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Abstract
To search a novel lead structure for antiphytopathogenic fungus agent, a series of novel psoralen derivatives possessing 
sulfonohydrazide or acylthiourea structure were designed and synthesized, and their fungicidal activity against seven phy-
topathogens was evaluated. Their structures were confirmed by melting points, 1H NMR, 13C NMR and HRMS, and the typi-
cal crystal structure was determined by X-ray diffraction for validation. Preliminary fungicidal activity showed that some of 
the title compounds exhibited certain-to-high fungicidal activity. Compound I-13 exhibited good fungicidal activity against 
Botrytis cinerea, Cercospora arachidicola and Physalospora piricola with  EC50 values of 12.49, 13.22 and 12.12 μg/mL, 
respectively. Compounds II-9 and II-15 showed over 90% inhibition against B. cinerea at 50 μg/mL in vitro. In particular, 
II-9 exhibited significant higher fungicidal activity with a lower  EC50 value of 9.09 μg/mL than the positive control YZK-
C22 (13.41 μg/mL). Our studies found that sulfonohydrazide or acylthiourea-containing psoralen derivatives were promising 
fungicide leads deserve for further study.

Graphical abstract

Keywords Psoralen · Sulfonohydrazide · Acylthiourea · Antifungal activity · Molecular docking

Introduction

Plant diseases caused by fungi have caused severe losses 
to agriculture in the world every year, even emerged threat 
to human health and global food security [1–4]. It is well Extended author information available on the last page of the article
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known that agrochemical application is one of a key measure 
for reducing crops loss caused by plant diseases in modern 
agriculture [5, 6]. However, the frequent application of tra-
ditional fungicides has brought a series of risks, such as 
environment pollution, resistance and so on [7, 8]. To tackle 
these serious problems, it is necessary to develop novel fun-
gicides with high activities, low residue, low toxicity and 
novel modes of action.

Natural product-based lead derivation has become one 
of the hotspots of drugs and agrochemicals development 
in recent years because of their low toxicity, specific tar-
gets and easy degradation [9–12]. Furanocoumarins are an 
important class of fused heterocyclic compounds (Fig. 1), 
which existed in a large number of natural products, of 
which most showed strong biological activity, especially 
pharmacological activity [13–15]. Psoralen, a typical 
furanocoumarin, is an important plant-derived drug inter-
mediate; the unique chemical structure makes it have a wide 
range of biological activities [16–18]. However, its appli-
cation in preventing plant disease is rarely reported so far. 
Sulfonyl hydrazine derivatives (Fig. 2A–C) have a wide 
range of biological activities, such as antifungal [19], anti-
tumor [20], antioxidant [21], antiviral activity [22] and so 
on. Moreover, the nitrogen atom of sulfonyl hydrazine as an 
electron-rich group can form hydrogen bonds with various 
residues of enzymes in organisms. Also, acylthiourea deriva-
tives (Fig. 2D–F) have a wide range of biological activities, 

such as antitumor [23], antifungal [24], antiviral [25] and 
herbicidal activity [26].

It is known that pyruvate kinase has four subtypes 
(PKM1, PKM2, PKL and PKR) in mammals, which are 
often used in the research of anti-cancer drugs [27–29]. 
Our group discovered that pyruvate kinase was a potential 
fungicidal target [30, 31]. Subsequently, a series of novel 
isothiazole-purines targeting PK with good fungicidal 
activity were synthesized in our previous studies [32]. To 
continue the fungicidal development based on this target, 
according to computer aided drug design (CADD) and 
homology modeling, here, a series of novel psoralen deriva-
tives containing sulfonylhydrazine or acylthiourea structure 
(Fig. 3) were rationally designed and synthesized, and they 
showed good affinity in docking simulation (Tables S1 and 
S2). Their fungicidal activity and structure–activity rela-
tionships (SARs) were studied. Moreover, the best active 
compounds were chosen for further validated by molecular 
docking simulation.

Results and discussion

Chemistry

The synthetic routes of the title compounds I and II 
are shown in Schemes 1, 2 and 3. The starting materi-
als 1 were treated with dimethyl acetylsuccinate 2 in the 
presence of sulfuric acid 98% to give the intermediates 
3. Compounds 3 was treated with the corresponding 
α-haloaryl ketone 4 in the presence of potassium car-
bonate and potassium iodide in anhydrous acetonitrile to 
give compounds 5. The intermediates 6 were obtained by 
reactions of compounds 5 and sodium hydroxide solution 
(1 mol/L) with propan-2-ol as the solvent, which further 
reacted with oxalyl chloride in dichloromethane to afford 
intermediates 8. The key intermediates 9 were synthesized Fig. 1  Structures of psoralen, imperation and byakangelicol

Fig. 2  Representative drugs and 
pesticides containing sulfonohy-
drazide or acylthiourea moiety

(A) (B) (C)
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through reaction between corresponding 8 and ammonium 
thiocyanate in the presence of anhydrous acetonitrile. The 
key intermediates 7 were synthesized by esterification and 
hydrazinolysis reaction from the compounds 6. Target 
compounds I were synthesized by reactions of compounds 

7 and different sulfonyl chloride with anhydrous pyridine 
as the solvent and had favorable yields. Target compounds 
II were synthesized by reactions of compounds 9 and dif-
ferent amine with anhydrous acetonitrile as the solvent and 
had favorable yields.

(B)

(E) (F)

Fig. 3  Design of the target compounds I and II 

Scheme 1  Synthetic route of 
intermediates 3

Scheme 2  Synthetic route of the title compounds I 
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Antifungal activity and SARs

The in vitro antifungal activity of the title compounds I and 
II against seven phytopathogens at 50 μg/mL are listed in 
Tables 1 and 2. For the series of target compounds I, some 
of compounds displayed obvious fungicidal activity against 
Alternaria solani, Botrytis cinerea, Cercospora arachidicola 
and Physalospora piricola at 50 μg/mL. Compounds I-2, 
I-4, I-7, I-9, I-11 and I-19 showed higher than 60% inhibi-
tion against A. solani, and more effective than the positive 
controls psoralen (56%) and YZK-C22 (58%) at the concen-
tration of 50 μg/mL. Furthermore, compounds I-13, I-14, 
I-16, I-18 and I-24 exhibited good fungicidal activity against 
C. arachidicola. It was worthy to note that compound I-13 
exhibited excellent fungicidal activities against B. cinerea, 
C. arachidicola and P. piricola at 50 μg/mL in vitro with 
67%, 72% and 63% inhibition rates, respectively. The bioas-
say results indicated that the general sequence of the effect 
of group  R1 in the benzene (I-3, I-6 and I-8) on antifungal 
activity was 4-F > 4-Cl > H. The bioactivities of compounds 
I-10 and I-15 declined in comparison with the correspond-
ing compounds I-7 and I-16 (I-7 vs I-15, I-10 vs I-16), and 
it was speculated that the sequence of the fungicidal activ-
ity of these compounds with  R2 was H >  CH3. Moreover, 
compounds I-3, I-5, I-9, I-14, I-17, I-19, I-21, I-23 and I-24 
had similar activities, and it was speculated that electronic 
effects of different groups in the benzene at group  R3 site had 
little influence on the fungicidal activity. For the series of 
target compounds II, some of compounds exhibited certain-
to-high fungicidal activity at 50 μg/mL. Several compounds 

exhibited excellent in vitro fungicidal activity against A. 
solani, B. cinerea, G. zeae and P. piricola at 50 μg/mL. 
Furthermore, compounds II-8, II-9, II-12, II-15, II-16 and 
II-20 showed over 60% inhibition against B. cinerea, and 
they are more effective than the positive control psoralen 
at the concentration of 50 μg/mL. In particular, compounds 
II-9 and II-15 exhibited outstanding activity (> 90%). It was 
also worthy to note that compound II-7 exhibited excellent 
in vitro fungicidal activity against A. solani, G. zeae and 
P. piricola at 50 μg/mL with 82%, 71% and 78% inhibi-
tion rates, respectively. On the whole, compounds with aryl 
group substitution (II-1-II-3, II-5, II-7 and II-16-II-18) at 
 R3 site showed better antifungal activity than alkyl substitute 
compounds (II-4, II-8 and II-10). Meanwhile, compounds 
with the group 4-arylthiazol-2-amine moiety (II-9 and II-
15) at  R3 site displayed excellent fungicidal activity against 
B. cinerea.

Median effective concentration  (EC50) values of several 
compounds with superior in vitro fungicidal activity were 
further tested, and the results are shown in Tables 3 and 4. 
For the series of target compounds I, as can be seen, com-
pound I-13 exhibited good antifungal activity against B. 
cinerea, C. arachidicola and P. piricola with an  EC50 value 
of 12.49, 13.22 and 12.12 μg/mL, respectively. Compounds 
I-2, I-4, I-7, I-9, I-11 and I-19 exhibited good fungicidal 
activity against A. solani, of which I-4 and I-7 displayed 
strong inhibition of the growth of A. solani with the  EC50 
value of 11.35 μg/mL and 13.42 μg/mL, respectively. Com-
pound I-7 not only effective against A. solani but also B. 
cinerea, with an  EC50 value of 25.43 μg/mL. Compounds 

Scheme 3  Synthetic route of the title compounds II 
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I-14, I-16, I-18 and I-24 exhibited good fungicidal activity 
against C. arachidicola, of which I-16 displayed strong inhi-
bition of the growth of C. arachidicola with an  EC50 value 
of 9.73 μg/mL, and it was more active than the positive con-
trol psoralen with a corresponding  EC50 value of 23.76 μg/
mL. For the series of target compounds II, the results indi-
cated that compound II-7 exhibited good antifungal activity 
against A. solani, G. zeae and P. piricola with  EC50 values 
of 15.26, 27.26 and 19.16 μg/mL, respectively. Compounds 
II-8, II-9, II-12, II-15, II-16 and II-20 exhibited good fun-
gicidal activity against B. cinerea, of which II-9 and II-15 
displayed strong inhibition of the growth of B. cinerea, with 
an  EC50 value of 9.09 μg/mL and 10.09 μg/mL, respectively. 
Compound II-15 is not only effective against B. cinerea but 
also C. arachidicola, with an  EC50 value of 31.19 μg/mL. 
Compound II-9 with 4-phenylthiazole-2-amine substitution 
at the  R3 site was the most effective compound against B. 
cinerea and could be used as an antifungal lead for further 
optimization.

Molecular docking analysis

In order to validate the possible mode of action of target 
compounds and further explain the SARs, the docking 
analysis of selected compounds (I-13 and II-9), psoralen 
and YZK-C22 was performed with pyruvate kinase of B. 
cinerea (BcPK). As shown in Fig. 4, compound I-13 formed 
four hydrogen bonds with the residues GLU98, ASP275, 
SER222 and LYS249, respectively. And the benzene ring 
of I-13 formed a π-π stacking interaction with the residue 
HIS63. Compound II-9 formed five hydrogen bonds with 
the amino acid residues ARG58 (3.05 and 3.15 Å), GLU98, 
ASP275 and LYS249, respectively, and also formed two π-π 
stacking interactions with the residues HIS63 and PHE223, 
respectively. While the positive controls psoralen and YZK-
C22 only formed two hydrogen bonds with the amino acid 
residues ASN60, HIS69 (for psoralen), and ASN60, LYS249 
(for YZK-C22), respectively. These results indicated that the 

Table 1  In vitro fungicidal 
activity of target compounds I 
against phytopathogens

a A. s: Alternaria solani, B. c: Botrytis cinerea, C. a: Cercospora arachidicola, G. z: Gibberella zeae, P. p: 
Physalospora piricola, P. s: Pellicularia sasakii, S. s: Sclerotinia sclerotiorum
b 3-(4-methyl-1,2,3-thiadiazol-5-yl)-6-(trichloromethyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole

