α is the yaw or heading angle, β is the pitch angle, and γ is the roll angle, known as
tilt angles.

The vector SZ (i.e., the last row of the matrix R) in Equation (1) is expressed in terms
of γ and β. Hence, knowing SZ, tilt angles can be calculated as follows:

γ = tan−1
( SZ2

SZ3

)
and β = tan−1

( SZ1
SZ2/sinγ

)
. (2)

Similarly, knowing SX (i.e., the first row of the matrix R) and roll and pitch angles,
heading angle α can be determined by

α = tan−1
(
−cosγSX2 + sinγSX3

SX1/cosβ

)
. (3)
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2.2.1. Sensor Modeling

The sensor signals from the gyroscope are modeled by

yG = ω + nG, (4)

where ω is the angular velocity, and nG is the measurement noise that is assumed to be
zero-mean white Gaussian.

The signals from the accelerometer are modeled as

yA = g + a + nA. (5)

where g is the gravity vector with respect to the sensor frame, defined as } × SZ where }
is 9.8 m

s2 , a is the external acceleration, and nA is the measurement noise assumed as zero-
mean white Gaussian. As established by Luinge et al. [41], in Equation (5), the external
acceleration a can be modeled as a first-order low-pass filtered white noise process.

at = caat−1 + εt, (6)

where ca, which determines the cutoff frequency, is a dimensionless constant between 0
and 1, and εt is the time-varying error of the acceleration model.

Lastly, the signals from the magnetometers are modeled as

yM = h + nM, (7)

setting h (the actual Earth’s magnetic field vector) as

h = A−1(hm − b), (8)

where A−1 is the inverse of the soft-iron interference matrix, b is the hard-iron interference
matrix, and hm is the distorted Earth’s magnetic field (i.e., in the presence of soft-iron and
hard-iron interferences) [42]. As in the gyroscope and accelerometer signals model, nM is
the measurement noise assumed as zero-mean white Gaussian. It is important to develop a
previous characterization step of the sensors, to set the values of the measurement noises
(i.e., nG, nA, and nM), as well as the soft-iron and hard-iron interference matrices [37,43].

2.2.2. Kalman Filter Design

The KF is defined by the following process model [44]:

xt = At−1xt−1 + wt−1, (9)

and the following measurement model:

zt = Hxt + vt, (10)

where xt in Equation (9) is the state vector, defined as xt =
[ SX−t

SZ−t
]T , A is the state

transition matrix that relates the state at a previous time step t− 1 to the state at the current
step t, and w is the white Gaussian process noise. In Equation (10), zt is the measurement
vector, H is the observation matrix that relates the state (i.e., xt) to the measurement zt,
and v is the white Gaussian measurement noise. The minus superscript in the state vector
denotes the a priori estimate.

The orientation is a priori estimated by the integration of the gyroscope signals, giving
the following process model:[ SX−t

SZ−t

]
=

[
I + ∆t

[
ω̃t−1 0

0 ω̃t−1

]]T[ SX t−1
SZ t−1

]
, (11)
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where ∆t is the time interval and ω̃ is the skew-symmetric matrix function of the vector ω,
denoted as

ω̃ =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

. (12)

Due to the noisy measurements of the angular velocity in Equation (4), Equation (9)
must be expressed using the current gyroscope output (i.e., yG = ω + nG) as[ SX−t

SZ−t

]
=

[
I − ∆t

[
ỹG,t−1 0

0 ỹG,t−1

]][ SX t−1
SZ t−1

]
+ ∆t

[
ñG 0
0 ñG

][ SX t−1
SZ t−1

]
. (13)

Following the mathematical deduction reported by Lee et al. [39], Equation (13) can
be developed as[ SX−t

SZ−t

]
=

[
I − ∆t

[
ỹG,t−1 0

0 ỹG,t−1

]][ SX t−1
SZ t−1

]
+ ∆t

[
−SX̃ t−1 0

0 −SZ̃ t−1

][
nG
nG

.
]

(14)

Thus, from Equation (14), the transition matrix At−1 and the process noise wt−1 can
be defined as

