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Abstract: Near-infrared spectroscopy (NIRS) combined with pattern recognition technique has
become an important type of non-destructive discriminant method. This review first introduces the
basic structure of the qualitative analysis process based on near-infrared spectroscopy. Then, the main
pretreatment methods of NIRS data processing are investigated. Principles and recent developments
of traditional pattern recognition methods based on NIRS are introduced, including some shallow
learning machines and clustering analysis methods. Moreover, the newly developed deep learning
methods and their applications of food quality analysis are surveyed, including convolutional neural
network (CNN), one-dimensional CNN, and two-dimensional CNN. Finally, several applications of
these pattern recognition techniques based on NIRS are compared. The deficiencies of the existing
pattern recognition methods and future research directions are also reviewed.

Keywords: near-infrared spectroscopy; food quality; pattern recognition; deep learning; qualita-
tive analysis

1. Introduction

With frequent exposure of the adulteration of food in the market, food safety issues
have raised global health concerns. Adulterated food not only harms human health but
also severely disrupts the order of the food market. Therefore, the detection and discrimi-
nation of food quality is of great importance. Traditional food quality detection methods
are mainly based on high-performance liquid chromatography [1], mass spectrometry [2],
or DNA technique [3]. However, the applications of these methods are limited by the
following disadvantages: they are time-consuming, have low efficiency, have high measure-
ment cost, require massive expertise, and cause damage to samples. Thus, it is necessary
to seek a fast and efficient detection tool to facilitate the detection process and widen the
applications. Near-infrared spectroscopy (NIRS) technology was developed nearly half a
century ago as a detection tool. It obtains feature information of the hydrogen-containing
groups (O-H, N-H, C-H) in organic substances by scanning the near-infrared spectrum of
the samples [4] and possesses many advantages including being faster, having more accu-
racy, and being non-destructive. Recently, near infrared hyperspectral imaging (NIRHSI)
technology was developed to obtain the chemical spectral information and the spatial
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distribution of chemical substances in heterogeneous samples simultaneously [5]. It should
be noted that by extracting the region of interest (ROI) from the hyperspectral image of the
sample and calculating the average spectrum of each band within the ROI, the NIRHSI
data can be reduced to near-infrared spectral data [6]. Thus, in this paper, we focus on the
discrimination methods based on near-infrared spectroscopy (NIRS). NIRS is an indirect
analysis technique that requires the establishment of empirical models through suitable
pattern recognition methods. Although discrimination methods based on NIRS have been
widely used for food quality discrimination, there are still some issues to be solved. In this
review, the current developed NIRS-based food discrimination methods are compiled.
The organizational structure of this article is shown in Figure 1, including pretreatment
methods, traditional pattern recognition methods, and deep learning methods. The basic
procedures of qualitative analysis based on NIRS is introduced in Section 2. Section 3
describes the main pretreatment methods used in NIRS. Section 4 presents different tra-
ditional pattern recognition methods combined with NIRS and their applications in food
discrimination. Section 5 shows the potential of combining deep learning methods with
NIRS to applied to food quality analysis. Finally, Section 6 summarizes the whole review
and some future research directions are discussed.
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2. Basic Structure of Qualitative Analysis Process Based on NIRS

The qualitative analysis process includes NIRS measurement and chemometric method
for spectral analysis, which is shown in Figure 2.

Firstly, in order to obtain NIRS data, the samples are collected, stored, and specially
processed if necessary. Then, each sample is measured with a near-infrared spectrum
instrument. The obtained spectrum range is usually between 4000 and 10,000 cm−1.
Although the near-infrared spectrometer is equipped with a high-performance detection
device, the collected data can still be affected by the noise of the measuring instrument,
thus affecting the effect of modeling [7]. Therefore, the spectral data must be pretreated
before using chemometric methods. Secondly, the spectral peaks of different samples are
usually similar in shape and position. The peak overlaps and interaction in some segments
can be severe, which makes it difficult to distinguish the samples directly. Therefore, it is
necessary to use chemometrics methods to achieve spectrum analysis and discrimination.
Thirdly, the spectrum obtained has thousands of dimensions, which brings challenges to
chemometrics methods, such as the problem of “the curse of dimensionality”. Therefore,
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feature extraction methods usually are adopted to reduce the dimensions of the spectrum,
and the discrimination is achieved by the establishment of pattern recognition methods.
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Clearly, preprocessing methods, feature extraction methods, and pattern recognition
methods are three key procedures of qualitative analysis. Thus, preprocessing methods,
feature extraction methods, and pattern recognition methods for food discrimination are
reviewed in the following sections.