Compd Mycelium growth inhibitory rate (%) at 50 μg/mL

A. sa B. c C. a G. z P. p P. s S. s

I-1 32 ± 2 24 ± 1 14 ± 1 23 ± 1 24 ± 1 23 ± 1 23 ± 1
I-2 62 ± 2 25 ± 0 42 ± 1 24 ± 1 31 ± 1 23 ± 1 25 ± 1
I-3 28 ± 2 39 ± 1 42 ± 1 27 ± 1 25 ± 1 15 ± 2 24 ± 1
I-4 71 ± 2 38 ± 2 40 ± 1 28 ± 1 35 ± 1 25 ± 1 16 ± 1
I-5 36 ± 3 41 ± 1 42 ± 1 27 ± 1 25 ± 1 22 ± 1 18 ± 1
I-6 47 ± 3 38 ± 2 40 ± 1 41 ± 1 26 ± 1 21 ± 0 23 ± 0
I-7 68 ± 2 61 ± 1 31 ± 1 26 ± 2 33 ± 1 38 ± 1 24 ± 1
I-8 38 ± 2 24 ± 1 44 ± 1 23 ± 1 20 ± 1 23 ± 0 25 ± 1
I-9 60 ± 2 26 ± 1 27 ± 1 22 ± 1 16 ± 1 19 ± 2 27 ± 1
I-10 9 ± 0 33 ± 0 25 ± 1 32 ± 0 5 ± 0 4 ± 1 19 ± 0
I-11 70 ± 0 42 ± 0 44 ± 1 39 ± 1 27 ± 1 24 ± 2 20 ± 1
I-12 57 ± 2 24 ± 1 35 ± 1 32 ± 1 22 ± 1 24 ± 1 28 ± 1
I-13 41 ± 2 67 ± 1 72 ± 1 34 ± 1 63 ± 1 23 ± 1 31 ± 1
I-14 52 ± 0 27 ± 0 66 ± 0 39 ± 1 26 ± 2 14 ± 1 23 ± 1
I-15 20 ± 1 37 ± 1 27 ± 0 30 ± 1 12 ± 0 7 ± 1 14 ± 0
I-16 27 ± 0 31 ± 1 77 ± 1 23 ± 1 26 ± 2 18 ± 1 27 ± 1
I-17 38 ± 2 34 ± 0 41 ± 1 24 ± 2 26 ± 2 25 ± 1 25 ± 1
I-18 32 ± 2 37 ± 1 64 ± 0 23 ± 1 67 ± 1 21 ± 0 30 ± 2
I-19 65 ± 2 21 ± 1 33 ± 1 30 ± 1 38 ± 0 26 ± 2 24 ± 1
I-20 33 ± 0 29 ± 2 39 ± 1 23 ± 1 22 ± 1 30 ± 1 24 ± 1
I-21 42 ± 3 43 ± 1 43 ± 0 40 ± 2 31 ± 1 14 ± 1 29 ± 1
I-22 36 ± 3 41 ± 1 42 ± 1 27 ± 1 25 ± 1 22 ± 1 18 ± 1
I-23 33 ± 0 24 ± 1 33 ± 1 22 ± 1 21 ± 1 38 ± 2 28 ± 1
I-24 37 ± 2 26 ± 1 63 ± 1 29 ± 1 18 ± 1 27 ± 1 28 ± 1
Psoralen 56 ± 1 50 ± 1 65 ± 1 63 ± 1 44 ± 1 52 ± 0 58 ± 1
YZK-C22b 58 ± 1 72 ± 1 74 ± 1 75 ± 1 57 ± 1 81 ± 1 61 ± 1
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Table 2  In vitro fungicidal activity of target compounds II against phytopathogens

Compd Mycelium growth inhibitory rate (%) at 50 μg/mL

A. s B. c C. a G. z P. p P. s S. s

II-1 13 ± 0 29 ± 0 26 ± 1 33 ± 1 7 ± 0 21 ± 1 9 ± 2
II-2 0 39 ± 1 30 ± 1 24 ± 1 18 ± 1 8 ± 1 12 ± 0
II-3 43 ± 1 44 ± 1 27 ± 0 41 ± 1 19 ± 1 1 ± 1 16 ± 2
II-4 7 ± 0 44 ± 1 24 ± 0 16 ± 1 6 ± 1 12 ± 1 9 ± 1
II-5 18 ± 1 37 ± 1 30 ± 1 19 ± 0 10 ± 0 8 ± 1 10 ± 1
II-6 4 ± 0 35 ± 1 27 ± 0 16 ± 1 11 ± 1 17 ± 0 11 ± 1
II-7 82 ± 1 39 ± 1 23 ± 1 71 ± 1 78 ± 0 9 ± 0 9 ± 0
II-8 0 64 ± 0 24 ± 1 27 ± 1 8 ± 1 10 ± 1 16 ± 0
II-9 33 ± 0 100 33 ± 0 40 ± 1 33 ± 1 52 ± 0 16 ± 1
II-10 17 ± 0 52 ± 1 24 ± 1 33 ± 1 17 ± 0 12 ± 0 18 ± 1
II-11 9 ± 0 41 ± 1 23 ± 1 31 ± 1 14 ± 1 25 ± 1 11 ± 1
II-12 10 ± 1 69 ± 0 29 ± 0 30 ± 1 8 ± 1 15 ± 1 17 ± 1
II-13 12 ± 1 49 ± 0 27 ± 1 33 ± 1 19 ± 1 19 ± 1 19 ± 2
II-14 0 33 ± 1 26 ± 1 24 ± 1 19 ± 1 4 ± 1 10 ± 1
II-15 16 ± 1 92 ± 1 61 ± 1 36 ± 0 17 ± 0 4 ± 1 19 ± 2
II-16 0 66 ± 1 14 ± 1 25 ± 1 7 ± 0 10 ± 1 5 ± 1
II-17 9 ± 0 33 ± 1 24 ± 0 33 ± 1 12 ± 0 9 ± 2 6 ± 1
II-18 0 31 ± 0 21 ± 1 23 ± 0 15 ± 1 14 ± 2 12 ± 0
II-19 23 ± 1 44 ± 0 24 ± 0 22 ± 1 17 ± 0 13 ± 1 18 ± 1
II-20 7 ± 1 60 ± 0 39 ± 1 36 ± 0 20 ± 0 20 ± 0 11 ± 1
II-21 13 ± 0 49 ± 0 31 ± 0 33 ± 1 0 33 ± 1 13 ± 1
Psoralen 56 ± 1 50 ± 1 65 ± 1 63 ± 1 44 ± 1 52 ± 0 58 ± 1
YZK-C22 58 ± 1 72 ± 1 74 ± 1 75 ± 1 57 ± 1 81 ± 1 61 ± 1

Table 3  The in vitro antifungal  EC50 of selected compounds I 

Fungi Compd Regression equation R2 EC50 (μg/mL)

A. solani I-2 y = 1.8398 + 2.1715 x 0.9744 28.53
I-4 y = 3.0998 + 1.8010 x 0.9085 11.35
I-7 y = 3.1593 + 1.6323x 0.9537 13.42
I-9 y = 3.1128 + 1.4142 x 0.9649 21.60
I-11 y = 2.1930 + 1.9878 x 0.9903 25.83
I-19 y = 2.5881 + 1.6825 x 0.9935 27.13

B. cinerea I-7 y = 3.3449 + 1.1777 x 0.9807 25.43
I-13 y = 3.1912 + 1.6498 x 0.9227 12.49
YZK-C22 [32] y = 2.9305 + 1.8358 x 0.9630 13.41

C. arachidicola I-13 y = 2.7800 + 1.9802 x 0.9549 13.22
I-14 y = 2.2460 + 1.8463 x 0.9941 31.02
I-16 y = 3.5285 + 1.4890 x 0.9745 9.73
I-18 y = 1.8529 + 2.0150 x 0.9933 36.46
I-24 y = 2.5223 + 1.6741 x 0.9975 30.20
Psoralen y = 1.6622 + 2.4260 x 0.9308 23.76

P. piricola I-13 y = 3.1335 + 1.7227 x 0.9175 12.12
I-18 y = 3.4516 + 1.4457 x 0.9433 11.78
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Fig. 4  Docking modes of I-13 (A), II-9 (B), Psoralen (C) and YZK-C22 (D) with B. cinerea PK

Table 4  The in vitro antifungal  EC50 of selected compounds II 

Fungi Compd Regression equation R2 EC50 (μg/mL)

A. solani II-7 y = 2.0607 + 2.4837 x 0.9856 15.26
B. cinerea II-8 y = 2.1437 + 1.9580 x 0.9878 28.76

II-9 y = 3.2680 + 1.8065 x 0.9751 9.09
II-12 y = 1.8766 + 2.0810 x 0.9702 31.69
II-15 y = 2.8630 + 2.1287 x 0.9813 10.09
II-16 y = 2.4977 + 1.7962 x 0.9629 24.72
II-20 y = 2.1781 + 1.8040 x 0.9970 36.66
YZK-C22 [32] y = 2.9305 + 1.8358 x 0.9630 13.41

C. arachidicola II-15 y = 1.9735 + 2.0257 x 0.9861 31.19
Psoralen y = 1.6622 + 2.4260 x 0.9308 23.76

G. zeae II-7 y = 1.9772 + 2.1058 x 0.9924 27.26
Psoralen y = 3.2638 + 1.1991 x 0.9832 28.05
YZK-C22 [32] y = 3.6197 + 1.7184 x 0.9972 6.36

P. piricola II-7 y = 2.0835 + 2.2743 x 0.9799 19.16
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target compounds possessed strong interaction with BcPK, 
exhibited good fungicidal activity.

It is well known that pyruvate kinase widely exists in ani-
mals, plants, microorganisms and culture cells. To further 
explore the selective toxicity of the target compounds with 
good fungicidal activity, the binding energy difference of com-
pounds I-13 or II-9 between pyruvate kinase of Homo sapi-
ens (HsPK) and BcPK was calculated by molecular docking 
comparison (Table S3). The docking results showed that the 
binding energy between I-13 or II-9 and BcPK was − 9.3 or 
− 8.1 kcal/mol, respectively, which was slightly higher than 
that between I-13 or II-9 and HsPK, with a corresponding 
binding energy of − 9.2 or − 7.9 kcal/mol, respectively. These 
results revealed that the designed compounds had a certain 
degree of selective toxicity in fungi and mammals.

Conclusions

A series of novel psoralen derivatives containing sulfonohy-
drazide or acylthiourea structure were rationally designed, 
synthesized, and their fungicidal activity was evaluated. 
The preliminary bioactivity showed that most of the target 
compounds possessed a certain degree of in vitro fungicidal 
activity at a concentration of 50 μg/mL. Particularly, com-
pounds I-13 and II-9 exhibited excellent fungicidal activity 
against B. cinerea with an  EC50 value of 12.49 μg/mL and 
9.09 μg/mL, respectively. Furthermore, molecular docking 
results showed that I-13 and II-9 can be well docked into the 
active site of the enzyme B. cinerea PK. These results dem-
onstrate that psoralen derivatives bearing sulfonohydrazide 
or acylthiourea could be novel fungicide lead compounds 
for further studies.

Experimental

Instruments and reagents

1H NMR and 13C NMR spectra were obtained on a Bruker 
AV400 spectrometer (400 Hz) with tetramethylsilane (TMS) 
as the internal standard and DMSO-d6 as solvent. Chemical 
shift values (δ) were reported in ppm, and coupling constants 
(J) were reported in Hz. Melting points were obtained using 
an X-4 binocular microscope melting point apparatus and 
were uncorrected. High-resolution mass spectra (HRMS) 
data were obtained on an Agilent 6520 Q-TOF LC/MS 
instrument (California, United States). Crystal structure was 
collected on a Rigaku 007 Saturn 70 diffractometer (Rigaku, 
Tokyo, Japan). Column chromatography purification was 
performed with silica gel (100–200 mesh, Qingdao, China). 
Reagents were all analytically or chemically pure and used 

as received. The intermediates 3, 5 and 6 were synthesized 
according to the literature [33] with some modifications.

General synthetic procedure for target compounds I

To a solution of the intermediates 7 (0.29 mmol) in pyridine 
(10 mL), the corresponding sulfonyl chloride (0.29 mmol) 
was added. Then, the mixture was stirred at room temperature 
for 12 h. After the reaction was completed (checked by TLC), 
30 mL of water was added and then extracted with ethyl ace-
tate (3 × 15 mL), the organic layer was combined and washed 
with dilute hydrogen chloride (1 mol/L, 2 × 20 mL) and brine 
(3 × 10 mL), dried with anhydrous sodium sulfate, and then 
concentrated in vacuum. The residue was purified by col-
umn chromatography on silica gel using dichloromethane/
methanol (υ/υ, 20:1) as eluent to give the target compounds I.

Data for 2,4-dichloro-N'-(2-(3-(4-chlorophenyl)-5-
methyl-7-oxo-7H-furo[3,2-g]chromen-6-yl)acetyl)benze-
nesulfonohydrazide (I-1): White solid; Yield, 81%; m.p. 
136–137 ℃. 1H NMR (400 MHz, DMSO-d6) δ 10.30 (s, 
1H, CO–NH–NH–SO2), 10.17 (s, 1H, CO–NH–NH–SO2), 
8.46 (s, 1H, Ar–C=CH–O), 8.06 (s, 1H, Ar–H), 7.94 (d, 
J = 8.5 Hz, 1H, Ar–H), 7.80 (d, J = 8.0 Hz, 2H, Ar–H), 
7.73 (d, J = 12.4  Hz, 2H, Ar–H), 7.57 (d, J = 8.1  Hz, 
2H, Ar–H), 7.47 (d, J = 8.3  Hz, 1H, Ar–H), 3.44 (s, 
2H, CH2–CONH), 2.33 (s, 3H, C=C–CH3). 13C NMR 
(101 MHz, DMSO-d6) δ 168.76 (s), 160.94 (s), 156.46 
(s), 150.40 (s), 150.20 (s), 145.14 (s), 138.68 (s), 136.28 
(s), 133.87 (s), 133.17 (s), 132.84 (s), 131.50 (s), 130.02 
(s), 129.60 (s), 129.37 (s), 127.59 (s), 122.97 (s), 120.63 
(s), 118.19 (s), 117.30 (s), 116.91 (s), 99.97 (s), 32.27 (s), 
16.05 (s). HRMS (ESI) m/z: calcd. for  C26H17NaCl3N2O6S 
([M +  Na]+) 612.9765, found 612.9763.

