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Osteoarthritis (OA) is a chronic degenerative disease wherein the articular cartilage exhibits
inflammation and degradation. Scutellarin (SCU) is a flavonoid glycoside with a range of
pharmacological activities, as shown inprevious studiesdemonstrating its anti-inflammatory
activity. How SCU impacts the progression of OA, however, has not been explored to date.
Herein, we assessed the impact of SCUonmurine chondrocytes in anOAmodel system. In
in vitro assays, wemeasured chondrocyte expression of keyOA-associated factors such as
matrix metalloproteinase 13 (MMP-13), a disintegrin and metalloproteinase with
thrombospondin motifs 5 (ADAMTS-5), cyclooxygenase-2 (COX-2), and inducible nitric
oxide synthase (iNOS) viaqRT-PCRandWestern blotting, the expression of interleukin 6 (IL-
6), tumor necrosis factor-a (TNF-a), and prostaglandin E2 (PGE2) were detected by qRT-
PCR. Our results showed that the downregulation of MMP-13, ADAMTS-5, COX-2, and
iNOS expression by SCU and the overproduction of IL-6, TNF-a, and PGE2 induced by IL-
1b were all inhibited by SCU in a concentration-dependent manner. Moreover, SCU was
able to reverse aggrecan and collagen II degradation and nuclear factor-kB (NF-kB) and
nuclear factor erythroid-derived2-like2 (Nrf2) signalingpathwayactivationboth in vivoand in
vitro.We further used a destabilization of themedial meniscus (DMM)murinemodel of OA to
explore the therapeutic benefits of SCU in vivo. Together, our findings suggest SCU to be a
potentially valuable therapeutic agent useful for treating OA.

Keywords: scutellarin, chondrocytes, osteoarthritis, inflammation, Nrf2/NF-kB
INTRODUCTION

Osteoarthritis (OA) is a progressive disease wherein the articular cartilage undergoes chronic and
progressive destruction (Loeser, 2009; Khan et al., 2017). Pathological findings in OA patients
include chondrocyte hypertrophic differentiation, synovial inflammation, osteophyte formation,
and subchondral bone remodeling in addition to this loss of the articular cartilage (Heinegard and
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Saxne, 2011; Glyn-Jones et al., 2015). A number of factors
associated with OA risk have been identified, including age,
sex, body mass index (BMI), a history of joint injuries, and joint
shape/alignment, but the exact mechanisms underlying the
pathogenesis of this disease remain poorly defined (Prieto-
Alhambra et al., 2014; Loeser et al., 2016). Indeed, a number of
factors are likely to influence the structural and functional
alterations that characterize OA, including oxidative stress,
impaired mitochondrial activity, expression of catabolic genes,
and altered chondrocyte inflammatory activity (Goldring, 2000;
Loeser et al., 2012). Inflammatory mediators have been found to
be key mediators of OA pathology (Sokolove and Lepus, 2013),
with the proinflammatory cytokine interleukin-1b (IL-1b)
having been shown to drive inflammation, oxidative stress, and
chondrocyte apoptosis in this disease (Haseeb and Haqqi, 2013).
The inflammation-regulating transcription factor nuclear factor-
kB (NF-kB) is also essential to this IL-1b-mediated induction of
inflammatory and catabolic genes in chondrocytes (Kumar et al.,
2004). Meanwhile, NF-kB signaling pathways could be activated
by a wide range of stimuli, such as tumor necrosis factor-a
(TNF-a) and IL-1b. By signaling through NF-kB, IL-1b can
induce a d i s in tegr in and meta l lopro t e inase wi th
thrombospondin motifs 5 (ADAMTS5) expression, in addition
to upregulation of matrix metalloproteinases (MMPs) that can
break down cartilaginous tissue. In this context, inhibition of
NF-kB activation and transcription is an effective way by which
OA exerts its anti-inflammatory effect. It has been demonstrated
that nuclear factor erythroid-derived 2-like 2 (Nrf2)/heme
oxygenase-1 (HO-1) pathway is involving in inflammation
disease (Feng et al., 2018; Hu et al., 2019). Moreover, Nrf2
signaling has been shown to be a key anti-inflammatory
defense mechanism that enhances expression of HO-1 and
inhibits NF-kB activity, which could decrease the generation of
inflammatory mediators such as MMPs and PGE2 and attenuate
the extracellular matrix (ECM) degradation, making this a
potentially viable therapeutic target in OA (Chen et al., 2006).