3. Pretreatment Methods

When analyzing complex samples, the final qualitative analysis results are often
affected by interference factors such as stray light, noise, and baseline drift [8]. Therefore,
in order to increase the stability and robustness of the qualitative analysis model, it is
necessary to preprocess the original spectrum to eliminate the influence of uncertain
factors and useless information variables before modeling [9]. There are many kinds of
spectral preprocessing methods. According to their effect on preprocessing, they can be
divided into four categories: baseline correction, scatter correction, smoothing treatment,
and characteristic scaling [10,11]. Baseline correction is used to eliminate the influence
of instrument background or drift. This method includes first derivative (D1), second
derivative (D2), and continuous wavelet transformation. Scattering correction methods,
such as multiplicative scatter correction (MSC) and standard normal variables (SNV),
are used to avoid the influence of scattering caused by uneven particle distribution or
different particle sizes to enhance the absorbance information that most related to the
spectral content in the spectrum. Savitzky-Golay smoothing is a low-pass filter. It can
effectively filter out the high-order signal interference and remove the effects of random
noise. Feature scaling can eliminate the adverse effects caused by large-scale differences.
This method includes mean centering, min-max scaling, and standardization.

4. Traditional Pattern Recognition Method

Traditional pattern recognition methods can be divided into supervised learning and
unsupervised learning. The main difference between these two categories is that supervised
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learning requires the tag information of the samples when training the models, whereas
this is not necessary for unsupervised learning. Supervised learning mainly applies some
shallow learning machines to achieve classification, while unsupervised learning mainly
focuses on the clustering analysis. The following subsections describe them in detail.

4.1. Shallow Learning Machines

Shallow learning machines lack effective feature expression ability. This means that
the performance of these models highly depends on valid feature extraction. By combin-
ing feature extraction methods with shallow learning machines, the problem of curse of
dimensionality can be avoided and the performance of shallow learning machines can be
greatly improved [12]. The commonly used feature extraction methods include principal
component analysis (PCA) [13–16], successive projections algorithm (SPA) [17,18], uninfor-
mative variables elimination (UAE) [19], and intelligent optimization algorithm [4,20,21].
The commonly used shallow learning machines include partial least squares-based dis-
criminant analysis (PLS-DA) [22], soft independent modeling of class analogy (SIMCA),
support vector machines (SVM), back propagation artificial neuron network (BP-ANN),
and other discriminant analysis methods. The following parts will introduce some shallow
learning machines according to their types.

4.1.1. PLS-DA

PLS-DA is a supervised qualitative analysis method based on PLS regression anal-
ysis [23,24]. In order to achieve classification, the output matrix of PLS-DA is a one-hot
encoding, while the input matrix and output matrix of PLS regression are continuous
variables. For example, the PLS-DA output matrix Y = [y1, y2, y3] of a three-category task
is shown in Table 1. The threshold θi is set to determine the category. If yi = max(y1, . . . ,
yn) > θi, the predicted label is the i-th category.

Table 1. The partial least squares-based discriminant analysis (PLS-DA) output matrix of a three-
category task.

Category Y

A 1 0 0
B 0 1 0
C 0 0 1

The PLS-DA model is widely applied in qualitative analysis of food NIRS, such as
the identification of geographical origins and varieties. In the field of food geographi-
cal origin identification, in [15,25], PCA and PLS-DA binary classification models were
built to discriminate the geographical origins of Huajiao and French olive oils. The accu-
racy rates of the model were 97.6% and 100%, respectively. In Reference [26], a PLS-DA
classification model was established to trace the origin of Chilean flour and wheat grain.
The flour possessed the best matrix for PLS-DA and the accuracy rate exceeded 90%. In
Reference [27], PCA method combined with different preprocessing methods and different
spectral bands was used to establish PLS-DA binary classification models to identify the
origins of rice. The comparative experimental results showed that the model combining
SNV and 4000–5500 cm−1 spectral band was the most suitable, and the accuracy of the
training set and testing set were 93.33% and 86.67%, respectively.