Data for N'-(2-(5-methyl-7-oxo-3-phenyl-7H-furo[3,2-
g]chromen-6-yl)acetyl)cyclopropanesulfonohydrazide 
(I-2): White solid; Yield, 74%; m.p. 224–225 ℃. 1H 
NMR (400  MHz, DMSO-d6) δ 10.28 (d, J = 2.9  Hz, 
1H, CO–NH–NH–SO2), 9.46 (d, J = 3.0  Hz, 1H, 
CO–NH–NH–SO2), 8.48 (s, 1H, Ph-C=CH–O), 8.20 (s, 
1H, Ar–H), 7.84–7.79 (m, 3H, Ar–H), 7.55 (t, J = 7.6 Hz, 
2H, Ar–H), 7.43 (t, J = 7.4 Hz,1H, Ar–H), 3.62 (s, 2H, 
CH2-CONH), 2.54 (s, 3H, C=C–CH3), 2.47–2.41 (m, 1H, 
 SO2-CH(CH2)2), 1.01–0.78 (m, 4H, CH(CH2)2). 13C NMR 
(101 MHz, DMSO-d6) δ 168.55 (s), 160.72 (s), 156.03 
(s), 149.95 (s), 144.36 (s), 130.65 (s), 129.20 (s), 127.82 
(s), 127.22 (s), 122.83 (s), 121.27 (s), 117.97 (s), 117.02 
(s), 116.67 (s), 99.53 (s), 32.00 (s), 29.31 (s), 15.76 (s), 
5.13 (s). HRMS (ESI) m/z: calcd. for  C23H20NaN2O6S 
([M +  Na]+) 475.0934, found 475.0930.

Data for 4-methoxy-N '-(2-(5-methyl-7-oxo-3-phe-
nyl-7H-furo[3,2-g]chromen-6-yl)acetyl)benzenesul-
fonohydrazide (I-3): White solid; Yield, 74%; m.p. 
222–223 ℃. 1H NMR (400 MHz, DMSO-d6) δ 10.23 (d, 
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J = 3.2 Hz, 1H, CO–NH–NH–SO2), 9.69 (d, J = 3.3 Hz, 
1H, CO–NH–NH–SO2), 8.48 (s, 1H, Ph-C=CH–O), 
8.16 (s, 1H, Ar–H), 7.84–7.79 (m, 3H, Ar–H), 7.72 (d, 
J = 8.7 Hz, 2H, Ar–H), 7.55 (t, J = 7.6 Hz, 2H, Ar–H), 7.44 
(t, J = 7.4 Hz, 1H, Ar–H), 6.99 (d, J = 8.8 Hz, 2H, Ar–H), 
3.73 (s, 3H, Ph-OCH3), 3.46 (s, 2H, CH2–CONH), 2.37 (s, 
3H, C=C–CH3). 13C NMR (101 MHz, DMSO-d6) δ 167.57 
(s), 162.76 (s), 160.59 (s), 156.03 (s), 149.94 (s), 149.83 
(s), 144.49 (s), 130.71 (s), 130.19 (s), 129.91 (s), 129.21 
(s), 127.84 (s), 127.22 (s), 123.11 (s), 117.85 (s), 116.88 
(s), 116.58 (s), 113.88 (s), 99.51 (s), 55.45 (s), 32.38 
(s), 15.63 (s). HRMS (ESI) m/z: calcd. for  C27H23N2O7S 
([M +  H]+) 519.1220, found 519.1216.

Data for 5-chloro-2,4-difluoro-N'-(2-(5-methyl-7-oxo-
3-phenyl-7H-furo[3,2-g]chromen-6-yl)acetyl)benzene-
sulfonohydrazide (I-4): White solid; Yield, 92%; m.p. 
201–202 ℃. 1H NMR (400 MHz, DMSO-d6) δ 10.50 (d, 
J = 2.1 Hz, 1H, CO–NH–NH–SO2), 10.42 (d, J = 1.8 Hz, 
1H, CO–NH–NH–SO2), 8.47 (s, 1H, Ph-C = CH–O), 8.14 
(s, 1H, Ar–H), 7.90 (t, J = 7.5 Hz, 1H, Ar–H), 7.81 (d, 
J = 7.3 Hz, 2H, Ar–H), 7.78–7.73 (m, 2H, Ar–H), 7.55 (t, 
J = 7.6 Hz, 2H, Ar–H), 7.43 (t, J = 7.4 Hz, 1H,Ar–H), 3.47 
(s, 2H, CH2–CONH), 2.38 (s, 3H, C=C–CH3). 13C NMR 
(101 MHz, DMSO-d6) δ 168.40 (s), 160.49 (s), 156.03 
(s), 149.91 (s), 149.79 (s), 144.34 (s), 131.52 (s), 130.63 
(s), 129.19 (s), 127.82 (s), 127.20 (s), 122.81 (s), 121.25 
(s), 117.57 (s), 116.75 (s), 116.58 (s), 99.51 (s), 31.87 (s), 
15.47 (s). HRMS (ESI) m/z: calcd. for  C26H18ClF2N2O6S 
([M +  H]+) 559.0537, found 559.0537.

Data for N'-(2-(5-methyl-7-oxo-3-phenyl-7H-furo[3,2-g]
chromen-6-yl)acetyl)benzenesulfonohydrazide (I-5): White 
solid; Yield, 72%; m.p. 267–268 ℃. 1H NMR (400 MHz, 
DMSO-d6) δ 10.27 (s, 1H, CO–NH–NH–SO2), 9.90 (s, 1H, 
CO–NH–NH–SO2), 8.47 (s, 1H, Ph–C=CH–O), 8.16 (s, 
1H, Ar–H), 7.81 (dd, J = 10.2, 4.3 Hz, 6H, Ar–H), 7.56 (dd, 
J = 12.9, 5.3 Hz, 2H, Ar–H), 7.50–7.42 (m, 3H, Ar–H), 3.47 
(s, 2H, CH2–CONH), 2.37 (s, 3H, C=C–CH3). 13C NMR 
(101 MHz, DMSO-d6) δ 168.18 (s), 161.09 (s), 156.53 (s), 
150.45 (s), 150.33 (s), 144.85 (s), 139.40 (s), 133.34 (s), 
131.14 (s), 129.71 (s), 129.21 (s), 128.33 (s), 128.09 (s), 
127.73 (s), 123.33 (s), 122.08 (s), 118.25 (s), 117.34 (s), 
117.08 (s), 100.02 (s), 32.35 (s), 16.14 (s). HRMS (ESI) 
m/z: calcd. for  C26H21N2O6S ([M +  H]+) 489.1115, found 
489.1114.

Data for N'-(2-(3-(4-fluorophenyl)-5-methyl-7-oxo-
7H-furo[3,2-g]chromen-6-yl)acetyl)-4-methoxybenze-
nesulfonohydrazide (I-6): White solid; Yield, 74%; m.p. 
257–258 ℃. 1H NMR (400 MHz, DMSO-d6) δ 10.23 (s, 1H, 
CO–NH–NH–SO2), 9.69 (s, 1H, CO–NH–NH–SO2), 8.47 (s, 
1H, Ar–C=CH–O), 8.13 (s, 1H, Ar–H), 7.89–7.85 (m, 2H, 
Ar–H), 7.80 (s, 1H, Ar–H), 7.71 (d, J = 8.7 Hz, 2H, Ar–H), 
7.38 (t, J = 8.6 Hz, 2H, Ar–H), 6.98 (d, J = 8.5 Hz, 2H, 
Ar–H), 3.73 (s, 3H, Ph-OCH3), 3.46 (s, 2H, CH2-CONH), 

2.37 (s, 3H, C=C–CH3). 13C NMR (101 MHz, DMSO-d6) 
δ 167.57 (s), 162.52 (s), 161.08 (s), 155.95 (s), 149.97 (s), 
149.85 (s), 144.61 (s), 130.22 (s), 129.90 (s), 129.34 (s), 
129.26 (s), 122.74 (s), 120.35 (s), 117.99 (s), 117.02 (s), 
116.53 (s), 116.20 (s), 115.98 (s), 113.87 (s), 99.51 (s), 
55.45 (s), 32.46 (s), 15.64 (s). HRMS (ESI) m/z: calcd. for 
 C27H22FN2O7S ([M +  H]+) 537.1126, found 537.1126.

Data for N'-(2-(5-methyl-7-oxo-3-phenyl-7H-furo[3,2-g]
chromen-6-yl)acetyl)methanesulfonohydrazide (I-7): White 
solid; Yield, 61%; m.p. 257–258 ℃. 1H NMR (400 MHz, 
DMSO-d6) δ 10.37 (d, J = 2.8 Hz, 1H, CO–NH–NH–SO2), 
9.50 (d, J = 2.9 Hz, 1H, CO–NH–NH–SO2), 8.48 (s, 1H, 
Ph-C=CH–O), 8.20 (s, 1H, Ar–H), 7.84–7.80 (m, 3H, 
Ar–H), 7.55 (t, J = 7.6 Hz, 2H, Ar–H), 7.44 (t, J = 7.4 Hz, 
1H, Ar–H), 3.62 (s, 2H, CH2–CONH), 2.91 (s, 3H, 
CH3–SO2NH), 2.54 (s, 3H, C=C–CH3). 13C NMR 
(101 MHz, DMSO-d6) δ 168.87 (s), 160.74 (s), 156.02 (s), 
149.95 (s), 149.92 (s), 144.36 (s), 130.64 (s), 129.20 (s), 
127.83 (s), 127.22 (s), 122.85 (s), 121.27 (s), 118.06 (s), 
116.88 (s), 116.71 (s), 99.54 (s), 39.68 (s), 32.22 (s), 15.71 
(s). HRMS (ESI) m/z: calcd. for  C21H19N2O6S ([M +  H]+) 
427.0958, found 427.0955.

Data for N'-(2-(3-(4-chlorophenyl)-5-methyl-7-oxo-
7H-furo[3,2-g]chromen-6-yl)acetyl)-4-methoxybenze-
nesulfonohydrazide (I-8): White solid; Yield, 54%; m.p. 
272–273 ℃. 1H NMR (400 MHz, DMSO-d6) δ 10.24 (s, 
1H, CO–NH–NH–SO2), 9.69 (s, 1H, CO–NH–NH–SO2), 
8.51 (s, 1H, Ar–C=CH–O), 8.13 (s, 1H, Ar–H), 7.82 (d, 
J = 18.9 Hz, 3H, Ar–H), 7.72 (d, J = 6.6 Hz, 2H, Ar–H), 
7.60 (s, 2H, Ar–H), 6.98 (d, J = 6.4 Hz, 2H, Ar–H), 3.72 
(s, 3H, Ph-OCH3), 3.46 (s, 2H, CH2-CONH), 2.37 (s, 3H, 
C=C–CH3). 13C NMR (101 MHz, DMSO-d6) δ 167.57 (s), 
162.52 (s), 160.55 (s), 156.34 (s), 150.00 (s), 149.79 (s), 
144.74 (s), 132.36 (s), 130.25 (s), 129.89 (s), 129.61 (s), 
129.16 (s), 128.97 (s), 122.74 (s), 120.19 (s), 117.88 (s), 
116.92 (s), 116.56 (s), 113.87 (s), 99.54 (s), 55.44 (s), 31.85 
(s), 15.63 (s). HRMS (ESI) m/z: calcd. for  C27H22ClN2O7S 
([M +  H]+) 553.0831, found 553.0826.

Data for 4-bromo-N'-(2-(3-(4-fluorophenyl)-5-me-
thyl-7-oxo-7H-furo[3,2-g]chromen-6-yl)acetyl)benze-
nesulfonohydrazide (I-9): White solid; Yield, 81%; m.p. 
269–270 ℃. 1H NMR (400 MHz, DMSO-d6) δ 10.33 (s, 
1H, CO–NH–NH–SO2), 10.05 (s, 1H, CO–NH–NH–SO2), 
8.46 (s, 1H, Ar–C=CH–O), 8.13 (s, 1H, Ar–H), 7.89–7.84 
(m, 2H, Ar–H), 7.80 (s, 1H, Ar–H), 7.73–7.67 (m, 4H, 
Ar–H), 7.38 (t, J = 8.9 Hz, 2H, Ar–H), 3.47 (s, 2H, CH2-
CONH), 2.38 (s, 3H, C=C–CH3). 13C NMR (101 MHz, 
DMSO-d6) δ 167.84 (s), 160.56 (s), 155.97 (s), 149.93 (s), 
149.88 (s), 144.35 (s), 138.16 (s), 131.78 (s), 129.68 (s), 
129.33 (s), 129.25 (s), 126.80 (s), 122.76 (s), 120.34 (s), 
117.75 (s), 116.84 (s), 116.53 (s), 116.20 (s), 115.99 (s), 
99.53 (s), 31.89 (s), 15.62 (s). HRMS (ESI) m/z: calcd. for 
 C26H19BrFN2O6S ([M +  H]+) 585.0126, found 585.0124.
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Data for N '-(2-(5,9-dimethyl-7-oxo-3-phenyl-7H-
furo[3,2-g]chromen-6-yl)acetyl)-4-iodobenzenesul-
fonohydrazide (I-10): Yellow solid; Yield, 73%; m.p. 
276–277 ℃. 1H NMR (400 MHz, DMSO-d6) δ 10.33 (s, 
1H, CO–NH–NH–SO2), 10.01 (s, 1H, CO–NH–NH–SO2), 
8.42 (s, 1H, Ph-C=CH–O), 7.92 (s, 1H, Ar–H), 7.84 (d, 
J = 7.8 Hz, 2H, Ar–H), 7.78 (d, J = 7.2 Hz, 2H, Ar–H), 
7.55 (d, J = 7.2 Hz, 4H, Ar–H), 7.44 (d, J = 7.1 Hz, 1H, 
Ar–H), 3.46 (s, 2H, CH2-CONH), 2.31 (s, 3H, C=C–CH3), 
1.21 (s, 3H, Ph-CH3). 13C NMR (101 MHz, DMSO-d6) δ 
167.82 (s), 160.56 (s), 154.99 (s), 149.95 (s), 147.54 (s), 
144.00 (s), 138.35 (s), 137.60 (s), 130.80 (s), 129.40 (s), 
129.17 (s), 127.72 (s), 127.09 (s), 121.77 (s), 121.47 (s), 
117.30 (s), 116.62 (s), 113.47 (s), 108.46 (s), 101.11 (s), 
31.79 (s), 15.68 (s), 8.24 (s). HRMS (ESI) m/z: calcd. for 
 C27H22IN2O6S ([M +  H]+) 629.0238, found 629.0234.