Scutellarin (SCU) (4′,5,6-trihydroxy flavonoid-7-glucuronide;
Figure 1A) is a flavonoid glycoside isolated from Erigeron
breviscapus (Zhang et al., 2009). We have previously shown
Frontiers in Pharmacology | www.frontiersin.org 2
SCU to exhibit potent biological activity, with anti-inflammatory
(Wang et al., 2011), anti-oxidative (Hong and Liu, 2007), and
anti-apoptotic activity (Dai et al., 2011). Importantly, SCU is able
to induce Nrf2/HO-1 activity and to inhibit NF-kB signaling in
hepatocytes (Zhang et al., 2018), osteoblasts (Wang et al., 2018b),
and microglial cells (Yuan et al., 2015). However, the study of the
value of SCU as an inhibitor of inflammation and oxidative stress
in the context of OA remains limited. Therefore, in the present
report, we assessed the ability of SCU to protect against
inflammation and ECM breakdown in response to IL-1b
treatment. We then extended these studies into a mouse model
of OA to explore the therapeutic value of this compound.
MATERIALS AND METHODS

Reagents
SCU (⩾98% pure) was from Solarbio (Beijing, China), while
DMOS and type II collagenase came from Sigma-Aldrich (MO,
USA). Antibodies specific for aggrecan, collagen II, MMP-13,
HO-1, ADAMTS5, b-actin, inducible nitric oxide synthase
(iNOS), and Lamin B1 came from Abcam (Cambridge, UK), as
was AF488-labeled goat anti-rabbit IgG. Anti-Nrf2 and
secondary goat anti-rabbit immunoglobulin G (IgG) were from
Bioworld (OH, USA), while anti-cyclooxygenase-2 (COX-2) was
from Cell Signaling Technology (MA, USA). Recombinant IL-1b
came from PeproTech (NJ, USA). 4′ ,6-Diamidino-2-
phenylindole (DAPI) was from Beyotime (Shanghai, China).

Primary Mouse Chondrocyte Culture
We euthanized 2-week-old C57BL/6 mice and used these
animals to isolate primary chondrocytes as in previous reports
(Zheng et al., 2018). Briefly, we isolated cartilage from the knee
joints of these animals prior to treating them for 4–6 h using 2
mg/ml (0.2%) collagenase II at 37°C. We then spun down digests
for 5 min at 1,000 rpm, discarded the supernatants, resuspended
the cells, and plated them prior to incubation at 37°C in a
humidified 5% CO2 incubator. After growing to 80%–90%
FIGURE 1 | Scutellarin (SCU) affects chondrocyte viability. SCU chemical structure (A). The impact of SCU on chondrocyte viability across a range of concentrations
was assessed via CCK-8 assay after 24 (B) and 48 h (C). Data are means ± SD. *P < 0.05 vs. control; n = 5.
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confluence, cells were harvested with 0.25% trypsin–EDTA
solution. Cells from the second passage were used for all
experimental studies.

Animal Model
The Animal Care and Use Committee of Wenzhou Medical
University approved this study (ethics code: wydw2017-0159).
We obtained C57BL/6 wild-type (WT) mice from the Animal
Center of the Chinese Academy of Sciences (Shanghai, China).
Consistent with past studies (Glasson et al., 2007), we induced
OA in these animals via surgically destabilizing the medial
meniscus (DMM). For this approach, animals were
anesthetized before cutting into the joint capsule medial to the
patellar tendon, followed by transection of the medial
meniscotibial ligament. After animals had recovered from
surgery, they were randomized into sham, vehicle control, and
SCU-treated groups.

Experimental Design
To explore SCU anti-inflammatory, chondrocytes were treated
for 24 h with IL-1b (10 ng/ml) following pretreatment with SCU
(0, 15, 30, or 60 mM).