In the field of food varieties identification, in Reference [28], multiple PLS-DA models
were established by combining different preprocessing methods to achieve the authentica-
tion of Iberian pork. The experiment showed that the model in combination with the SNV
and D2 initialization methods achieved 93.2% and 93.4% accuracy in the training set and
testing set, respectively, of the fresh meat and subcutaneous fat samples. In Reference [29],
on the basis of visible NIRS, the authors constructed a PCA and PLS-DA model to identify
varieties of Riesling and Chardonnay commercial wine. The recognition rate of Riesling
and Chardonnay wines was up to 100% and 96%, respectively. Similarly, PLS-DA model



Molecules 2021, 26, 749 5 of 16

was established to identify oat and grain kernels through combining with NIRHSI technol-
ogy. The results showed that the correct classification rates of oat and grain kernels were
97.1% and 99.0%, respectively, proving the effectivity of this method [30]. In Reference [31],
on the basis of NIRHSI technology, the authors established SVM and PLS-DA models with
a reduced set of only 54 wavelengths, resulting in excellent accuracy rates with 98.29% and
99.00% for the prediction sets, respectively. In Reference [32], on the basis of the spectral
range of 5000–4000 cm−1, SNV method, and eight principal components, the PLS-DA
model showed the best performance in the assessment of hard seed characteristics of
legume seeds, with an accuracy of 100%. Furthermore, PLS-DA models were also applied
to meat quality identification [33], obtaining good results.

4.1.2. SIMCA

SIMCA is a supervised qualitative analysis method based on PCA algorithm [34,35].
The establishment of SIMCA model consists of three steps. First, PCA algorithm is used on
the calibration set and the principal component regression model is established. Second,
the similarities among the samples of different classes are calculated to obtain the critical
value θ0 Finally, the similarity θi among the tested sample and the samples of the given
category in the calibration set is calculated. If θi ≤ θ0, the tested sample belongs to this
category; otherwise, it does not belong to this category. In general, the classification
performance of the SIMCA model is evaluated by

Recognition ratei =
nc

Ni
(1)

Rejection ratei =
nr

N − Ni
(2)

where Ni is the number of samples in the i category, ni is the number of samples that
correctly identify the category, nr is the number of samples rejected from other categories,
and N is the total number of samples.

In the field of food geographical origin identification, in References [36,37],
SIMCA models with different numbers of principal components, different pretreatment
methods, and different near-infrared spectral bands were established to identify wolfberry
(Lycium barbarum L.) from eight different origins, achieving good results. In References [38,39],
the SIMCA models were applied to identify the geographic origins of Forsythia suspense
and mutton. The recognition rate of the geographic origin of forsythia was 90%, while the
average recognition rate and rejection rate of the geographic origin of lamb were 93.75%
and 100%, respectively.

In the field of qualitative analysis of food based on NIRS, the SIMCA model is also
very popular. In Reference [40], full-band near-infrared spectroscopy data combined with
SIMCA technology were used to identify three brands of milk powder—the recognition rate
was 84.3% and the rejection rate was 91.6%. In Reference [41], combined with the SNV and
D2 pretreatment methods, the SIMCA and PLS-DA models were established to identify the
brand traceability of edible vinegar. The results showed that SIMCA was more competitive
than PLS-DA, with accuracy rates of 84% and 94.7%, respectively. In Reference [42], the full
spectrum band and the optimized characteristic band were used to establish the SIMCA
models to classify four different types of wheat. The results showed that the recognition
rate and rejection rate of the model were both 100%. In addition, the PLS-DA and SIMCA
were also successfully applied to qualitative analysis of different navel orange varieties [43],
with both recognition rates reaching 100%.

4.1.3. SVM

SVM was firstly proposed by Vapnik in 1995 and is based on statistical learning the-
ory to solve two-group classification problems [44]. It is then extended to solve multiple
classification problems in Reference [45]. By using the principle of structural risk min-
imization and Vapnik-Chervonenkis (VC) dimension theory, SVM can handle the data
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of high dimensions with good generalization and accuracy [46]. The VC dimension for
the set of functions {F} is defined as the maximum number of training points that can be
shattered by {F} [47]. It should be noted that SVM can only basically reflect the linear
relations between the inputs and outputs. For nonlinear applications, the kernel function
should be firstly used to map the data to high dimension, and then the optimal hyperplane
should be constructed to classify the linearly separable data.