Data for 3,4-difluoro-N'-(2-(5-methyl-7-oxo-3-phenyl-
7H-furo[3,2-g]chromen-6-yl)acetyl)benzenesulfonohy-
drazide (I-11): White solid; Yield, 75%; m.p. 266–267 ℃. 
1H NMR (400 MHz, DMSO-d6) δ 10.37 (d, J = 2.8 Hz, 
1H, CO–NH–NH–SO2), 10.17 (d, J = 3.0  Hz, 1H, 
CO–NH–NH–SO2), 8.47 (s, 1H, Ph-C=CH–O), 8.16 (s, 1H, 
Ar–H), 7.83–7.78 (m, 4H, Ar–H), 7.68 (d, J = 8.8 Hz, 1H, 
Ar–H), 7.63–7.52 (m, 3H, Ar–H), 7.43 (t, J = 7.4 Hz, 1H, 
Ar–H), 3.49 (s, 2H, CH2-CONH), 2.41 (s, 3H, C=C–CH3). 
13C NMR (101 MHz, DMSO-d6) δ 168.50 (s), 161.06 (s), 
156.53 (s), 150.40 (s), 144.87 (s), 131.14 (s), 129.70 (s), 
128.33 (s), 127.71 (s), 123.32 (s), 121.77 (s), 118.18 (s), 
117.28 (s), 99.99 (s), 32.46 (s), 16.07 (s). HRMS (ESI) m/z: 
calcd. for  C26H18NaF2N2O6S ([M +  Na]+) 547.0746, found 
547.0745.

Data for N'-(2-(5-methyl-7-oxo-3-phenyl-7H-furo[3,2-
g]chromen-6-yl)acetyl)naphthalene-2-sulfonohydrazide 
(I-12): White solid; Yield, 87%; m.p. 265–266 ℃. 1H 
NMR (400  MHz, DMSO-d6) δ 10.32 (d, J = 2.4  Hz, 
1H, CO–NH–NH–SO2), 10.03 (d, J = 2.6  Hz, 1H, 
CO–NH–NH–SO2), 8.46 (s, 1H, Ph-C=CH–O), 8.43 (s, 1H, 
Ar–H), 8.10 (t, J = 8.5 Hz, 1H, Ar–H), 8.00 (d, J = 5.6 Hz, 
2H, Ar–H), 7.94 (d, J = 7.9  Hz, 1H, Ar–H), 7.81 (dd, 
J = 15.0, 8.1 Hz, 3H, Ar–H), 7.74 (s, 1H, Ar–H), 7.62–7.53 
(m, 4H, Ar–H), 7.45 (t, J = 7.2 Hz, 1H, Ar–H), 3.45 (s, 2H, 
CH2-CONH), 2.21 (s, 3H, C=C–CH3). 13C NMR (101 MHz, 
DMSO-d6) δ 167.75 (s), 160.55 (s), 155.97 (s), 149.83 (s), 
149.65 (s), 144.32 (s), 136.11 (s), 134.38 (s), 131.50 (s), 
130.63 (s), 129.20 (s), 128.68 (s), 127.84 (s), 127.64 (s), 
127.19 (s), 123.23 (s), 122.76 (s), 121.22 (s), 117.70 (s), 
116.70 (s), 116.39 (s), 99.46 (s), 31.87 (s), 15.43 (s). HRMS 
(ESI) m/z: calcd. for  C30H23N2O6S ([M +  H]+) 539.1271, 
found 539.1268.

Data for 1,1,1-trifluoro-N'-(2-(5-methyl-7-oxo-3-phe-
nyl-7H-furo[3,2-g]chromen-6-yl)acetyl)methanesulfono-
hydrazide (I-13): Yellow solid; Yield, 84%; m.p. 139–140 
℃. 1H NMR (400  MHz, DMSO-d6) δ 10.69 (s, 1H, 

CO–NH–NH–SO2), 8.48 (s, 1H, CO–NH–NH–SO2), 8.21 
(s, 1H, Ph-C=CH–O), 7.86–7.79 (m, 4H, Ar–H), 7.55 (t, 
J = 7.5 Hz, 2H, Ar–H), 7.43 (t, J = 7.4 Hz, 1H, Ar–H), 3.65 
(s, 2H, CH2-CONH), 2.51 (s, 3H, C=C–CH3). 13C NMR 
(101 MHz, DMSO-d6) δ 169.21 (s), 160.69 (s), 156.11 
(s), 150.25 (s), 150.04 (s), 144.39 (s), 130.70 (s), 130.64 
(s), 129.20 (s), 127.82 (s), 127.24 (s), 122.99 (s), 121.30 
(s), 117.60 (s), 116.87 (s), 116.74 (s), 99.57 (s), 32.14 (s), 
15.68 (s). HRMS (ESI) m/z: calcd. for  C21H15NaF3N2O6S 
([M +  Na]+) 503.0495, found 503.0491.

Data for N'-(2-(3-(4-fluorophenyl)-5-methyl-7-oxo-
7H-furo[3,2-g]chromen-6-yl)acetyl)benzenesulfonohy-
drazide (I-14): White solid; Yield, 92%; m.p. 234–235 ℃. 
1H NMR (400 MHz, DMSO-d6) δ 10.28 (d, J = 3.0 Hz, 
1H, CO–NH–NH–SO2), 9.90 (d, J = 3.2  Hz, 1H, 
CO–NH–NH–SO2), 8.46 (s, 1H, Ar–C=CH–O), 8.12 (s, 
1H, Ar–H), 7.86 (dd, J = 8.7, 5.5 Hz, 2H, Ar–H), 7.80 (dd, 
J = 8.1, 6.6 Hz, 3H, Ar–H), 7.58 (t, J = 7.4 Hz, 1H, Ar–H), 
7.49 (t, J = 7.5 Hz, 2H, Ar–H), 7.38 (t, J = 8.9 Hz, 2H, 
Ar–H), 3.47 (s, 2H, CH2-CONH), 2.36 (s, 3H, C=C–CH3). 
13C NMR (101 MHz, DMSO-d6) δ 167.67 (s), 160.57 (s), 
155.94 (s), 149.92 (s), 149.87 (s), 144.33 (s), 138.89 (s), 
132.84 (s), 129.34 (s), 129.26 (s), 128.71 (s), 127.59 (s), 
122.72 (s), 120.34 (s), 117.75 (s), 116.84 (s), 116.52 (s), 
116.19 (s), 115.98 (s), 99.50 (s), 31.84 (s), 15.64 (s). HRMS 
(ESI) m/z: calcd. for  C26H20FN2O6S ([M +  H]+) 507.1021, 
found 507.1020.

Data for N '-(2-(5,9-dimethyl-7-oxo-3-phenyl-7H-
furo[3,2-g]chromen-6-yl)acetyl)methanesulfonohydrazide 
(I-15): Light yellow solid; Yield, 78%; m.p. 255–256 ℃. 1H 
NMR (400 MHz, DMSO-d6) δ 10.38 (s, 1H, CO–NH–NH-
SO2), 9.50 (s, 1H, CO–NH–NH–SO2), 8.40 (s, 1H, Ph-
C=CH–O), 7.91 (s, 1H, Ar–H), 7.75 (d, J = 6.9 Hz, 2H, 
Ar–H), 7.51 (d, J = 7.2 Hz, 2H, Ar–H), 7.42 (d, J = 7.0 Hz, 
1H, Ar–H), 3.60 (s, 2H, CH2-CONH), 2.92 (s, 3H, 
 SO2-CH3), 2.45 (s, 3H, C=C–CH3), 2.44 (s, 3H, Ph-CH3). 
13C NMR (101 MHz, DMSO-d6) δ 168.93 (s), 160.69 (s), 
154.93 (s), 150.03 (s), 147.50 (s), 143.95 (s), 130.76 (s), 
129.13 (s), 127.69 (s), 127.04 (s), 121.68 (s), 121.40 (s), 
117.60 (s), 116.61 (s), 113.58 (s), 108.40 (s), 39.88 (s), 
32.20 (s), 15.70 (s), 8.13 (s). HRMS (ESI) m/z: calcd. for 
 C22H21N2O6S ([M +  H]+) 441.1115, found 441.1112.

Data for 4-iodo-N'-(2-(5-methyl-7-oxo-3-phenyl-
7H-furo[3,2-g]chromen-6-yl)acetyl)benzenesulfonohy-
drazide (I-16): White solid; Yield, 62%; m.p. 261–262 ℃. 
1H NMR (400 MHz, DMSO-d6) δ 10.29 (d, J = 2.9 Hz, 
1H, CO–NH–NH–SO2), 9.99 (d, J = 3.0  Hz, 1H, 
CO–NH–NH–SO2), 8.47 (s, 1H, Ph-C=CH–O), 8.16 (s, 
1H, Ar–H), 7.87–7.79 (m, 5H, Ar–H), 7.55 (dd, J = 12.0, 
5.2 Hz, 4H, Ar–H), 7.44 (t, J = 7.4 Hz, 1H, Ar–H), 3.47 
(s, 2H, CH2-CONH), 2.37 (s, 3H, C=C–CH3). 13C NMR 
(101 MHz, DMSO-d6) δ 168.31 (s), 161.09 (s), 156.56 (s), 
150.43 (s), 150.30 (s), 144.85 (s), 139.00 (s), 138.11 (s), 
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131.16 (s), 129.86 (s), 129.72 (s), 128.33 (s), 127.73 (s), 
123.40 (s), 121.79 (s), 118.25 (s), 117.33 (s), 117.04 (s), 
101.73 (s), 100.05 (s), 32.38 (s), 16.14 (s). HRMS (ESI) 
m/z: calcd. for  C26H20IN2O6S ([M +  H]+) 615.0081, found 
615.0080.

Data for 2,4-dichloro-N'-(2-(5-methyl-7-oxo-3-phenyl-
7H-furo[3,2-g]chromen-6-yl)acetyl)benzenesulfonohy-
drazide (I-17): White solid; Yield, 75%; m.p. 225–226 ℃. 
1H NMR (400 MHz, DMSO-d6) δ 10.31 (d, J = 2.3 Hz, 
1H, CO–NH–NH–SO2), 10.20 (d, J = 2.3  Hz, 1H, 
CO–NH–NH–SO2), 8.47 (s, 1H, Ph-C=CH–O), 8.15 (s, 1H, 
Ar–H), 7.94 (d, J = 8.5 Hz, 1H, Ar–H), 7.80 (dt, J = 8.3, 
2.0 Hz, 4H, Ar–H), 7.55 (dd, J = 10.5, 4.7 Hz, 2H, Ar–H), 
7.51–7.41 (m, 2H, Ar–H), 3.45 (s, 2H, CH2-CONH), 2.35 (s, 
3H, C=C–CH3). 13C NMR (101 MHz, DMSO-d6) δ 168.26 
(s), 160.53 (s), 156.05 (s), 149.90 (s), 149.84 (s), 144.36 
(s), 138.19 (s), 135.73 (s), 133.40 (s), 132.73 (s), 131.04 
(s), 130.64 (s), 129.21 (s), 127.84 (s), 127.21 (s), 127.15 
(s), 122.83 (s), 121.26 (s), 117.64 (s), 116.78 (s), 116.55 
(s), 99.53 (s), 31.75 (s), 15.59 (s). HRMS (ESI) m/z: calcd. 
for  C26H19Cl2N2O6S ([M +  H]+) 557.0335, found 557.0332.