At−1 =

[
I − ∆t

[
ỹG,t−1 0

0 ỹG,t−1

]]
, (15)

wt−1 =·∆t

[
−SX̃ t−1 0

0 −SZ̃ t−1

][
nG
nG

]
. (16)

Then, the process noise covariance matrix Qt−1 defined by E
[
wt−1wT

t−1
]

can be rede-
fined using Equation (16) as

Qt−1 = −∆t2

[
SX̃ t−1 0

0 SZ̃ t−1

]
ΣG

[
SX̃ t−1 0

0 SZ̃ t−1

]
, (17)

where ΣG, defined by E
[
nGnT

G
]
, is the covariance matrix of the gyroscope measurements

noise and is established equal to

ΣG =

[
σ2

G 0
0 σ2

G

]
. (18)

In Equation (18), σ2
G is obtained in a previous characterization step and is a 3 × 3 matrix

where the gyroscope noise variances of the x-, y-, and z-directions are in the main diagonal.
The measurement model is based on the accelerometer and magnetometer measure-

ments since they give the spatial reference to correct the estimation error in the process
model. As in [41], the error of the predicted acceleration is defined as

a−ε,t = a−t − at, (19)

where a−t is the a priori estimate of the external acceleration of the current time step and is
defined as caa+t−1, which is available from a previous time. Note that the plus superscript
denotes the a posteriori estimate after the filter correction.

Therefore, using Equations (6) and (19), Equation (5) can be rewritten as

yA,t − caa+t−1 =
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vt =

[
nM

−a−ε,t + nA
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Since a−ε,t, nA, and nM are uncorrelated, the measurement noise covariance matrix,
Mt, defined by E

[
vtvT

t
]
, results in

Mt =

[
ΣM 0
0 Σacc + ΣA

]
, (26)

where ΣM, Σacc, and ΣA are the covariance matrices of the magnetometer measurement
noise, the acceleration model error, and the accelerometer measurement noise, respectively.
ΣM is defined as σ2

M, which is the 3 × 3 matrix where the magnetometer noise variances
of XYZ directions are in the main diagonal. As in [39], Σacc is defined as 3−1c2

a‖a+t−1‖
2 I,

where ‖a+t−1‖
2 is the square of the vector norm, and ΣA is set as σ2

A, the 3 × 3 matrix where
the accelerometer noise variances of XYZ directions are in the main diagonal.

Eventually, once
[ SX−t

SZ−t
]T are estimated, the external acceleration a+t can be

calculated by
a+t = yA,t −
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2.3. Experimental Study
2.3.1. The Objective of the Study

The objective of the study was to assess the reliability and repeatability of the proposed
system for the clinical evaluation of spine motility. To this end, six movements were
considered: three movements involving the articulations along the thoracic and lumbar
spine (anterior hip flexion, trunk lateral flexions, and trunk axial rotation) and three
involving the cervical spine (cervical axial rotation, cervical flexion/extension, and cervical
lateral flexion).

2.3.2. Recruitment

Fifteen healthy participants were invited to participate in the study (eight male and
seven female). The inclusion criteria were being young adults without any mobility
impairment, history of diagnosis of spine or musculoskeletal ailment, or presence of
any joint or spinal pain at the time of the study. The individuals shared homogeneous
anthropometric characteristics such as weight, height, and body mass index (BMI) to
guarantee the same physical mobility capabilities among participants. The study was
approved by the Local Ethics Committee of the General Hospital of Mexico “Dr. Eduardo
Liceaga” (protocol code DI/03/17/471). All participants signed the informed consent form.

2.3.3. Experimental Procedure

The participants performed two repeated exercise sequences during complete sessions
on 2 days each, 1 week apart from the first to the second sequence. The sessions were carried
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out at approximately the same period during the day on mornings. All experiments and
recordings were conducted by the same operator to assess the repeatability of the system.