Since the mechanism of molecular vibration under different frequencies of light irra-
diation is complex, the obtained near-infrared spectral data contains nonlinear relations
between the spectrum and its category. Thus, the SVM mentioned here is kernel SVM.
The commonly used SVM kernel functions include linear kernel, polynomial kernel, ra-
dial basis function (RBF), and Gaussian kernel. Among these SVM kernels, RBF kernel
is most widely used due to its few hyperparameters and fast approximation speed [48].
For SVM, the penalty parameter c and the RBF kernel function parameter g are two key
parameters that influence the performance of the SVM model. The parameter c represents
the tolerance to errors, which determines the generalization ability of the SVM model.
The value of g influences the training and prediction speed of the SVM model [49]. How-
ever, in real applications, appropriate combination of these two parameters is difficult.
Therefore, the way in which to optimize the two parameters is still a considerable issue.
The commonly used methods for the parameter optimization of SVM model include trial
and error method [50–52], grid search algorithms, and intelligence optimization algorithms.

The trial-and-error method-based SVM has many successful applications. For example,
the RBF kernel function-based SVM models were established for qualitative analysis
of apple origin and species [50], soybean oil color discrimination [51], and authenticity
identification of tea [52], with accuracy rates of 100%, 100%, and 84.44%, respectively.
However, the trial-and-error method relies on large numbers of experiments and expert
experience. Moreover, the result searching may fall into local optimization, which will
limit the performance of the model.

To avoid the drawbacks of the trial-and-error method, researchers have used the
grid search method to select the c and g parameters. Established SVM models had been
successfully applied to identify resin [53], adulterated peanut oil [54] origins, and varieties
of maize kernels [14]. The model accuracy rates were 100%, 100%, and 95%, respectively.
Although the grid search method is simple, universal, and easy to implement, the grid
search algorithm is an exhaustive method. Thus, when the search range is relatively large,
there will be too many invalid operations, which will result in a slow search speed.

Different from the grid search method, the intelligent optimization algorithm can select
optimal parameter combination through automatic searching. The intelligent optimization
algorithm has higher search efficacy and robustness as it is not easily affected by the
initial value. It can also generally avoid falling into the local optimization. As a result, it
has obtained more and more attention in the SVM training process in recent years. For
example, as reported in Reference [55], genetic algorithm (GA) was used to select c and
g parameters and then the SVM model combined with the SNV preprocessing method
was established to identify different vegetable oils. Furthermore, the particle swarm
optimization (PSO) was used to determine the c and g parameters for the establishment
of the PCA-SVM model in order to identify the adulteration of hops [56] and Huajiao
powder [57]. Apart from the abovementioned algorithms, the newly developed intelligent
optimization algorithms, such as differential evolution algorithm, ant colony optimization
algorithm, whale optimization algorithm, and wolf optimization algorithm can also be
used for parameter optimization. In real applications, the algorithm complexity and the
search efficiency should be taken into consideration.

Furthermore, there have been some improved SVM models used in the qualitative
analysis of foods performed through NIRS. Least squares SVM (LS-SVM) is the most typical
one. It converts inequality constraints into equality constraints on the basis of SVM. It can
also transform the quadratic programming problem into the linear equation solution in
SVM. Thus, compared with traditional SVM algorithm, the LS-SVM algorithm is simpler
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and faster to realize and is more accurate [58]. In Reference [59], an LS-SVM model with GA
optimization was established to identify whether the chestnut was moldy or not, with an
accuracy of 93.56%. In Reference [60], an error-correcting output coding SVM model using
NIRHSI technology for of six different commercial tea products is presented, and an excellent
accuracy rate of 97.41% was obtained. In References [61–63], PLS-DA, SIMCA, BP-ANN,
SVM, and LS-SVM models were established separately to identify honey adulteration,
lotus seed powder, and its adulteration and damage of Huping jujube. Comparison studies
showed that the performance of the LS-SVM model was more competitive than other
traditional pattern recognition methods in the application of NIRS in food qualitative
analysis. Moreover, milk adulteration identification models were built by two improved
and simplified k-nearest neighbors of non-linear supervised pattern recognition methods
and improved SVM algorithms in Reference [64]. Experiments showed that the calculation
burden of the improved SVM model was reduced by 90%, and good results were obtained.