To assess the therapeutic value of SCU in vivo, we used a
murine DMM model as outlined above, with mice in the SCU
treatment group receiving a once daily intraperitoneal (i.p.) SCU
injection (50 mg/kg/day) for 8 weeks. Vehicle control animals
were instead injected with saline. At the eighth postoperative
week, animals were euthanized, and samples of cartilage tissue
were isolated.

CCK-8 Assay
A CCK-8 kit (Dojindo Co., Kumamoto, Japan) was utilized in
order to gauge the impact of SCU on chondrocyte viability based
on provided directions. Initially, chondrocytes were plated into
96-well plates (6 × 10³ cell/cm2) for 12 h, after which SCU (15,
30, 60, or 120 mM) was added for 24 or 48 h. After washing in
PBS, 10 ml/well of CCK-8 solution was added for 4 h at 37°C.
Absorbance in each well at 450 nm was then assessed via
microplate reader (Model 550, Bio-Rad, USA). Triplicate
experiments were performed.

Enzyme-Linked Immunosorbent Assay
ELISA kits (R&D Systems, MN, USA) were used based on
provided directions.

Immunofluorescence Analysis
Chondrocytes (4 × 105 cells/ml) were added to glass six-well
plates for 24 h, after which they were washed in PBS, fixed for 15
min using 4% paraformaldehyde, permeabilized for 15 min using
0.4% Triton X-100, blocked for 1 h with 10% goat serum, rinsed,
and then probed overnight at 4°C with antibodies recognizing
collagen II (1:200), p65 (1:200), and Nrf2 (1:100). After
additional washing with PBS, cells were then stained using an
appropriate fluorescein isothiocyanate (FITC)-labeled secondary
antibody (1:400) for 1 h, after which DAPI was added for 2 min
to achieve nuclear staining. A fluorescent microscope (Olympus)
was then used to visualize samples.
Frontiers in Pharmacology | www.frontiersin.org 3
qRT-PCR
TRIzol (Invitrogen) was used to isolate RNA from treated
chondrocytes based on provided directions. Next, 1 mg of RNA
from each sample was used to prepare cDNA via reverse
transcription (MBI Fermentas, Germany). Thermocycler
settings were 95°C for 10 min, then 40 cycles of 95°C for 15 s,
60°C for 1 min. A CFX96Real-Time PCR System (Bio-Rad, CA,
USA) was used for all reactions. Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) expression was used to normalize all
Ct values, and the 2-DDCt approach was used to calculate relative
gene expression. The NCBI Primer-Blast Tool was used to design
specific primers, which are listed in Table 1.

Western Blot Assay
Radioimmunoprecipitation assay (RIPA) buffer containing 1
mM phenylmethylsulfonyl fluoride (PMSF) was used to lyse
samples, which were then spun at 12,000 rpm for 15 min at 4°C.
Supernatant protein levels were then assessed via bicinchoninic
acid (BCA) assay (Beyotime), and 40 ng protein from each
sample was separated via sodium dodecyl sulfate (SDS)-
polyacrylamide gel electrophoresis (PAGE) and transferred to
polyvinylidene fluoride (PVDF) membranes (Bio-Rad, USA)
that were blocked for 2 h using 5% nonfat milk, after which
they were probed overnight using primary antibodies specific for
aggrecan, collagen II, b-actin, Nrf2 (1:500), HO-1 (1:5,000),
COX-2, iNOS, MMP-13, ADAMTS-5, p65, IkBa, and Lamin
B1 at 4°C. Antibodies were used at a 1:1,000 dilution unless
otherwise indicated. After washing, blots were then probed for 2
h with appropriate secondary antibodies were visualized via
enhanced chemiluminescence (Invitrogen), with Image Lab 3.0
(Bio-Rad) used to quantify band density.
TABLE 1 | Primers used in this study.