Sociodemographic data and anthropometric measurements were collected on the first
day of the study. Each day, every subject was equipped with 16 sensors along the spine,
one on the head occiput to assess the cervical movements, and 15 along the back. The
first back sensor was attached over the first sacral vertebra (S1) and the last was attached
over the last cervical vertebra (C7), leaving an equidistant separation between each sensor.
The distance between sensors was different on each subject depending on their height and
natural erect posture (Figure 2a). The back sensors were mounted directly on the skin with
double-sided tape, and the head sensor was mounted with a strap.

The spinal assessment protocol included six movements (Figure 2c–h), including
three from the original BASMI method: cervical rotation, anterior hip flexion, and trunk
side flexion. Instead of tragus-to-wall distance, we propose introducing two other head
movements, the cervical flexion/extension and cervical lateral flexion. Additionally, we
studied the trunk axial rotation along the lumbar and thoracic spine.

• Movement 1: anterior hip flexion.
• Movement 2: trunk lateral flexions to the left/right sides.
• Movement 3: trunk axial rotation.
• Movement 4: cervical axial rotation.
• Movement 5: cervical flexion/extension.
• Movement 6: cervical lateral flexion.

The operator kindly guided the participants using standardized instructions through
each movement. Participants were asked to perform their maximum effort without feel-
ing any pain or discomfort to reach their full range of motion (ROM). Each movement
was repeated three times at a slow and constant speed; before starting every series, the
participants stood in a natural upright position with their feet shoulder-width apart for
5 s to set the baseline position of each sensor. All participants performed the sequence of
six-movement repetitions strictly in the same order to prevent any possible bias due to
arbitrary execution of the exercise routines.

2.3.4. Measurements

For all subjects, the Euler angles in ZYX representation were simultaneously estimated
for each MIMU for all six movement series. For movement 1, movement 2, and movement 3,
15 sensor units were considered, from MIMU1 to MIMU15, placed approximately over
the S1 sacral vertebra up to the C7 cervical vertebra. Thus, there were seven sensor units
(MIMUs 1–7) for the lumbar spine and eight units (MIMUs 8–15) for the thoracic spine.
For movement 4, movement 5, and movement 6, three sensor units were considered, from
MIMU14 to MIMU16, with MIMU14 between thoracic vertebrae T1 and T2, MIMU15 at the
C7 vertebra, and MIMU16 over the occipital area of the head. Then, the ranges of motion
(RoM) of frontal flexions of movement 1 and cervival flexions/extensions of movement 5
were estimated from the maximum and minimum roll angles of every sensor unit. The
RoM of lateral flexions of movement 2 and movement 6 were estimated from maximum
and minimum pitch angles; RoM of axial rotations of movement 3 and movement 4 were
estimated analogously from yaw angles.

2.3.5. Statistical Analysis

The uniformity of the age and anthropometric measurements was statistically eval-
uated using the t-test. Descriptive statistics (mean, SD, and ranges) over the RoM of the
participants per MIMU, grouping for the first and second measurements, were computed.

To analyze the repeatability of the system. The intraclass correlation coefficient (ICC)
was first computed for each MIMU, for each movement separately from the mean, for
different pairs of measurements. Then, the grand ICC was estimated per movement, group-
ing the pairs of measurements of all the corresponding MIMUs involved in the respective
exercise. ICC interpretation, based on [45], was as follows: <0.4 = poor, 0.41 to 0.6 = regular,
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0.61 to 0.8 = good, and >0.81 = excellent. A significance level of p < 0.05 was assumed for
all statistical tests. The statistical tests and analysis were carried out in Matlab R19 and
SPSS 20.

3. Results

The study group comprised 15 healthy participants. A one-sample Student’s t-test
(two-tailed version) confirmed the homogeneity of participants’ anthropometric character-
istics, resulting in significant descriptive statistics for all the metrics, as shown in Table 1.
Thirteen participants completed the entire study. Data from two participants were dis-
carded for analysis because they had issues with the fall of some sensors

Table 1. The participants’ anthropometric information shows a uniform population, indicating
similar physical conditions and capacities for performing the spine and head movements.