4.1.4. Discriminant Analysis Method

According to different discriminant principles, discriminant analysis methods include
Fischer discriminant analysis, distance discriminant analysis, and Bayes discriminant
analysis. Discriminant analysis methods are widely used in qualitative analysis of NIRS
data of foods.

Fisher Discriminant Analysis

Fischer discriminant analysis, also known as linear discriminant analysis (LDA)
method, is a projection-based method. By choosing appropriate projection axes for LDA,
the projection points of similar samples are close to each other, while the projection points
of different classes are as far as possible [65,66]. Then, the category of each sample is
determined according to its distance from the projection points of other samples.

In the field of qualitative analysis of NIRS data, in Reference [13], PCA-LDA, SVM, and
SIMCA methods were established to identify Chinese liquor, including 22 types, 10 famous
brands, and 6 flavor types. Experiments showed that PCA-LDA was the best model.
The average accuracy of the training set was 98.94%, and the average accuracy of the test
set was 95.70%. In Reference [67], combined with the artificially selected near-infrared
spectral bands, LDA and SIMCA were used to establish various discrimination methods of
extra virgin olive oils. The experimental results showed that the average accuracy rates of
the fivefold cross-validation were 90.5% and 80.5%, respectively. In this case, it was clear
that LDA had better performance. In another case [68], PCA-LDA and GA-LDA were used
to establish the identification model of macadamia cultivars. Experiments showed that,
with Savitzky–Golay smoothing preprocessed spectra, the accuracy of GA-LDA was higher
than 94.44%.

Distance Discriminant Analysis

Since the labels of the training data are known, the distance between the center of the
unknown data and the training data can be calculated to determine which category the
sample belongs to. Mahalanobis distance is usually used in distance discriminant analysis.
The Mahalanobis distance discriminant analysis (MDDA) is used to find the Mahalanobis
distance of the test sample from the center of each category. The category with the smallest
distance is selected as the category identified by the MDDA model [69].

In the field of food quality evaluation and adulteration discrimination, the authors
of [70] used the MDDA model to evaluate rice quality, and the accuracy of the model was
98.33%. Moreover, in References [71,72], MDDA combined with PCA was used to build
qualitative models for peanut seed quality determination and surimi grade estimation—
both of the models obtained good identification results. MDDA, SIMCA, and LS-SVM
algorithms were compared in References [13,73] for estimating plum maturity levels and
quality of Chinese liquors. The experimental results demonstrated that the MDDA and
PCA-MDDA models had the best performance—the accuracy rates of testing set were
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95.7% and 96.3%, respectively. In addition, in the tracing of food origin, the MDDA method
is also involved. For example, the identification of sea cucumber geographical origin [74]
and the discrimination of Chinese wolfberry from Zhongning [75]. The accuracy rates
reached 100% in both cases.

Bayesian Discriminant Analysis

Bayesian estimation is to obtain the probability density function by combining the new
evidence with the prior probability, so as to maximize the posterior probability. In Bayesian
discriminant analysis methods, the probability density functions of each of the categories
are estimated first, and then certain classification rules are set to determine the category
for each test samples. Usually, the sample belongs to the category that has the greatest
probability. Typical Bayesian discriminant analysis methods include the relevance vector
machine (RVM) and the naive Bayesian classifier (NBC).

In the field of qualitative analysis of NIRS data, RVM and new clustering algorithm
were used in Reference [76] to establish various identification models of adulteration of
Ganoderma lucidum spore oil. The accuracy of the model was 100%. In Reference [77], on
the basis of the competitive adaptive reweighted sampling (CARS) wavelength optimiza-
tion, the authors compared RVM, SVM, and LS-SVM identification models of traditional
Chinese medicine Sanyeqing and its similar species. The experimental results indicated
that CARS-RVM achieved the best performance. The accuracy of the correction set and the
verification set were all 100%. In addition, in Reference [78], an improved naive Bayesian
classifier (INBC) combined with a fast search and find of density peaks (CFSFDP) clustering
method was proposed to identify the origin of the traditional Chinese medicinal Sanyeqing.
It should be pointed out that INBC-CFSFDP method can not only identify the known origin
in the database accurately, but also identify the unknown origin. The recognition rate of
unknown and known geographical origin in the database was 100%. This research opened
up a new horizon for qualitative analysis of NIRS.