Gene Forward primer Reverse primer

COX-2 5′-TCCTCACATCCCTGAGAACC-
3′

5′-
GTCGCACACTCTGTTGTGCT-3′

iNOS 5′-GACGAGACGGATAGGCAGAG-
3′

5′-
CACATGCAAGGAAGGGAACT-
3′

IL-6 5′-CCGGAGAGGAGACTTCACAG-
3′

5′-
TCCACGATTTCCCAGAGAAC-3′

TNF-a 5′-ACGGCATGGATCTCAAAGAC-
3′

5′-
GTGGGTGAGGAGCACGTAGT-
3′

COX-1 5′-
CTTTGCACAACACTTCACCCACC-
3′

5′-
AGCAACCCAAACACCTCCTGG-
3′

COX-2 5′-GCATTCTTTGCCCAGCACTT-3′ 5′-
AGACCAGGCACCGACCAAAGA
-3′

mPGES-
1

5′-
CTGCTGGTCATCAAGATGTACG-
3′

5′-
CCCAGGTAGGCCACGTGTGT-
3′

mPGES-
2

5′-AAGACATGTCCCTTCTGC -3′ 5′-CCAAGATGGGCACTTTCC-3′
February
COX, cyclooxygenase; iNOS, inducible nitric oxide synthase; IL-6, interleukin 6; TNF-a,
tumor necrosis factor a; mPGES-2, microsomal prostaglandin E synthase 2.
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Molecular Modeling
Nrf2 (PDB ID: 4ZY3) was subjected to docking studies (Khan
et al., 2017). The protein was downloaded from PDB (https://
www.rcsb.org/) before being prepared for docking. The lowest
energy conformations for docking were determined via default
parameters after being minimized using PyMoL (version 1.7.6).
The protein–ligand docking analysis was carried out using
AutoDockTools (version 1.5.6), which can provide ligand
binding flexibility with the binding pocket residues. Finally, the
images were generated using UCSF PyMoL.

X-Ray Imaging Method
The animals were subjected to X-ray examination at 8 weeks
postoperatively with or without treatment. X-ray imaging was
performed for all mice to assess osteophyte formation, joint
spaces, and calcification changes of the cartilage surface using a
digital X-ray machine (Kubtec Model XPERT.8; KUB
Technologies Inc.).

Histopathologic Analysis
After fixation for 24 h in 4% paraformaldehyde (PFA), knee
joints (n = 15/group) were decalcified for 2 months in 10%
ethylenediaminetetraacetic acid (EDTA). Samples then
underwent paraffin embedding and were prepared as 5-mm-
thick sections. Safranin O-fast green (SO) was then used to
stain each cartilage sample. Cartilage and subchondral bone
cellularity and morphology were then assessed using the
Osteoarthritis Research Society International (OARSI) scoring
system in a blinded fashion for the medial femoral condyle and
the medial tibial plateau, as in past reports (Glasson et al., 2010).

Statistical Analysis
Data are means ± standard deviations (SDs). SPSS 20.0 was used
for all analyses. One-way ANOVAs with Tukey’s test were used
to compare control and treatment group data, while
nonparametric results were compared via the Kruskal–Wallis
H test. p < 0.05 was the significance threshold.
RESULTS

SCU Impact on the Viability of
Chondrocytes
We began by analyzing the cytotoxicity of SCU (Figure 1A)
when used to treat chondrocytes for 24–48 h with 0, 15, 30, 60, or
120 mM of SCU via a CCK-8 assay. We found that optimal
chondrocyte viability was achieved when cells were treated using
60 mM SCU (Figures 1B, C). As such, doses of 15, 30, or 60 mM
SCU were used in subsequent experiments.

SCU Protects Chondrocytes Against
IL-1b-Mediated Induction of
Inflammatory Mediators
We next explored the impact of SCU on chondrocyte
inflammation in response to IL-1b (10 ng/ml) by treating these
cells with the indicated SCU doses for 24 h before IL-1b addition.
Frontiers in Pharmacology | www.frontiersin.org 4
We then assessed the expression of key inflammatory mediators.
We found that upon treatment using 15 mM SCU prior to IL-1b
treatment, this did not significantly alter subsequent COX-2 (p =
0.1148) and iNOS (p = 0.2714) protein levels relative to control,
but SCU markedly reduced IL-1b-mediated increases in iNOS
and COX-2 expression at 30 mM SCU (Figures 2A, B), and that
it modulated the production of endogenous NO and PGE2 in a
dose-dependent manner (Figure 2C). IL-1b induced increased
NO and PGE2 production, whereas SCU decreased the
production of these factors in a dose-dependent fashion. SCU
was also able to dose-dependently inhibit IL-b-induced secretion
of TNF-a and IL-6 by chondrocytes (Figure 2D), although this
difference was not significant for the 15 mM SCU dose with
respect to IL-6 production (p = 0.0745). Together, these findings
suggested that SCU was able to prevent upregulation of
inflammatory mediators in chondrocytes upon IL-1b treatment
in a dose-dependent fashion.