Subjects Anthropometric Data

Participants

Women 7

Men 8

mean ± SD p value (t-test)

Age 31.26 ± 5.79 <0.0001

Weight (kg) 67.15 ± 10.18 <0.0001

Height (m) 1.67 ± 0.07 <0.0001

BMI (kg/m2) 24.04 ± 2.43 <0.0001

Back height (cm) 49.39 ± 3.02 <0.0001

Separation between MIMU
(cm) 3.52 ± 0.21 <0.0001

Spinal Mobility Data

Descriptive statistics of the RoM for each MIMU and every movement are reported as
angles in Table 2. The RoM obtained for every section of the spine was consistent with that
reported in [46–48].

Table 2. Descriptive statistics and intraclass correlation of registered ranges of motion by the IMUs for
the MIMUs for the trunk and head movements, considering two repeated series of three movements
by the same operator.

Trunk Movements Head Movements

Movement 1 Movement 2 Movement 3 Movement 4 Movement 5 Movement 6

IMU Mean SD ICC Mean SD ICC Mean SD ICC IMU Mean SD ICC Mean SD ICC Mean SD ICC

1 61.8 12.0 0.60 4.4 2.9 0.26 13.5 10.8 0.59 14 7.3 7.4 0.84 14.0 11.2 0.92 7.3 7.4 0.86
2 69.0 12.8 0.52 9.2 6.8 0.22 12.8 16.7 0.44 15 9.1 7.3 0.87 24.7 17.1 0.82 10.9 8.7 0.71
3 84.7 15.1 0.91 14.1 8.4 0.45 29.8 29.9 0.54 16 96.1 35.3 0.67 73.8 18.8 0.72 60.8 12.5 0.66
4 95.2 11.8 0.63 26.0 11.6 0.71 11.9 13.8 0.01
5 92.7 8.7 0.83 28.8 13.7 0.57 38.5 32.6 0.38
6 102.0 10.6 0.85 40.7 14.1 0.67 55.6 50.5 0.84
7 105.8 9.7 0.74 49.6 15.4 0.74 11.7 13.0 0.03
8 113.6 12.7 0.82 53.2 18.1 0.37 36.0 41.8 0.84
9 116.5 11.7 0.80 59.4 23.6 0.77 38.7 28.4 0.45
10 120.8 11.7 0.77 62.9 20.0 0.67 31.3 29.5 0.43
11 123.8 12.3 0.82 66.2 19.6 0.81 19.1 23.7 0.87
12 123.8 11.9 0.73 68.0 21.0 0.65 34.3 36.0 0.77
13 110.1 13.6 0.77 81.6 27.9 0.68 37.6 25.4 0.90
14 114.0 15.7 0.84 86.3 29.0 0.70 38.8 32.2 0.46
15 112.8 17.7 0.79 102.3 40.7 0.79 26.5 26.2 0.90

ICC scores highlighted in bold indicate a good to excellent level of reproducibility of the corresponding MIMU
measurement.
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The reliability per sensor was assessed, in general showing good to excellent correla-
tion in movements 1, 2, 4, 5, and 6 for most MIMUs.

Figure 5 presents bar plots showing the medians, ranges, and outliers obtained from
each combination of 16 IMU × 2 measurements × 6 movements.

Bland–Altman plots in Figure 6 show the agreements of the RoM for every movement.
As can be observed, the system presents good agreement for five of the six studied exercises,
with few observed outliers, except for trunk axial rotation (Figure 6c).

Table 3 presents the detailed descriptive statistics of the corresponding Bland–Altman
plots in Figure 6, confirming the high repeatability for frontal and lateral flexions of the
lumbar–thoracic spine and the cervical spine in axial rotation, flexion/extension, and lateral
flexions. Additionally, it shows good repeatability for the axial rotation of the trunk.

Figure 5. Box plots showing the distribution of the observed RoM with the different MIMUs placed
along the subjects’ back and head for the six movements: (a) anterior hip flexions; (b) trunk lateral
flexions; (c) trunk axial rotations; (d) cervical axial rotation; (e) cervical flexion/extension; (f) cervical
lateral flexions. The blue bars correspond to the first series of measurements, while the green ones
correspond to the second series of measures, * and ◦ indicate observed outliers.