4.1.5. Artificial Neural Network

Artificial neural network (ANN) is a mathematical model based on the mechanism
of the processing of complex information by a biological neural network. ANN generally
includes three layers: the input layer, hidden layer, and output layer. In the qualitative
analysis of NIRS, the features extracted from the spectral data are inputted into the input
layer. The number of input units is consistent with the input dimension of the spectral
data. The hidden layer is to construct the relationships between the input features and the
output categories. The outputs of the hidden layer are real numbers. The output layer is
equipped with discriminant principles to generate the classified categories. The values of
the output layer are the category labels. Generally, the more hidden layer units, the stronger
nonlinear ability. However, too many hidden layers will increase the risk of overfitting.
In the qualitative analysis of NIRS, the BP-ANN, RBF-ANN, and extreme learning machine
(ELM) models are most widely used.

In terms of qualitative analysis of NIRS data, PCA combined with BP-ANN methods
were applied in References [79,80] to establish the identification models of cultivated and
wild Erigeron breviscapus and apple varieties. The recognition rate reached 100% in both
cases. In Reference [81], in order to establish the BP-ANN model, NIRHSI technology
was used to obtain the NIRS data. The model was used to identify soybean varieties.
The training accuracy rate reached 97.50% and the average test accuracy rate was over
93.88%. The MDDA and BP-ANN models were compared in Reference [82] on the basis
of NIR data of the browning of plum fruit. Experiments showed that both models can
effectively identify the browning of plum fruit, and the recognition rates were all 100%.
The PCA-BP-ANN and PLS-BP-ANN models were compared in Reference [83] on the basis
of NIR data of different species of fish, and the accuracy of training set and testing set
were 96.4% and 95.5%, respectively. The PLS-DA and BP-ANN models were compared in
Reference [84] on the basis of NIR data of camellia oil from different geographical origins.
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Experiments showed that the accuracies of MDDA and BP-ANN models were similar,
but both were better than the PLS-DA model. The PCA-BP-ANN model had the best
performance, with an accuracy rate of 95.83%. Combining the smoothing pretreatment
method with the models can help to improve the models’ performances. It is worth noting
that the performance of ANN greatly depends on its parameters. Thus, how to optimize
the methods’ parameters is widely studied. For example, in Reference [85], BP-ANN was
optimized by PSO method. The spectral band and parameters were optimized to establish
the authenticity discrimination model of official rhubarb samples. The model accuracy
reached 96.15%. Different from ANNs, the number of neurons in the hidden layer is the
only parameter needed to be determined in ELM. Thus, ELM contains less parameters to
be optimized, which means the model training process is simplified. The ELM combining
with the CFSFDP clustering method was used to identify the adulterated grape seed oils in
Reference [86], and a detection system was designed, with an accuracy rate of 100%.

4.1.6. Other Qualitative Analysis Methods

For qualitative analysis of food by NIRS, in addition to the above-mentioned tradi-
tional pattern recognition methods, there are some other methods that are worth noting.
For example, random forest (RF) and PCA were used to establish the identification model
of green tea species on the basis of the joint information from NIRS and ultraviolet-visible
spectroscopy [87]. The results show that the RF model can effectively identify five green tea
varieties, and the accuracy rate of the model was 96%. Similarly, in Reference [88], Fourier
transform mid-infrared spectroscopy and NIRS technologies were combined with single
spectra analysis and multi-sensor information fusion strategy to establish the RF model for
the origin identification of Panax notoginseng. The accuracy of RF identification model
was 95.6%, suggesting an effective identification ability to identify Panax notoginseng from
five different origins. In Reference [89], k-nearest neighbors (KNN) and LDA were used to
establish the identification model of purple sweet potatoes, white sweet potatoes, and their
adulterate samples. The prediction accuracy of LDA and KNN were 100% and 97.4%,
respectively. In addition, HCA, KNN, and LDA were used to identify four production
sources of tomato, and good results were obtained [90]. In Reference [91], NIRS data
combined with PCA were used to establish SVM and learning vector quantization (LVQ)
neural networks for coix seed variety identification, and the prediction accuracies were
100% and 90.91%, respectively. In Reference [92], PLS-DA, KNN, PCA, and classification
and regression trees (CART) models were established to identify the quality of frying
oil. The experimental results showed that the proposed models could effectively identify
qualified and unqualified frying oil.