Data for N'-(2-(5-methyl-7-oxo-3-phenyl-7H-furo[3,2-
g]chromen-6-yl)acetyl)pyridine-3-sulfonohydrazide (I-
18): White solid; Yield, 52%; m.p. 138–139 ℃. 1H NMR 
(400 MHz, DMSO-d6) δ 10.40 (s, 1H, CO–NH–NH–SO2), 
8.92 (d, J = 1.8  Hz, 1H, CO–NH–NH–SO2), 8.73 (dd, 
J = 4.8, 1.5 Hz, 1H, Ph-C=CH–O), 8.47 (s, 1H, Ar–H), 8.17 
(dt, J = 8.0, 3.2 Hz, 2H, Ar–H), 7.85–7.80 (m, 3H, Ar–H), 
7.78 (s, 1H, Ar–H), 7.53 (dd, J = 7.5, 5.4 Hz, 3H, Ar–H), 
7.44 (dd, J = 10.5, 4.3 Hz, 1H, Ar–H), 3.48 (s, 2H, CH2-
CONH), 2.38 (s, 3H, C=C–CH3). 13C NMR (101 MHz, 
DMSO-d6) δ 168.49 (s), 161.07 (s), 156.53 (s), 153.72 (s), 
150.42 (s), 150.40 (s), 148.36 (s), 144.85 (s), 136.06 (s), 
131.14 (s), 129.71 (s), 128.33 (s), 127.73 (s), 124.30 (s), 
123.34 (s), 121.78 (s), 118.11 (s), 117.31 (s), 117.12 (s), 
117.08 (s), 100.02 (s), 32.41 (s), 16.12 (s). HRMS (ESI) 
m/z: calcd. for  C25H20N3O6S ([M +  H]+) 490.1067, found 
490.1066.

Data for N'-(2-(5-methyl-7-oxo-3-phenyl-7H-furo[3,2-
g]chromen-6-yl)acetyl)-2-(trifluoromethoxy)benzene-
sulfonohydrazide (I-19): White solid; Yield, 71%; m.p. 
244–245 ℃. 1H NMR (400 MHz, DMSO-d6) δ 10.33 (d, 
J = 2.5 Hz, 1H, CO–NH–NH–SO2), 10.11 (d, J = 2.5 Hz, 1H, 
CO–NH–NH–SO2), 8.48 (s, 1H, Ph-C=CH–O), 8.16 (s, 1H, 
Ar–H), 7.94 (dd, J = 7.8, 1.6 Hz, 1H, Ar–H), 7.84–7.79 (m, 
3H, Ar–H), 7.72–7.66 (m, 1H, Ar–H), 7.56 (t, J = 7.6 Hz, 
2H, Ar–H), 7.45 (dd, J = 13.2, 7.6 Hz, 3H, Ar–H), 3.44 
(s, 2H, CH2-CONH), 2.34 (s, 3H, C=C–CH3). 13C NMR 
(101 MHz, DMSO-d6) δ 168.06 (s), 160.79 (s), 156.04 (s), 
149.91 (s), 149.85 (s), 144.38 (s), 135.14 (s), 131.78 (s), 
131.14 (s), 130.64 (s), 129.22 (s), 127.84 (s), 127.24 (s), 
126.84 (s), 122.82 (s), 121.28 (s), 121.05 (s), 117.60 (s), 
116.83 (s), 116.57 (s), 99.53 (s), 31.65 (s), 15.54 (s). HRMS 

(ESI) m/z: calcd. for  C27H20F3N2O7S ([M +  H]+) 573.0938, 
found 573.0935.

Data for 3-methyl-N'-(2-(5-methyl-7-oxo-3-phenyl-7H-
furo[3,2-g]chromen-6-yl)acetyl)benzenesulfonohydrazide 
(I-20): White solid; Yield, 62%; m.p. 257–258 ℃. 1H NMR 
(400 MHz, DMSO-d6) δ 10.25 (s, 1H, CO–NH–NH–SO2), 
9.86 (s, 1H, CO–NH–NH–SO2), 8.48 (s, 1H, Ph-C=CH–O), 
8.16 (s, 1H, Ar–H), 7.84–7.79 (m, 3H, Ar–H), 7.61 (s, 2H, 
Ar–H), 7.54 (d, J = 6.8 Hz, 2H, Ar–H), 7.43 (dd, J = 18.0, 
10.9 Hz, 3H, Ar–H), 3.48 (s, 2H, CH2-CONH), 2.39 (s, 3H, 
C=C–CH3), 2.33 (s, 3H, Ph-CH3). 13C NMR (101 MHz, 
DMSO-d6) δ 167.66 (s), 160.58 (s), 156.02 (s), 149.92 (s), 
149.83 (s), 144.36 (s), 138.93 (s), 138.32 (s), 133.47 (s), 
130.64 (s), 129.21 (s), 128.59 (s), 127.83 (s), 127.79 (s), 
127.23 (s), 124.73 (s), 122.82 (s), 121.27 (s), 117.78 (s), 
116.84 (s), 116.60 (s), 99.51 (s), 31.91 (s), 20.70 (s), 15.60 
(s). HRMS (ESI) m/z: calcd. for  C27H23N2O6S ([M +  H]+) 
503.1271, found 503.1272.

Data for 4-methyl-N '-(2-(5-methyl-7-oxo-3-phe-
nyl-7H-furo[3,2-g]chromen-6-yl)acetyl)benzenesul-
fonohydrazide (I-21): White solid; Yield, 61%; m.p. 
256–257 ℃. 1H NMR (400 MHz, DMSO-d6) δ 10.24 (d, 
J = 3.4 Hz, 1H, CO–NH–NH–SO2), 9.79 (d, J = 3.4 Hz, 
1H, CO–NH–NH–SO2), 8.47 (s, 1H, Ph-C=CH–O), 
8.15 (s, 1H, Ar–H), 7.84–7.79 (m, 3H, Ar–H), 7.68 (d, 
J = 8.2 Hz, 2H, Ar–H), 7.55 (t, J = 7.6 Hz, 2H, Ar–H), 7.45 
(d, J = 7.4 Hz, 1H, Ar–H), 7.27 (d, J = 8.1 Hz, 2H, Ar–H), 
3.46 (s, 2H, CH2–CO–NH), 2.36 (s, 3H, Ph-CH3), 2.27 (s, 
3H, C=C–CH3). 13C NMR (101 MHz, DMSO-d6) δ 167.62 
(s), 160.59 (s), 156.02 (s), 149.91 (s), 149.82(s), 144.36 (s), 
143.08 (s), 135.86 (s), 130.64 (s), 129.21 (s), 129.14 (s), 
127.83 (s), 127.73 (s), 127.21 (s), 122.81 (s), 121.26 (s), 
117.78 (s), 116.85 (s), 116.56 (s), 99.50 (s), 31.84 (s), 20.91 
(s), 15.60 (s). HRMS (ESI) m/z: calcd. for  C27H23N2O6S 
([M +  H]+) 503.1271, found 503.1267.

Data for 4-cyano-N'-(2-(5-methyl-7-oxo-3-phenyl-7H-
furo[3,2-g]chromen-6-yl)acetyl)benzenesulfonohydrazide 
(I-22): White solid; Yield, 74%; m.p. 253–254 ℃. 1H NMR 
(400 MHz, DMSO-d6) δ 10.42 (s, 1H, CO–NH–NH–SO2), 
8.42 (s, 1H, Ph-C=CH–O), 8.09 (s, 1H, CO–NH–NH–SO2), 
7.97 (s, 3H, Ar–H), 7.78 (d, J = 7.2 Hz, 3H, Ar–H), 7.72 
(s, 1H, Ar–H), 7.53 (t, J = 7.4 Hz, 3H, Ar–H), 7.42 (t, 
J = 7.3 Hz, 1H, Ar–H), 3.47 (s, 2H, CH2-CONH), 2.35 (s, 
3H, C=C–CH3). 13C NMR (101 MHz, DMSO-d6) δ 168.08 
(s), 160.54 (s), 156.00 (s), 149.82 (s), 144.29 (s), 143.27 
(s), 132.81 (s), 130.63 (s), 129.17 (s), 128.44 (s), 127.79 
(s), 127.17 (s), 122.81 (s), 121.22 (s), 117.60 (s), 116.71 (s), 
116.50 (s), 115.09 (s), 99.44 (s), 31.90 (s), 15.60 (s). HRMS 
(ESI) m/z: calcd. for  C27H19NaN3O6S ([M +  Na]+) 536.0887, 
found 536.0883.

Data for N'-(2-(5-methyl-7-oxo-3-phenyl-7H-furo[3,2-
g]chromen-6-yl)acetyl)-4-(trifluoromethyl)benzenesul-
fonohydrazide (I-23): White solid; Yield, 85%; m.p. 
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259–260 ℃. 1H NMR (400  MHz, DMSO-d6) δ 10.39 
(s, 1H, CO–NH–NH–SO2), 10.23 (d, J = 2.4  Hz, 1H, 
CO–NH–NH-SO2), 8.47 (s, 1H, Ph-C=CH–O), 8.13 (s, 1H, 
Ar–H), 8.01 (d, J = 8.2 Hz, 2H, Ar–H), 7.86 (d, J = 8.3 Hz, 
2H, Ar–H), 7.82–7.77 (m, 3H, Ar–H), 7.55 (t, J = 7.6 Hz, 
2H, Ar–H), 7.44 (t, J = 7.4 Hz, 1H, Ar–H), 3.47 (s, 2H, 
CH2-CONH), 2.34 (s, 3H, C=C–CH3). 13C NMR (101 MHz, 
DMSO-d6) δ 167.94 (s), 160.57 (s), 156.03 (s), 149.88 (s), 
149.82 (s), 144.35 (s), 142.80 (s), 130.63 (s), 129.19 (s), 
128.71 (s), 127.84 (s), 127.18 (s), 125.88 (s), 125.87 (s), 
122.83 (s), 122.18 (s), 121.24 (s), 117.66 (s), 116.75 (s), 
116.50 (s), 99.49 (s), 31.83 (s), 15.58 (s). HRMS (ESI) 
m/z: calcd. for  C27H20F3N2O6S ([M +  H]+) 557.0989, found 
557.0990.

Data for 4-(tert-butyl)-N'-(2-(3-(4-chlorophenyl)-5-
methyl-7-oxo-7H-furo[3,2-g]chromen-6-yl)acetyl)benze-
nesulfonohydrazide (I-24): White solid; Yield, 72%; m.p. 
149–150 ℃. 1H NMR (400 MHz, DMSO-d6) δ 10.25 (d, 
J = 3.2 Hz, 1H, CO–NH–NH–SO2), 9.76 (d, J = 3.3 Hz, 1H, 
CO–NH–NH–SO2), 8.51 (s, 1H, Ar–C=CH–O), 8.10 (s, 
1H, Ar–H), 7.83 (d, J = 8.4 Hz, 2H, Ar–H), 7.79 (s, 1H, 
Ar–H), 7.71 (d, J = 8.5 Hz, 2H, Ar–H), 7.59 (d, J = 8.4 Hz, 
2H, Ar–H), 7.47 (d, J = 8.5 Hz, 2H, Ar–H), 3.47 (s, 2H, 
CH2–CONH), 2.30 (s, 3H, C=C–CH3), 1.16 (s, 9H, Ph-
C(CH3)3). 13C NMR (101 MHz, DMSO-d6) δ 167.60 (s), 
160.76 (s), 155.98 (s), 155.83 (s), 149.96 (s), 149.78 (s), 
144.89 (s), 135.72 (s), 132.37 (s), 129.55 (s), 129.16 (s), 
128.95 (s), 127.64 (s), 125.50 (s), 122.53 (s), 120.16 (s), 
117.92 (s), 116.89 (s), 116.42 (s), 99.56 (s), 34.66 (s), 
30.77 (s), 30.60 (s), 15.66 (s). HRMS (ESI) m/z: calcd. for 
 C30H28ClN2O6S ([M +  H]+) 579.1351, found 579.1350.

General synthetic procedure for target compounds 
II

To a solution of compounds 9 (0.9 mmol) in anhydrous 
acetonitrile (20  mL) was added corresponding amine 
(0.9 mmol). Then, the mixture was stirred at room tempera-
ture for 6 h. After the reaction was completed (checked by 
TLC), the solvent was evaporated in vacuo, 15 mL of water 
was added and the mixture was extracted with ethyl acetate 
(3 × 10 mL). The organic layers were combined, dried with 
anhydrous sodium sulfate, and concentrated to give the 
crude product, which was further purified by chromatog-
raphy on silica gel using petroleum ether/ethyl acetate (υ/υ, 
6:1) as eluent to give the target compounds II.

Data for 2-(5-methyl-7-oxo-3-phenyl-7H-furo[3,2-g]
chromen-6-yl)-N-(m-tolylcarbamothioyl)acetamide (II-
1): Yellow solid; Yield, 73%; m.p. 190–191 ℃. 1H NMR 
(400 MHz, DMSO-d6) δ 12.32 (s, 1H, CO–NH–CS–NH), 
11.76 (s, 1H, CO–NH–CS–NH), 8.46 (s, 1H, Ph-C=CH–O), 
8.19 (s, 1H, Ar–H), 7.83–7.76 (m, 3H, Ar–H), 7.54 (t, 

J = 7.5 Hz, 2H, Ar–H), 7.44 (dd, J = 15.3, 8.2 Hz, 3H, Ar–H), 
7.25 (t, J = 7.8 Hz, 1H, Ar–H), 7.04 (d, J = 7.3 Hz, 1H, 
Ar–H), 3.95 (s, 2H, CH2-CONH), 2.57 (s, 3H, C=C–CH3), 
2.28 (s, 3H, Ph-CH3). 13C NMR (101 MHz, DMSO-d6) δ 
178.50 (s), 172.23 (s), 160.73 (s), 156.08 (s), 150.48 (s), 
149.91 (s), 144.38 (s), 138.08 (s), 137.65 (s), 130.62 (s), 
129.19 (s), 128.45 (s), 127.83 (s), 127.21 (s), 126.90 (s), 
124.46 (s), 122.94 (s), 121.28 (s), 121.10 (s), 117.39 (s), 
116.83 (s), 116.67 (s), 99.59 (s), 34.94 (s), 20.86 (s), 15.79 
(s). HRMS (ESI) m/z: calcd. for  C28H23N2O4S ([M +  H]+) 
483.1373, found 483.1369.