Table 3. Overall intraclass correlation analysis to assess the repeatability of the system for the six
considered movements.

Movement Articulations Excercise IMUs ICC

1 Lumbar–thoracic Anterior hip flexion MIMU1–MIMU15 0.96
2 Lumbar–thoracic Lateral flexion MIMU1–MIMU15 0.93
3 Lumbar–thoracic Axial rotation MIMU1–MIMU15 0.72
4 Cervical Axial rotation MIMU14–MIMU16 0.93
5 Cervical Flexion/extension MIMU14–MIMU16 0.92
6 Cervical Lateral flexion MIMU14–MIMU16 0.97

ICC scores highlighted in bold indicate an excellent level of reproducibility of the system for the corresponding
movement.
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Figure 6. Bland–Altman plots presenting the mean difference plots showing the agreement between
the two repeated measurements of the ranges of motion of the inertial measurement units placed
along the subjects’ back and head for the six movements: (a) anterior hip flexions; (b) trunk lateral
flexions; (c) trunk axial rotations; (d) cervical axial rotation; (e) cervical flexion/extension; (f) cervical
lateral flexions.

4. Discussion

The purpose of this study was to demonstrate the reliability and repeatability of
the proposed novel system. The system comprises 16 miniaturized sensors to assess
the entire spine, including the cervical, thoracic, and lumbar sections, unlike previous
studies [31,32,34] which used only two sensors to evaluate the cervical spine and two
sensors to assess the lumbar spine in separate tests. This configuration with more sensors
allows obtaining more motion information at the highest spatial resolution than existing
approaches. For this reason, it is expected that the system would provide metrics more
sensitive to changes in the progress of the impairment or improvements due to treatments
in patients with musculoskeletal disorders, especially disabilities due to AS.

The intrarater reliability analysis for all the MIMUs (Table 2) showed mostly a good
(0.61 < ICCs < 0.8) to excellent (>0.81) intraclass correlation coefficient. In particular, for the
anterior hip flexion exercise (Movement 1), seven of the 15 used sensors presented a good
level of reliability, as exhibited by the achieved ICC, six presented an excellent reliability
level, and only two presented a moderate level. These two were placed at the bottom part
of the lumbar spine.

For the trunk lateral flexion exercise (Movement 2), for the same 16 sensors, the system
presented 10 sensors with a good intraclass correlation coefficient but five sensors with poor
coefficients, three of them located in the lumbar region. The observed reliability level of the
three sensors placed at the lumbar site showed similar behavior to the coefficient reported
in [34] of the sensor located in the same anatomical region. Sensors 1 to 5 showed a poor
ICC due to their position on the participants’ back. For MIMU 1, a possible explanation is
that it was too close to the participants’ clothes, which may have induced erratic sliding
of the sensor during the exercises. For sensors 2–5, the observed variability in the lumbar
ICCs was likely due to anatomical factors rather than sensor error. Because participants
have different body compositions (adipose tissue), a narrower channel is generated in the



Sensors 2022, 22, 1332 13 of 16

center of the back between the muscles, making it difficult to place the sensors and keep
them in place without undesired sliding motions given the skin displacements.

For trunk axial rotation (Movement 3), the system did not give helpful information,
at least not for the entire spine, in the tested configuration. The ICCs were poor in almost
all sensors, except four of five sensors placed on the upper thoracic spine (MIMU 11–15).
A suitable explanation is that the localization of the sensors was not optimal in the selected
configuration. In other words, placing them along the spine also causes erratic sliding
motions of the sensors due to skin deformation during the exercises. Furthermore, a
signal-to-noise problem is plausible due to the noise increment with the erratic movements
of the sensors. Thus, it is necessary to continue researching the best configuration to
place the sensors for axial rotation. The design presented by Molnar et al. [30] could be
a better option since the sensors were placed on both sides of the spine at sites with less
skin displacement.