4.2. Clustering Analysis

The cluster analysis method is an unsupervised pattern recognition method without
labeled matrix. It can automatically realize classification by calculating the similarity of
the samples. For NIRS data processing, the distance of the spectrum [93] is generally
used to calculate the similarity of the data. However, for the processing of NIRS data of
high-dimensions, distances among samples from different catalogs could be very close or
the same. Usually, the feature extraction methods introduced in Section 4.1 are firstly used
to eliminate overlapping parts of information and reduce the dimensions of NIRS. Then,
the cluster analysis methods are applied.

The cluster analysis methods are widely used in qualitative analysis of NIRS data for
food because they save the work of labeling data. For example, in Reference [94], with the
1100–1800nm band and the D2 and SNV pretreatment methods, the authors used the
PCA method to establish the qualitative analysis model of shelf-life of Mopan persimmon.
The accuracy of the model training set and testing set were 95.4% and 93.3%, respectively.
In the PCA score plots, the visual classification can be presented directly, and samples with sim-
ilar spectral characteristics can be clustered. In References [95–97], hierarchical cluster analysis
(HCA) with different wavelength bands and different pretreatment methods were utilized
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to analyze chicken origins, identify sesame oil and its adulterations, and discriminate the
adulterated Cheng’an strawberry. Compared with PCA, HCA had better accuracy, with the
accuracy rates of the HCA model being 100%, 100%, and 93.3%, respectively. In addition,
other clustering methods, such as a fast search and find of density peaks clustering method,
were also involved [78,86].

5. Deep Learning Methods

Deep learning has become a hot research direction in the field of artificial intelligence
and has developed rapidly. Convolutional neural network (CNN) is one of the represen-
tative algorithms of deep learning. Like ANN, the purpose of CNN is also to simulate
the learning process of the human brain. However, the structure of each layer in CNN
is different from that of ANN. For example, the hidden layer of CNN involves several
convolutional layers and pooling layers to automatically extract the essential features from
the data. The fully connection layer realizes fitting or classification. In a word, the deep-
learning-based model is an end-to-end self-adaptive model that only needs the input data
and output data, and then the classified results can be obtained. The internal model can
complete the feature extraction and classification process simultaneously.

Due to the excellent learning abilities for high-dimensional data, CNN has achieved
great success in the food qualitative analysis with NIRS data. For example, a six-layer CNN
model was designed in Reference [98] to achieve the quality identification of three types
of macadamia nuts, with an accuracy of 100%. It provided a reliable technical support
for the efficient and low-cost quality determination of macadamia nuts. In Reference [99],
a 1D convolutional neural network (1D-CNN) was proposed for the discrimination of
aristolochic acids and their analogues in traditional Chinese medicine. The validation set
accuracy of 1D-CNN, PCA-SVM, T-distributed stochastic neighbor embedding support
vector machine (t-SNE-SVM), SVM and BP-ANN were 100%, 91.41%, 90.63%, 87.89%, and
39.45%, respectively. The comparison results showed that traditional shallow learning
machines heavily relied on the feature extraction algorithms such as PCA or t-SNE, while
the accuracy of the 1D-CNN model was still very competitive without using any feature ex-
traction algorithms, and was much better than BP-ANN. Similarly, SVM and self-adaptive
evolutionary ELM and CNN models were established to identify the different geographical
origins of Tetrastigma hemsleyanum. The accuracy rates were 90%, 98.3%, and 100%, respec-
tively [100]. Experiments showed that CNN was faster and more accurate than traditional
methods. CNN was also successfully used in the field of tobacco geographical origin
identification. In Reference [101], the improved LeNet-5 network structure was used to
identify the three major tobacco leaf production areas. The accuracy of the training set and
testing set were 98.6% and 95.0%, respectively. In Reference [102], 1D-CNN, 2D-CNN, and
PLS-DA were established to identify the geographical origin of tobacco leaves. Experiments
showed that the performance of 1D-CNN and 2D-CNN was better than that of PLS-DA.
The model accuracy rates were found to be 93.15%, 93.05%, and 81.25%, respectively. Al-
though at present there are only a few studies on the application of CNN in the field of
qualitative analysis of NIRS data of food, it is worthy of further research. Examples of all
the mentioned applications of pattern recognition technology for quantitative analysis of
food based on NIRS in this review are shown in Table 2.
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Table 2. Application of pattern recognition technology for the qualitative analysis of food.