Data for N-((2,4-dichlorophenyl)carbamothioyl)-
2-(5-methyl-7-oxo-3-phenyl-7H-furo[3,2-g]chromen-
6-yl)acetamide (II-2): Yellow solid; Yield, 81%; m.p. 
227–228 ℃. 1H NMR (400 MHz, DMSO-d6) δ 12.29 (s, 
1H, CO–NH–CS–NH), 12.02 (s, 1H, CO–NH–CS–NH), 
8.45 (s, 1H, Ph-C=CH–O), 8.18 (s, 1H, Ar–H), 8.06 (d, 
J = 8.8 Hz, 1H, Ar–H), 7.83–7.77 (m, 3H, Ar–H), 7.70 
(d, J = 2.2 Hz, 1H, Ar–H), 7.54 (t, J = 7.6 Hz, 2H, Ar–H), 
7.48–7.41 (m, 2H, Ar–H), 3.97 (s, 2H, CH2-CONH), 2.57 (s, 
3H, C=C–CH3). 13C NMR (101 MHz, DMSO-d6) δ 179.72 
(s), 172.23 (s), 160.73 (s), 156.09 (s), 150.54 (s), 149.90 
(s), 144.37 (s), 134.46 (s), 131.29 (s), 130.61 (s), 129.19 
(s), 128.89 (s), 128.83 (s), 127.82 (s), 127.33 (s), 127.20 
(s), 122.94 (s), 121.27 (s), 117.29 (s), 116.86 (s), 116.65 
(s), 99.58 (s), 34.92 (s), 15.81 (s). HRMS (ESI) m/z: calcd. 
for  C27H19Cl2N2O4S ([M +  H]+) 537.0437, found 537.0435.

Data for N-((4-fluorophenyl)carbamothioyl)-2-(5-
methyl-7-oxo-3-phenyl-7H-furo[3,2-g]chromen-6-yl)
acetamide (II-3): Light yellow solid; Yield, 75%; m.p. 
177–178 ℃. 1H NMR (400 MHz, DMSO-d6) δ 12.20 (s, 1H, 
CO–NH–CS–NH), 11.81 (s, 1H, CO–NH–CS–NH), 8.48 (s, 
1H, Ph-C=CH–O), 8.21 (s, 1H, Ar–H), 7.82 (d, J = 6.7 Hz, 
3H, Ar–H), 7.60 (dd, J = 8.2, 4.9 Hz, 2H, Ar–H), 7.55 (t, 
J = 7.6 Hz, 2H, Ar–H), 7.43 (t, J = 7.1 Hz, 1H, Ar–H), 7.21 
(t, J = 8.7 Hz, 2H, Ar–H), 3.95 (s, 2H, CH2-CONH), 2.58 (s, 
3H, C=C–CH3). 13C NMR (101 MHz, DMSO-d6) δ 179.24 
(s), 172.07 (s), 160.75 (s), 156.10 (s), 150.52 (s), 149.93 (s), 
144.42 (s), 130.62 (s), 129.21 (s), 127.85 (s), 127.23 (s), 
126.84 (s), 122.97 (s), 121.30 (s), 117.39 (s), 116.88 (s), 
116.69 (s), 115.43 (s), 115.21 (s), 99.63 (s), 34.93 (s), 15.81 
(s). HRMS (ESI) m/z: calcd. for  C27H20FN2O4S ([M +  H]+) 
487.1122, found 487.1119.

Data for N-((2,2-dif luoroethyl)carbamothioyl)-2-
(5-methyl-7-oxo-3-phenyl-7H-furo[3,2-g]chromen-
6-yl)acetamide (II-4): White solid; Yield, 79%; m.p. 
267–268 ℃. 1H NMR (400 MHz, DMSO-d6) δ 11.75 (s, 
1H, CO–NH–CS–NH), 8.46 (s, 1H, Ph-C=CH–O), 8.42 
(t, J = 5.7 Hz, 1H, Ar–H), 8.16 (s, 1H, Ar–H), 7.81 (d, 
J = 7.9 Hz, 2H, Ar–H), 7.77 (s, 1H, CO–NH–CS–NH), 
7.54 (t, J = 7.4 Hz, 2H, Ar–H), 7.43 (t, J = 7.0 Hz, 1H, 
Ar–H), 6.01 (t, J = 56.0 Hz, 1H, CHF2), 3.61 (s, 2H, CH2-
CONH), 3.50 (t, J = 15.9 Hz, 2H, CH2-CHF2), 2.49 (s, 3H, 
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C=C–CH3). 13C NMR (101 MHz, DMSO-d6) δ 169.69 
(s), 160.81 (s), 155.99 (s), 149.95 (s), 149.67 (s), 144.29 
(s), 130.66 (s), 129.19 (s), 127.81 (s), 127.19 (s), 122.79 
(s), 121.25 (s), 118.50 (s), 116.94 (s), 116.55 (s), 114.48 
(s), 99.47 (s), 41.08 (s), 33.84 (s), 15.64 (s). HRMS (ESI) 
m/z: calcd. for  C23H19F2N2O4S ([M +  H]+) 457.1028, found 
457.1027.

Data for N-((2,2-difluoroethyl)carbamothioyl)-2-(5-
methyl-7-oxo-3-phenyl-7H-furo[3,2-g]chromen-6-yl)
acetamide (II-5): Light yellow solid; Yield, 84%; m.p. 
235–236 ℃. 1H NMR (400 MHz, DMSO-d6) δ 12.22 (s, 
1H, CO–NH–CS–NH), 11.96 (s, 1H, CO–NH–CS–NH), 
8.45 (s, 1H, Ar–C=CH–O), 8.16 (s, 1H, Ar–H), 7.92 (d, 
J = 7.9 Hz, 1H, Ar–H), 7.85 (dd, J = 8.4, 5.5 Hz, 2H, Ar–H), 
7.78 (s, 1H, Ar–H), 7.69 (d, J = 8.0 Hz, 1H, Ar–H), 7.39 
(dt, J = 17.6, 8.1 Hz, 3H, Ar–H), 7.22 (t, J = 7.1 Hz, 1H, 
Ar–H), 3.98 (s, 2H, CH2-CONH), 2.58 (s, 3H, C=C–CH3). 
13C NMR (101 MHz, DMSO-d6) δ 179.77 (s), 172.16 (s), 
160.71 (s), 156.01 (s), 150.55 (s), 149.93 (s), 144.37 (s), 
136.59 (s), 132.61 (s), 129.32 (s), 129.24 (s), 128.39 (s), 
127.76 (s), 127.02 (s), 122.85 (s), 120.34 (s), 118.96 (s), 
117.35 (s), 116.81 (s), 116.69 (s), 116.18 (s), 115.96 (s), 
99.59 (s), 34.92 (s), 15.83 (s). HRMS (ESI) m/z: calcd. for 
 C27H19BrFN2O4S ([M +  H]+) 565.0227, found 565.0222.

Data for 2-(3-(4-chlorophenyl)-5-methyl-7-oxo-7H-
furo[3,2-g]chromen-6-yl)-N-((4-phenylbutyl)carba-
mothioyl)acetamide (II-6): Light yellow solid; Yield, 
74%; m.p. 201–202 ℃. 1H NMR (400 MHz, DMSO-d6) 
δ 8.49 (s, 1H, Ar–C=CH–O), 8.11 (s, 1H, Ar–H), 7.96 
(t, J = 5.4 Hz, 1H, Ar–H), 7.83 (d, J = 8.4 Hz, 2H, Ar–H), 
7.75 (s, 1H, CO–NH–CS–NH), 7.58 (d, J = 8.4 Hz, 2H, 
Ar–H), 7.23 (t, J = 7.4 Hz, 2H, Ar–H), 7.14 (dd, J = 17.7, 
7.2 Hz, 3H, Ar–H), 3.52 (s, 2H, CH2-CONH), 3.08 (dd, 
J = 12.4, 6.4 Hz, 2H, CSNH–CH2), 2.55 (t, J = 7.5 Hz, 
2H,  CH2CH2CH2CH2-Ph), 2.46 (s, 3H, C=C–CH3), 1.55 
(dt, J = 15.2, 7.7 Hz, 2H,  CH2CH2CH2-CH2Ph), 1.42 (dd, 
J = 14.3, 6.9 Hz, 2H,  CH2CH2-CH2CH2Ph). 13C NMR 
(101 MHz, DMSO-d6) δ 168.49 (s), 160.80 (s), 155.89 
(s), 149.98 (s), 149.31 (s), 144.64 (s), 142.12 (s), 132.34 
(s), 129.59 (s), 129.14 (s), 128.92 (s), 128.24 (s), 128.16 
(s), 125.57 (s), 122.42 (s), 120.16 (s), 119.05 (s), 117.09 
(s), 116.43 (s), 99.46 (s), 38.44 (s), 34.75 (s), 34.13 (s), 
28.73 (s), 28.29 (s), 15.65 (s). HRMS (ESI) m/z: calcd. 
for  C31H28ClN2O4S ([M +  H]+) 559.1453, found 559.1449.

Data for 2-(3-(4-chlorophenyl)-5-methyl-7-oxo-7H-
furo[3,2-g]chromen-6-yl)-N-((3-methoxyphenyl)carba-
mothioyl)acetamide (II-7): Yellow solid; Yield, 87%; m.p. 
210–211 ℃. 1H NMR (400 MHz, DMSO-d6) δ 12.37 (s, 
1H, CO–NH–CS–NH), 11.79 (s, 1H, CO–NH–CS–NH), 
8.47 (s, 1H, Ar–C=CH–O), 8.13 (s, 1H, Ar–H), 7.81 
(d, J = 8.3  Hz, 2H, Ar–H), 7.75 (s, 1H, Ar–H), 7.56 
(d, J = 8.4 Hz, 2H, Ar–H), 7.37 (s, 1H, Ar–H), 7.27 (t, 
J = 8.1 Hz, 1H, Ar–H), 7.15 (d, J = 7.9 Hz, 1H, Ar–H), 

6.80 (d, J = 6.5 Hz, 1H, Ar–H), 3.94 (s, 2H, CH2-CONH), 
3.72 (s, 3H, Ph-OCH3), 2.55 (s, 3H, C=C–CH3). 13C NMR 
(101 MHz, DMSO-d6) δ 178.36 (s), 172.21 (s), 160.68 (s), 
159.27 (s), 156.01 (s), 150.45 (s), 149.92 (s), 144.73 (s), 
138.79 (s), 132.36 (s), 129.50 (s), 129.41 (s), 129.11 (s), 
128.90 (s), 122.59 (s), 120.15 (s), 117.41 (s), 116.76 (s), 
116.71 (s), 116.01 (s), 111.82 (s), 109.45 (s), 99.59 (s), 
55.16 (s), 34.89 (s), 15.78 (s). HRMS (ESI) m/z: calcd. 
for  C28H22ClN2O5S ([M +  H]+) 533.0932, found 533.0931.

Data for N-((2,2-dif luoroethyl)carbamothioyl)-2-
(5-methyl-7-oxo-3-phenyl-7H-furo[3,2-g]chromen-
6-yl)acetamide (II-8): White solid; Yield, 71%; m.p. 
294–295 ℃. 1H NMR (400  MHz, DMSO-d6) δ 11.53 
(s, 1H, CO–NH–CS–NH), 8.42 (s, 1H, Ar–C=CH–O), 
8.13–8.05 (m, 2H, Ar–H), 7.84 (dd, J = 8.3, 5.6 Hz, 2H, 
Ar–H), 7.73 (s, 1H, CO–NH–CS–NH), 7.36 (t, J = 8.8 Hz, 
2H, Ar–H), 3.48 (s, 2H, CH2-CONH), 2.65–2.58 (m, 
1H, CH(CH2)CH2), 2.46 (s, 3H, C=C–CH3), 0.60 (d, 
J = 5.1  Hz, 2H, CH(CH2)CH2), 0.41 (d, J = 2.2  Hz, 
2H, CH(CH2)CH2). 13C NMR (101 MHz, DMSO-d6) δ 
169.85 (s), 162.95 (s), 160.80 (s), 160.51 (s), 155.84 (s), 
149.91 (s), 149.36 (s), 144.20 (s), 129.27 (s), 129.19 (s), 
127.10 (s), 122.64 (s), 120.30 (s), 118.91 (s), 116.98 (s), 
116.38 (s), 116.16 (s), 115.94 (s), 99.40 (s), 33.91 (s), 
22.46 (s), 15.64 (s), 5.60 (s). HRMS (ESI) m/z: calcd. 
for  C24H20FN2O4S ([M +  H]+) 451.1122, found 451.1119.