Concerning the exercises involving cervical movements (Movements 4–6), sensor 16
was attached with a strap to the head occiput. This sensor measures the range of motion
of the cervical spine with respect to the back. Variability in the cervical spine ranges of
motion was observed among participants, resulting in good but not excellent reliability.
We suspect that not all the participants performed their maximum ranges of motion in
trying to complete the series dynamically, as we were able to visually observe during
the experiments. Personal natural anatomical limitations despite the anthropometric
homogeneity of the population cannot be ruled out either. An option could be to record the
ranges of motion in static conditions, ensuring that the maximum range has been reached,
providing consistency in measurements. In any case, the dynamic recording of the exercises
could give valuable temporal and differential information for future research.

As can be observed, some factors influenced the variability of the system, some
attributed to the population itself, and some attributed to measurement errors. However,
following the overall intraclass correlation analysis to assess the global intraobserver
reliability of the system (Table 3), an excellent level of intraclass correlation was evidenced
for five of the six considered movements (i.e., Movements 1, 2, 4, 5, and 6), whereas one
had good ICC (Movement 3). These results indicate acceptable repeatability of the system
and, thus, feasibility for further clinical studies.

From the results of the intrarater variability, it is deduced that the system offers
advantages over manual clinical methods (BASMI) because it can provide the clinicians
with more relevant information on how the patient performs movements, as well as how it
is affected by the clinical condition, in terms of speed, smoothness of movements, continuity,
and fluidity, in a more systematic and controlled fashion, thereby reducing subjectivity.

As a limitation of the current study, for the moment, we evaluated the repeatability
of the system in static conditions considering the evaluation of the RoM; however, it
would be interesting and require extensive research effort to assess the reliability of the
system regarding the dynamic execution of the movements. This may be valuable for
introducing new metrics involving temporal patterns, movements phases, and abnormal
motion synergies not considered in current clinical practice.

Thus, as future work, an information reduction analysis can be done to obtain a more
efficient system, with only the necessary sensors and correct locations maintained for
providing important information and facilitating its practical use in clinical environments.
Furthermore, the design of an ergonomic suit and belt is needed. In any case, our proposed
system features the largest number of wearable sensors, allowing the investigation of new
and different configurations. This can be helpful to evaluate not only the spine but also
other joints such as the arms, legs, and fingers, which can also be affected by AS (or other
musculoskeletal conditions). Moreover, further studies need to be conducted to confirm
the inter-rater reliability involving at least two different observers.

Regarding the validity and accuracy of the system, the registered ranges of motion are
consistent with the literature on spinal biomechanics [46–48] and similar to those reported
by Franco et al. [33]. Even so, further study is needed to assess the accuracy of the system.
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Additionally, the study was conducted in a controlled environment where electromagnetic
noise was characterized. However, for its implementation in clinical practice, it is necessary
to enhance the Kalman filter to neutralize uncontrolled electromagnetic noise that may
not be adequately characterized, similarly to the measurement noise covariance reported
in [49,50]. Once again, more studies testing the repeatability of the instruments should be
considered in the future.

5. Conclusions

This paper presented the development and evaluation of a novel magnetic and inertial
measurement unit-based system to assess the entire spine’s motion. The system comprises
16 MIMUs unlike previous studies that used at most five sensors. The applied protocol
demonstrated the reliability of using the system to evaluate the entire spine, with an excel-
lent level of intraclass correlation (>0.81) for five of the six considered movements. The
present study introduced three movements (i.e., trunk rotation, cervical flexion/extension,
and cervical lateral flexion), unfeasible to evaluate using manual methods such as the
BASMI, the most used index for spine assessment in AS. However, it is necessary to con-
tinue researching the best configuration to place the sensors for axial rotation since the
proposed approach did not give helpful information. According to the tests performed,
spine evaluation using the proposed approach presents advantages over traditional meth-
ods. In addition, the quantity and configuration of the MIMUs allow obtaining more
objective information on the patient’s condition for a better and more timely diagnosis.
The system represents a valuable tool to investigate better and more accurate evaluation
metrics than current clinical methods.
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