SCU Protects Against IL-1b-Mediated
Chondrocyte ECM Degradation
We next explored the impact of SCU treatment on the IL-1b-
induced degradation of the ECM viameasuring aggrecan, collagen-
II, ADAMTS5, and MMP-13 levels in these chondrocytes via
Western blotting. We found that IL-1b treatment led to a
marked reduction in aggrecan and collagen II levels, with
corresponding increases in MMP-13 and ADAMTS5 levels
(Figures 3A, B). Pretreatment with SCU reversed this phenotype
in a dose-dependent manner. Furthermore, immunofluorescent
staining of collagen II exhibited a comparable phenotype to that
observed by Western blotting (Figures 3C, D).

SCU Suppressed NF-kB Activation in
Chondrocytes Upon IL-1b Treatment
Next, we assessed the impact of SCU on activation of NF-kB
signaling via measuring cytoplasmic IkBa and nuclear p65
protein levels in chondrocytes following IL-1b stimulation. IL-
1b led to marked degradation of IkBa and p65 nuclear
translocation within 2 h of treatment (Figures 4A, C, and D).
Pretreatment with SCU, however, inhibited this effect in a dose-
dependent fashion. Consistent with this, immunofluorescent
analyses revealed that IL-1b treatment was sufficient to induce
rapid nuclear localization of p65 relative to control cells, while
pretreatment of cells with 60 mM SCU was sufficient to prevent
this effect (Figure 4B). Together, these findings suggested that
SCU was able to reduce the IL-1b-mediated activation of
chondrocyte NF-kB signaling.

SCU Regulates Chondrocyte
Nrf2/HO-1 Signaling
Previous work suggests that SCU can mediate anti-inflammatory
activity in part via activation of the Nrf2/HO-1 pathway (Guo et al.,
2014). We therefore measured Nrf2 and HO-1 levels in IL-1b-
treated chondrocytes via Western blotting, revealing a significant
increase in Nrf2 nuclear translocation and HO-1 expression in cells
that had been treated with SCU ± IL-1b treatment (Figures 5A, C,
D). Immunofluorescent staining results were consistent with these
Western blotting findings (Figure 5B). Together, these data
February 2020 | Volume 11 | Article 107
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indicated that pretreatment with SCU was sufficient to promote
Nrf2 nuclear translocation and HO-1 expression, thereby
mediating anti-inflammatory activity.

Molecular Docking
We next assessed whether there was any affinity between SCU
and Nrf2 or upstream proteins in the Nrf2 pathway via a
computational molecular docking analysis (Khan et al., 2017).
For this analysis, we utilized the SCU chemical structure shown
in Figure 1A. After examination of all generated models, we
found SCU to clearly interact with and dock in the Nrf2 binding
site (Figure 6), with macro- and local-level views of these
interactions shown using a ribbon model. We additionally
utilized a space-filling model to illustrate this interaction. We
observed high-affinity (-8 kcal/mol) hydrogen binding events
between SCU and the SER508, SER602, and ARG483 residues of
Nrf2. This suggested that SCU may function to inhibit the
development of OA in part through its ability to interact with
Nrf2 in a manner that promotes its nuclear translocation.