Pattern Recognition Technology Applications Objectives Source

Shallow learning
machine

PLS-DA

Geographic origin
identification

Huajiao; French olive oils;
rice; Chilean flour and

wheat grain
[15,25–27]

Quality identification Iberian pork; meat [28,32]

Variety identification
Commercial wine;

oat/grain kernels; hard
seeds of legume plants

[29,30,33]

SIMCA

Geographic origin
identification

Wolfberry; Forsythia
suspense; mutton [36–39]

Brand traceability Milk powder; edible
vinegar [40,43]

Defective items
classification Wheat grain [42]

Variety identification Navel orange [43]

SVM

Origin and variety
analysis

Apple; maize kernels;
hops [14,50,56]

Color discrimination Soybean oil [51]

Authenticity/adulteration
identification

Tea; peanut oil; Huajiao
powder; honey; lotus

seed powder; milk
[52,54,57,61,62,64]

Defective items
classification Chestnut; Huping jujube [59,63]

Classification Tea [60]

Discriminant analysis

Identification of brand
and type Chinese liquor [13]

Variety identification Extra virgin olive oils;
Sanyeqing [67,77]

Nondestructive
classification Macadamia cultivars [68]

Geographic origin
identification

Sea cucumber; Chinese
wolfberry from

Zhongning; Sanyeqing
[74,75,78]

Quality and grade
estimation

Peanut seed; surimi;
plum [71–73]

Adulteration
identification

Ganoderma lucidum spore
oil [76]

Artificial neural
network

Variety identification Erigeron breviscapus;
soybean; apple; fish [79–81,83]

Color discrimination Plum [82]

Geographical origin Camellia oil [84]

Authenticity/adulteration
discrimination Rhubarb; grape seed oils [85,86]

Others
Variety identification Sweet potatoes; green tea;

coix seed [87,89,91]

Origin identification Panax notoginseng;
tomato [88,90]

Quality assessment Frying oil [92]
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Table 2. Cont.

Pattern Recognition Technology Applications Objectives Source

Clustering analysis

Shelf-life analysis Mopan persimmon [94]

Geographic origin
analysis Chicken [95]

Adulteration
identification

Sesame oil; Cheng’an
strawberry [96,97]

Deep learning methods

Quality identification Macadamia nuts [98]

Discrimination

Aristolochic acids and
their analogues in

traditional Chinese
medicine

[99]

Geographical origin Sanyeqing; tobacco
leaves [100–102]

6. Conclusions

Pattern recognition methods based on NIRS technique are widely used in the detec-
tion of food quality. The qualitative detection methods mainly focus on the early period
shallow learning machines. However, they are not suitable for the feature learning of
complex inputs when the number of samples is much smaller than the number of feature
dimensions. Therefore, traditional NIRS technique-based discrimination methods usually
employ feature extraction methods to eliminate redundant wavelengths before construct-
ing shallow learning classifier. Still, the feature extraction methods depend on practical
experience and professional knowledge. In addition, the selected features belonging to a
certain kind of dataset may be not suitable for another dataset. This means that the features
need to be re-extracted when the tested food products are replaced, which consumes a large
amount of time. To avoid these drawbacks, deep learning theories such as CNN models are
developed to achieve qualitative analysis. It can automatically extract important features
from large collections of high-dimensional raw data with high recognition performance.
Therefore, the CNN models based on NIRS techniques have great potential in the field of
qualitative analysis of food.

The deep learning methods have excellent performance in the analysis of large datasets.
If the dataset is small, it may lead to over fitting problem of the model. However, in the
application of near infrared spectroscopy, a large number of samples are often difficult to
obtain. For example, due to the long growth cycle and limited environmental conditions of
some samples, the cost of obtaining a large number of NIRS data is too high. Therefore,
the way in which to apply deep learning to the analysis of NIRS datasets with sample size
far less than the sample dimension is a challenge in the future.

In addition, pattern recognition methods have developed from traditional shallow
learning machines to deep learning methods. The novel methods have obtained effective
results in food quality detection. However, the theories are limited to known categories
that have been trained in the training stage. New unknown categories that have never
merged in the dataset are less considered. Clearly, it means that the training set-based
models cannot be applied to new unknown categories before training. In reality, as driven
by interests, products of the same species but cultivated by new cultivation technology or
new cultivation environment will continue to emerge, yet the qualities of these products
may be unknown. Thus, enhancing the unknown categories recognition ability of the
qualitative analysis models is a key direction for future research.
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