Data for 2-(3-(4-fluorophenyl)-5-methyl-7-oxo-7H-
furo[3,2-g]chromen-6-yl)-N-((4-phenylthiazol-2-yl)carba-
mothioyl)acetamide (II-9): Light yellow solid; Yield, 67%; 
m.p. 257–258 ℃. 1H NMR (400 MHz, DMSO-d6) δ 13.86 
(s, 1H, CO–NH–CS–NH), 12.38 (s, 1H, CO–NH–CS–NH), 
8.47 (s, 1H, Ar–C=CH–O), 8.20 (s, 1H, Ar–H), 7.86 (d, 
J = 6.8 Hz, 4H, Ar–H), 7.82 (s, 1H, Ar–H), 7.73 (s, 1H, 
S-CH = C), 7.41–7.34 (m, 4H, Ar–H), 7.30 (t, J = 7.1 Hz, 
1H, Ar–H), 4.00 (s, 2H, CH2-CONH), 2.60 (s, 3H, 
C=C–CH3). 13C NMR (101 MHz, DMSO-d6) δ 175.43 (s), 
173.05 (s), 160.71 (s), 157.88 (s), 156.04 (s), 150.75 (s), 
149.95 (s), 144.36 (s), 133.62 (s), 129.30 (s), 129.22 (s), 
128.68 (s), 128.04 (s), 127.05 (s), 125.65 (s), 122.88 (s), 
120.34 (s), 117.10 (s), 116.80 (s), 116.68 (s), 116.16 (s), 
115.95 (s), 109.07 (s), 99.60 (s), 35.07 (s), 15.84 (s). HRMS 
(ESI) m/z: calcd. for  C30H21FN3O4S2 ([M +  H]+) 570.0952, 
found 570.0950.

Data for 2-(3-(4-fluorophenyl)-5-methyl-7-oxo-7H-
furo[3,2-g]chromen-6-yl)-N-((3-hydroxypropyl)carba-
mothioyl)acetamide (II-10): White solid; Yield, 88%; m.p. 
242–243 ℃. 1H NMR (400 MHz, DMSO-d6) δ 11.42 (s, 
1H, CO–NH–CS–NH), 8.43 (s, 1H, Ar–C=CH–O), 8.10 (s, 
1H, Ar–H), 7.95 (t, J = 5.3 Hz, 1H, Ar–H), 7.84 (dd, J = 8.2, 
5.7 Hz, 2H, Ar–H), 7.74 (s, 1H, CO–NH–CS–NH), 7.36 (t, 
J = 8.8 Hz, 2H, Ar–H), 4.42 (t, J = 5.1 Hz, 1H, OH), 3.52 
(s, 2H, CH2-CONH), 3.41 (dd, J = 11.6, 6.1 Hz, 2H, CH2-
OH), 3.11 (dd, J = 12.6, 6.4 Hz, 2H, NH-CH2), 2.48 (s, 3H, 
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C=C–CH3), 1.60–1.51 (m, 2H, CH2-CH2OH). 13C NMR 
(101 MHz, DMSO-d6) δ 168.66 (s), 160.82 (s), 155.85 (s), 
149.94 (s), 149.37 (s), 144.21 (s), 129.27 (s), 129.19 (s), 
127.08 (s), 122.63 (s), 120.30 (s), 118.93 (s), 117.02 (s), 
116.39 (s), 116.16 (s), 115.95 (s), 99.41 (s), 58.38 (s), 35.99 
(s), 34.11 (s), 32.36 (s), 15.64 (s). HRMS (ESI) m/z: calcd. 
for  C24H22FN2O5S ([M +  H]+) 469.1228, found 469.1223.

Data for 2-(3-(4-fluorophenyl)-5-methyl-7-oxo-7H-
furo[3,2-g]chromen-6-yl)-N-((4-morpholinophenyl)carba-
mothioyl)acetamide (II-11): Light yellow solid; Yield, 83%; 
m.p. 219–220 ℃. 1H NMR (400 MHz, DMSO-d6) δ 12.18 
(s, 1H, CO–NH–CS–NH), 11.69 (s, 1H, CO–NH–CS–NH), 
8.45 (s, 1H, Ar–C=CH–O), 8.15 (s, 1H, Ar–H), 7.88–7.83 
(m, 2H, Ar–H), 7.78 (s, 1H, Ar–H), 7.44 (d, J = 8.8 Hz, 2H, 
Ar–H), 7.36 (t, J = 8.7 Hz, 2H, Ar–H), 6.91 (d, J = 8.8 Hz, 
2H, Ar–H), 3.94 (s, 2H, CH2-CONH), 3.71 (s, 4H, N(CH2)
CH2CH2(CH2)O), 3.08 (s, 4H, N(CH2)CH2CH2(CH2)O), 
2.56 (s, 3H, C=C–CH3). 13C NMR (101 MHz, DMSO-d6) 
δ 178.12 (s), 172.07 (s), 160.71 (s), 155.98 (s), 150.43 (s), 
149.91 (s), 149.19 (s), 144.33 (s), 129.22 (s), 127.01 (s), 
124.90 (s), 122.82 (s), 120.32 (s), 116.72 (s), 116.16 (s), 
115.95 (s), 114.65 (s), 99.55 (s), 66.00 (s), 48.22 (s), 34.90 
(s), 15.78 (s). HRMS (ESI) m/z: calcd. for  C31H27FN3O5S 
([M +  H]+) 572.1650, found 572.1644.

Data for N-((4-chlorophenethyl)carbamothioyl)-2-
(5-methyl-7-oxo-3-(p-tolyl)-7H-furo[3,2-g]chromen-
6-yl)acetamide (II-12): White solid; Yield, 85%; m.p. 
194–195 ℃. 1H NMR (400 MHz, DMSO-d6) δ 11.48 (s, 
1H, CO–NH–CS–NH), 8.38 (s, 1H, Ar–C=CH–O), 8.08 
(s, 1H, Ar–H), 8.01 (t, J = 5.4 Hz, 1H, Ar–H), 7.73 (s, 1H, 
CO–NH–CS–NH), 7.67 (d, J = 7.9 Hz, 2H, Ar–H), 7.33 
(d, J = 7.8 Hz, 2H, Ar–H), 7.29 (d, J = 8.3 Hz, 2H, Ar–H), 
7.21 (d, J = 8.3 Hz, 2H, Ar–H), 3.49 (s, 2H, CH2-CONH), 
3.27 (dd, J = 12.7, 6.5 Hz, 2H, NH-CH2), 2.70 (t, J = 7.0 Hz, 
2H,  NHCH2-CH2), 2.40 (s, 3H, C=C–CH3), 2.37 (s, 3H, 
Ph-CH3). 13C NMR (101 MHz, DMSO-d6) δ 168.67 (s), 
160.87 (s), 155.91 (s), 149.88 (s), 149.40 (s), 143.80 (s), 
138.45 (s), 137.15 (s), 130.67 (s), 130.55 (s), 129.73 (s), 
128.11 (s), 127.72 (s), 127.08 (s), 122.91 (s), 121.17 (s), 
118.71 (s), 116.89 (s), 116.38 (s), 99.37 (s), 40.08 (s), 34.25 
(s), 34.10 (s), 20.81 (s), 15.55 (s). HRMS (ESI) m/z: calcd. 
for  C30H26ClN2O4S ([M +  H]+) 545.1296, found 545.1292.

Data for N-((3-fluorophenyl)carbamothioyl)-2-(5-
methyl-7-oxo-3-(p-tolyl)-7H-furo[3,2-g]chromen-6-yl)
acetamide (II-13): Light yellow solid; Yield, 82%; m.p. 
225–226 ℃. 1H NMR (400 MHz, DMSO-d6) δ 12.42 (s, 
1H, CO–NH–CS–NH), 11.88 (s, 1H, CO–NH–CS–NH), 
8.39 (s, 1H, Ar–C=CH–O), 8.14 (s, 1H, Ar–H), 7.74 (d, 
J = 7.2 Hz, 2H, Ar–H), 7.68 (d, J = 7.8 Hz, 2H, Ar–H), 7.40 
(dd, J = 16.3, 8.7 Hz, 2H, Ar–H), 7.33 (d, J = 8.0 Hz, 2H, 
Ar–H), 7.07 (t, J = 8.1 Hz, 1H, Ar–H), 3.95 (s, 2H, CH2-
CONH), 2.55 (s, 3H, C=C–CH3), 2.37 (s, 3H, Ph-CH3). 13C 
NMR (101 MHz, DMSO-d6) δ 178.74 (s), 172.22 (s), 162.81 

(s), 160.73 (s), 160.39 (s), 156.04 (s), 150.49 (s), 149.86 (s), 
143.93 (s), 137.18 (s), 130.27 (s), 130.17 (s), 129.72 (s), 
127.66 (s), 127.10 (s), 123.10 (s), 121.19 (s), 120.09 (s), 
117.27 (s), 116.78 (s), 116.56 (s), 112.79 (s), 111.14 (s), 
110.88 (s), 99.52 (s), 34.93 (s), 20.81 (s), 15.76 (s). HRMS 
(ESI) m/z: calcd. for  C28H22FN2O4S ([M +  H]+) 501.1279, 
found 501.1274.

Data for N-((2-chloropyridin-3-yl)carbamothioyl)-2-(3-
(4-fluorophenyl)-5-methyl-7-oxo-7H-furo[3,2-g]chromen-
6-yl)acetamide (II-14): Light yellow solid; Yield, 72%; m.p. 
297–298 ℃. 1H NMR (400 MHz, DMSO-d6) δ 12.34 (s, 1H, 
CO–NH–CS–NH), 12.07 (s, 1H, CO–NH–CS–NH), 8.46 (d, 
J = 8.0 Hz, 1H, Ar–C=CH–O), 8.43 (s, 1H, Ar–H), 8.30 (d, 
J = 3.1 Hz, 1H, Ar–H), 8.13 (s, 1H, Ar–H), 7.84 (dd, J = 8.1, 
5.7 Hz, 2H, Ar–H), 7.75 (s, 1H, Ar–H), 7.49 (dd, J = 7.9, 
4.7 Hz, 1H, Ar–H), 7.35 (t, J = 8.7 Hz, 2H, Ar–H), 3.98 
(s, 2H, CH2-CONH), 2.57 (s, 3H, C=C–CH3). 13C NMR 
(101 MHz, DMSO-d6) δ 179.94 (s), 172.23 (s), 162.96 (s), 
160.70 (s), 155.99 (s), 150.54 (s), 149.89 (s), 147.12 (s), 
145.22 (s), 144.32 (s), 136.36 (s), 132.52 (s), 129.28 (s), 
129.20 (s), 127.00 (s), 123.07 (s), 122.82 (s), 120.31 (s), 
117.27 (s), 116.76 (s), 116.64 (s), 116.15 (s), 115.94 (s), 
99.56 (s), 34.94 (s), 15.81 (s). HRMS (ESI) m/z: calcd. for 
 C26H17NaClFN3O4S ([M +  Na]+) 544.0505, found 544.0501.

Data for 2-(3-(4-fluorophenyl)-5-methyl-7-oxo-7H-
furo[3,2-g]chromen-6-yl)-N-((4-(p-tolyl)thiazol-2-yl)carba-
mothioyl)acetamide (II-15): Light yellow solid; Yield, 64%; 
m.p. 257–258 ℃. 1H NMR (400 MHz, DMSO-d6) δ 13.83 
(s, 1H, CO–NH–CS–NH), 12.35 (s, 1H, CO–NH–CS–NH), 
8.43 (s, 1H, Ar–C=CH–O), 8.16 (s, 1H, Ar–H), 7.87–7.82 
(m, 2H, Ar–H), 7.78 (s, 1H, Ar–H), 7.72 (d, J = 7.8 Hz, 
2H, Ar–H), 7.62 (s, 1H, S-CH = C), 7.36 (t, J = 8.7 Hz, 2H, 
Ar–H), 7.17 (d, J = 7.8 Hz, 2H, Ar–H), 3.99 (s, 2H, CH2-
CONH), 2.58 (s, 3H, C=C–CH3), 2.27 (s, 3H, Ph-CH3). 13C 
NMR (101 MHz, DMSO-d6) δ 175.34 (s), 173.04 (s), 162.97 
(s), 160.71 (s), 156.05 (s), 150.75 (s), 149.95 (s), 149.20 
(s), 144.37 (s), 137.41 (s), 130.95 (s), 129.31 (s), 129.23 
(s), 127.06 (s), 125.58 (s), 122.88 (s), 120.35 (s), 117.10 
(s), 116.80 (s), 116.69 (s), 116.17 (s), 115.96 (s), 108.22 
(s), 99.61 (s), 35.05 (s), 20.74 (s), 15.84 (s). HRMS (ESI) 
m/z: calcd. for  C31H23FN3O4S2 ([M +  H]+) 584.1109, found 
584.1107.