SCU Efficacy in a Murine Model of OA
In a final set of experiments, we used a murine DMM model of
OA to assess the therapeutic effect of daily administration of SCU
(50 mg/kg, intraperitoneally) over an 8-week period. We assessed
morphological and histological changes in mice viaX-ray analysis
Frontiers in Pharmacology | www.frontiersin.org 5
and SO staining. Relative to sham control mice, OA model mice
exhibited clear joint space narrowing and increased cartilage
surface density, whereas these effects were reduced somewhat in
SCU-treated animals (Figure 7A). SO staining (Figures 7B, C)
further revealed that while articular cartilage in sham control
animals was smooth and stained red (positive), animals in the OA
group exhibited clear signs of cartilage abrasion, proteoglycan
loss, and hypocellularity relative to these controls. Notably,
animals treated with SCU exhibited a smoother cartilage
surface and reduced loss of proteoglycan. For both COX and
microsomal PGE synthase (mPGES), COX-1 and mPGES-2 were
suppressed expressed whereas COX-2 and mPEFS-1 were
inducible in the OA group; fortunately, the opposite was true in
the SCU-treated group (Figures 7D, E). Furthermore, SCU
treatment was associated with a reduction in OARSI scores
relative to OA model animals (Figure 7F). As such, these
findings indicate that SCU is able to significantly reduce the
rate and/or severity of OA progression via impairing cartilage
destruction, calcification, and osteophyte formation in vivo.
DISCUSSION

OA is the most common form of chronic joint disease, having a
profound and negative impact on the quality of life for those
FIGURE 2 | Scutellarin (SCU) inhibits chondrocyte inflammation. Expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were measured
via qRT-PCR (A). Chondrocyte COX-2 and iNOS protein levels were measured via Western blotting (B). ELISAs were used to assess levels of prostaglandin E2
(PGE2), tumor necrosis factor-a (TNF-a), and interleukin 6 (IL-6) (C, D). Data are means ± SD. ##P < 0.01 vs. control; *P < 0.05, **P < 0.01 vs. IL-1b-only; n = 5.
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affected by this condition (Van Den Bosch, 2018). Over 237
million individuals globally suffer from OA, with rates being
highest among older adults. In addition to being a chronic
degenerative disease, inflammation has been shown to be a key
mediator of OA (Cicuttini and Wluka, 2014; Pers et al., 2015).
Currently, OA disease management largely relies upon the
utilization of nonsteroidal anti-inflammatory drugs (NSAIDs)
(Sasaki et al., 1998; Sun et al., 2017); and no effective compounds
capable of reliably curing or altering the course of this disease
have been found. There is thus an urgent need to identify better
treatment options of patients affected by OA.

SCU is an herbal derived from E. breviscapus (Vant.) that is
often used in Chinese medicine, exhibiting a range of
pharmacological and clinical activities (Wang and Ma, 2018).
SCU has previously been used successfully to cardiovascular and
cerebrovascular diseases (Wang et al., 2016; Wang and Ma,
2018), and it has exhibited anti-apoptotic, anti-inflammatory,
and anticancer efficacy in preclinical research (Dai et al., 2011;
Du et al., 2018; Nie et al., 2018). At present, however, the efficacy
of SCU as a means of treating OA has not been well-studied. In
Frontiers in Pharmacology | www.frontiersin.org 6
the present report, we found that SCU was able to protect against
IL-1b-mediated chondrocyte inflammation and ECM
dysregulation via activation of Nrf2/HO-1 signaling and
inhibition of NF-kB signaling.