Data for N-((3,5-dichlorophenyl)carbamothioyl)-2-(3-
(4-fluorophenyl)-5-methyl-7-oxo-7H-furo[3,2-g]chromen-
6-yl)acetamide (II-16): White solid; Yield, 91%; m.p. 
209–210 ℃. 1H NMR (400 MHz, DMSO-d6) δ 12.32 (s, 1H, 
CO–NH–CS–NH), 11.95 (s, 1H, CO–NH–CS–NH), 8.44 (s, 
1H, Ar–C=CH–O), 8.14 (s, 1H, Ar–H), 7.88–7.81 (m, 2H, 
Ar–H), 7.76 (d, J = 4.5 Hz, 3H, Ar–H), 7.44 (s, 1H, Ar–H), 
7.36 (t, J = 8.7 Hz, 2H, Ar–H), 3.95 (s, 2H, CH2-CONH), 
2.56 (s, 3H, C=C–CH3). 13C NMR (101 MHz, DMSO-
d6) δ 179.19 (s), 172.00 (s), 162.97 (s), 160.69 (s), 160.54 
(s), 156.01 (s), 150.51 (s), 149.91 (s), 144.36 (s), 140.14 
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(s), 133.58 (s), 129.30 (s), 129.22 (s), 127.05 (s), 125.63 
(s), 123.06 (s), 122.85 (s), 120.33 (s), 117.28 (s), 116.74 
(s), 116.64 (s), 116.16 (s), 115.95 (s), 99.59 (s), 34.93 (s), 
15.80 (s). HRMS (ESI) m/z: calcd. for  C27H18Cl2FN2O4S 
([M +  H]+) 555.0343, found 555.0339.

Data for 2-(5,9-dimethyl-7-oxo-3-phenyl-7H-furo[3,2-
g]chromen-6-yl)-N-((3-nitrophenyl)carbamothioyl)
acetamide (II-17): Light yellow solid; Yield, 77%; m.p. 
140–141 ℃. 1H NMR (400 MHz, DMSO-d6) δ 12.42 (s, 
1H, CO–NH–CS–NH), 11.91 (s, 1H, CO–NH–CS–NH), 
8.67 (s, 1H, Ar–H), 8.35 (s, 1H, Ph-C=CH–O), 7.98 (d, 
J = 8.1 Hz, 1H, Ar–H), 7.90–7.83 (m, 2H, Ar–H), 7.70 (d, 
J = 7.5 Hz, 2H, Ar–H), 7.56 (t, J = 8.2 Hz, 1H, Ar–H), 7.46 
(t, J = 7.6 Hz, 2H, Ar–H), 7.35 (t, J = 7.3 Hz, 1H, Ar–H), 
3.89 (s, 2H, CH2-CONH), 2.43 (s, 3H, C=C–CH3), 2.41 (s, 
3H, Ph-CH3). 13C NMR (101 MHz, DMSO-d6) δ 179.17 
(s), 172.09 (s), 160.69 (s), 155.02 (s), 150.67 (s), 147.54 
(s), 147.34 (s), 144.04 (s), 138.90 (s), 130.79 (s), 129.85 
(s), 129.13 (s), 127.72 (s), 127.09 (s), 121.84 (s), 121.46 
(s), 120.72 (s), 118.66 (s), 116.85 (s), 116.44 (s), 113.77 
(s), 108.54 (s), 34.94 (s), 15.80 (s), 8.16 (s). HRMS (ESI) 
m/z: calcd. for  C28H22N3O6S ([M +  H]+) 528.1224, found 
528,1219.

Data for 2-(3-(4-chlorophenyl)-5-methyl-7-oxo-7H-
furo[3,2-g]chromen-6-yl)-N-((2,4-dimethylphenyl)carba-
mothioyl)acetamide (II-18): Yellow solid; Yield, 95%; m.p. 
234–235 ℃. 1H NMR (400 MHz, DMSO-d6) δ 11.89 (s, 1H, 
CO–NH–CS–NH), 11.77 (s, 1H, CO–NH–CS–NH), 8.48 (s, 
1H, Ar–C=CH–O), 8.13 (s, 1H, Ar–H), 7.81 (d, J = 8.3 Hz, 
2H, Ar–H), 7.75 (s, 1H, Ar–H), 7.56 (d, J = 8.3 Hz, 2H, 
Ar–H), 7.42 (d, J = 8.0 Hz, 1H, Ar–H), 7.05 (s, 1H, Ar–H), 
7.00 (d, J = 8.1 Hz, 1H, Ar–H), 3.95 (s, 2H, CH2-CONH), 
2.56 (s, 3H, C=C–CH3), 2.25 (s, 3H, Ph-CH3), 2.12 (s, 3H, 
Ph-CH3). 13C NMR (101 MHz, DMSO-d6) δ 179.56 (s), 

172.04 (s), 160.68 (s), 156.01 (s), 150.40 (s), 149.92 (s), 
144.73 (s), 136.19 (s), 134.14 (s), 132.84 (s), 132.36 (s), 
130.86 (s), 129.51 (s), 129.12 (s), 128.90 (s), 126.59 (s), 
126.21 (s), 122.58 (s), 120.15 (s), 117.50 (s), 116.77 (s), 
116.72 (s), 99.58 (s), 34.88 (s), 20.52 (s), 17.47 (s), 15.80 
(s). HRMS (ESI) m/z: calcd. for  C29H24ClN2O4S ([M +  H]+) 
531,1140, found 531.1135.

Data for N-((2-chlorophenethyl)carbamothioyl)-2-(5-
methyl-7-oxo-3-phenyl-7H-furo[3,2-g]chromen-6-yl)
acetamide (II-19): Light yellow solid; Yield, 73%; m.p. 
202–203 ℃. 1H NMR (400 MHz, DMSO-d6) δ 8.42 (s, 
1H, Ph-C=CH–O), 8.09 (d, J = 9.5 Hz, 2H, Ar–H), 7.79 
(d, J = 7.5 Hz, 2H, Ar–H), 7.72 (s, 1H, CO–NH–CS–NH), 
7.53 (t, J = 7.5 Hz, 2H, Ar–H), 7.44–7.37 (m, 2H, Ar–H), 
7.30 (d, J = 6.8 Hz, 1H, Ar–H), 7.27–7.20 (m, 2H, Ar–H), 
3.50 (s, 2H, CH2-CONH), 3.30 (dd, J = 13.0, 6.6 Hz, 2H, 
CSNH–CH2), 2.84 (t, J = 7.1 Hz, 2H, CSNH–CH2CH2), 
2.43 (s, 3H, C=C–CH3). 13C NMR (101 MHz, DMSO-d6) 
δ 168.69 (s), 160.83 (s), 155.92 (s), 149.90 (s), 149.41 (s), 
144.21 (s), 136.71 (s), 133.06 (s), 131.12 (s), 130.67 (s), 
129.18 (s), 128.10 (s), 127.78 (s), 127.16 (s), 122.71 (s), 
121.22 (s), 118.72 (s), 116.95 (s), 116.40 (s), 99.38 (s), 
38.58 (s), 34.09 (s), 32.82 (s), 15.62 (s). HRMS (ESI) m/z: 
calcd. for  C29H24ClN2O4S ([M +  H]+) 531.1140, found 
531.1136.

Data for N-((2-hydroxyethyl)carbamothioyl)-2-(5-
methyl-7-oxo-3-phenyl-7H-furo[3,2-g]chromen-6-yl)
acetamide (II-20): Light yellow solid; Yield, 93%; m.p. 
230–231 ℃. 1H NMR (400 MHz, DMSO-d6) δ 13.13 (s, 1H, 
CO–NH–CS–NH), 8.45 (s, 1H, Ph-C=CH–O), 8.14 (s, 1H, 
Ar–H), 7.99 (t, J = 5.3 Hz, 1H, Ar–H), 7.80 (d, J = 7.4 Hz, 
2H, Ar–H), 7.75 (s, 1H, CO–NH–CS–NH), 7.54 (t, 
J = 7.6 Hz, 2H, Ar–H), 7.43 (t, J = 7.3 Hz, 1H, Ar–H), 4.69 
(s, 1H, OH), 3.54 (s, 2H, CH2-CONH), 3.13 (dd, J = 11.7, 

Fig. 5  X-ray crystal structure 
of compound I-16 (CCDC: 
2119934). The solvent molecule 
was omitted for clarity
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5.8 Hz, 2H, CSNH–CH2), 2.92 (dd, J = 55.4, 50.2 Hz, 2H, 
CH2-OH), 2.48 (s, 3H, C=C–CH3). 13C NMR (101 MHz, 
DMSO-d6) δ 168.84 (s), 160.87 (s), 155.93 (s), 149.92 (s), 
149.41 (s), 144.25 (s), 130.67 (s), 129.20 (s), 127.81 (s), 
127.19 (s), 122.74 (s), 121.24 (s), 118.91 (s), 117.00 (s), 
116.47 (s), 99.42 (s), 59.79 (s), 41.68 (s), 34.03 (s), 15.65 
(s). HRMS (ESI) m/z: calcd. for  C23H21N2O5S ([M +  H]+) 
437.1166, found 437.1162.

Data for 2-(3-(4-chlorophenyl)-5-methyl-7-oxo-7H-
furo[3,2-g]chromen-6-yl)-N-((pyridin-3-ylmethyl)carba-
mothioyl)acetamide (II-21): Yellow solid; Yield, 75%; 
m.p. 228–229 ℃. 1H NMR (400 MHz, DMSO-d6) δ 11.60 
(s, 1H, CO–NH–CS–NH), 8.63 (dd, J = 14.0, 7.9 Hz, 3H, 
Ar–H), 8.43 (s, 1H, Ar–C=CH–O), 8.06 (s, 1H, Ar–H), 7.93 
(d, J = 7.6 Hz, 1H, Ar–H), 7.78 (d, J = 8.2 Hz, 2H, Ar–H), 
7.68 (s, 1H, CO–NH–CS–NH), 7.58 (d, J = 6.4 Hz, 1H, 
Ar–H), 7.54 (d, J = 8.2 Hz, 2H, Ar–H), 4.38 (d, J = 5.5 Hz, 
2H, CSNH–CH2), 3.62 (s, 2H, CH2-CONH), 2.48 (s, 3H, 
C=C–CH3). 13C NMR (101 MHz, DMSO-d6) δ 171.85 (s), 
169.36 (s), 160.82 (s), 155.86 (s), 149.89 (s), 149.57 (s), 
145.77 (s), 145.46 (s), 144.58 (s), 138.08 (s), 132.30 (s), 
129.50 (s), 129.09 (s), 128.82 (s), 124.58 (s), 122.39 (s), 
120.08 (s), 118.68 (s), 116.95 (s), 116.44 (s), 99.41 (s), 
39.87 (s), 34.21 (s), 15.67 (s). HRMS (ESI) m/z: calcd. for 
 C27H21ClN3O4S ([M +  H]+) 518.0936, found 518.0932.

X‑ray diffraction

In order to confirm the structure of the title compounds, 
the crystal of compound I-16 was cultured from the dime-
thyl sulfoxide-d6, and the structure is shown in Fig. 5. All 
measurements were made on a Rigaku 007 Saturn 70 dif-
fractometer with graphite-monochromated Mo Kα radiation 
(λ = 0.71073 Å). Compound I-16: Triclinic, space group P-1, 
a = 10.3831(4) Å, b = 11.0228(3) Å, c = 13.5409(7) Å, α = 
71.549(4)°, β = 78.465(4)°, γ = 82.838(3)°, V = 1437.26(11
) Å3, Z = 2, T = 113.15 K, μ(Mo Kα) = 1.308  mm−1, Dcalc 
= 1.600 g/cm3. A total of 21,580 reflections were measured, 
of which 9668 were unique (Rint = 0.0438, Rsigma = 0.0556) 
in the range of 3.904° < 2Θ < 65.856° (− 15 ≤ h ≤ 15, 
− 16 ≤ k ≤ 16, − 20 ≤ l ≤ 19). The structure was solved by 
direct method with the SHELXTL-97 program. All of the 
non-hydrogen atoms were refined by using anisotropic ther-
mal displacement parameters and gave the final R indices 
R1 = 0.0455 (I > 2σ(I)), wR2 = 0.1194 (all data). The X-ray 
crystal structure data of I-16 were available at the Cam-
bridge Crystallographic Data Centre (CCDC: 2119934). 
The details of the crystallographic data and structure refine-
ment parameters (Table S4) were listed in the supporting 
information.

Antifungal activity test

The in vitro antifungal activity of the title compounds I and 
II against Alternaria solani, B. cinerea, C. arachidicola, 
Gibberella zeae, P. piricola, Pellicularia sasakii, Sclerotinia 
sclerotiorum was evaluated at a concentration of 50 μg/mL 
according to the reported method [34]. Compounds with an 
inhibition over 60% were further evaluated for their median 
effective concentration  (EC50) according to the reference 
[35] by using psoralen and YZK-C22 as positive controls.

Molecular docking

The three-dimensional structure model of pyruvate kinase of 
B. cinerea (BcPK) was constructed by using the homology 
modeling, and PK structure of template protein was from 
Saccharomyces cerevisiae (PDB code: 1A3W). The human 
source of PK from Homo sapiens (HsPK, PDB code: 6TTF) 
was used to study the selective toxicity of the title com-
pounds. The selected compound’s molecular structure was 
drawn by ChemBioDraw Ultra 12.0 and energetically mini-
mized by using Tripos SYBYL-X 2.0 software with default 
values. The docking program was performed by AutoDock 
Vina, and the detail docking procedures were according to 
the reported literatures [36, 37]. The molecular docking 
results was shown by Pymol.

Supplementary information

The 1H NMR, 13C NMR, HRMS spectra of target com-
pounds, single crystal X-ray data for compound I-16, dock-
ing results of virtual screening and the calculation results of 
selective toxicity are reported in SI.
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