The NF-kB pathway is well-documented to be a key regulator
of OA pathology and progression (Hou et al., 2017; Lepetsos et al.,
2018). When cells respond to IL-1b, this leads to the
phosphorylation of IkB in the cytosol, leading in turn to the
phosphorylation of the NF-kB p65 subunit. This subunit then
translocates to the nucleus and facilitates the enhanced expression
of pro-inflammatory and catabolic genes (Roman-Blas and
Jimenez, 2006). In these same IL-1b-stimulated chondrocytes,
iNOS catalyzes NO production, leading to increased MMP
expression and reduced collagen II and proteoglycan generation
and thereby resulting in the degradation of the ECM (Arasapam
et al., 2006). COX-2 mediates the production of inflammatory
PGE2 from arachidonic acid, leading to additional MMP- and
ADAMTS5-mediated degradation of the ECM (Hardy et al.,
2002). These MMPs, and particularly MMP-13, are key
mediators of collagen II degradation, while the ADAMTS
FIGURE 3 | Scutellarin (SCU) inhibits murine chondrocyte extracellular matrix (ECM) degradation. Levels of aggrecan, matrix metalloproteinase 13 (MMP-13),
collagen II, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5) in the supernatants collected from chondrocytes treated as above (A,
B). Collagen II (C) was analyzed via immunofluorescent staining, with 4′,6-diamidino-2-phenylindole (DAPI) used for nuclear detection (scale bar = 20 mm). Collagen-II
fluorescent intensity was quantified using ImageJ (D). Data are means ± SD. ##P < 0.01 vs. control; *P < 0.05, **P < 0.01 vs. IL-1b-only; n = 5.
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proteins target aggrecan for enzymatic breakdown, with
ADAMTS5 being the most prominent member of this protein
family. ProlongedMMP and ADAMT protein expression can lead
to complete destruction of the articular ECM and the structure of
the affected joint, resulting in permanent disability (Verma and
Dalal, 2011; Kang et al., 2017). This thus suggests that therapeutic
compounds capable of inhibiting the expression and/or activity of
MMP-13 and ADAMTS5 may represent ideal agents for treating
OA. In the present study, we found that SCU was able to suppress
NO, PGE2, IL-6, and TNF-a production as well as COX-2 and
iNOS upregulation at the RNA and protein levels. SCU further
inhibited MMP-13 and ADAMT5 and the breakdown of aggrecan
and collagen II in OA-model chondrocytes. This work thus
suggests that SCU is able to effectively suppress inflammation
induced by IL-1b in the context of OA owing to its ability to
suppress NF-kB pathway activation.

Previous work has shown that the ability of SCU to inhibit
NF-kB activity is linked to the AKT/NF-kB, p38/c-Jun N-
terminal kinase (JNK), and NF-kB/mitogen-activated protein
kinase (MAPK) pathways (Zhang et al., 2017). However, Nrf2/
HO-1 signaling is also a key anti-oxidative stress response
pathway in cells (Wang et al., 2018a), with Nrf2 targeting HO-
1, which in turn mediates anti-inflammatory (Tenhunen et al.,
1968; Kim et al., 2007; Hsu et al., 2014). Nrf2/NF-kB cross talk is
also known to be a key pathway regulating downstream protein
expression (Liu et al., 2008; Lee et al., 2009). The interplay
between the Nrf2 and NF-kB-mediated inflammatory
Frontiers in Pharmacology | www.frontiersin.org 7
responses is a complex process. Inhibition of Nrf2 is associated
with enhanced inflammation while its activation decreases pro-
inflammatory responses transcriptionally regulated by NF-kB
(Sivandzade et al., 2019). We found that SCU was able to
enhance Nrf2-dependent expression of HO-1 and to thereby
suppress NF-kB activity (Figure 5). We further found that SCU
was able to directly interact with certain residues in the Nrf2
binding pocket with high-affinity through a docking analysis.
SCU thereby led to enhanced HO-1 expression and suppressed
p65 phosphorylation. While there may be other mechanisms that
regulate the degree to which this mechanism functions in all
contexts, our results strongly suggest that SCU is able to reduce
ECM degradation in OA at least in part through the Nrf2/HO-
1 pathway.

Furthermore, SCU directly occupied the binding pocket of
Nrf2 by interacting with some amino acid residues, and the affinity
was fairly high in the docking analysis results. Consequently, SCU
increased the expression of HO-1 and suppressed the
phosphorylation of P65. Although a potential upstream or
bypass mechanism might exist, our data suggested that SCU
attenuated ECM degradation by the Nrf2/HO-1 signal pathway.

In summary, we have provided clear evidence that SCU is able
to markedly constrain the upregulation of inflammatory and
catabolic genes in response to IL-1b stimulation owing to its
ability to inhibit NF-kB activity to activate Nrf2-dependent
expression of HO-1 in murine OA model chondrocytes (Figure
8). We further found SCU to have a high affinity for the Nrf2
FIGURE 4 | Scutellarin (SCU) affects interleukin (IL)-1b-induced nuclear factor (NF)-kB activation. Cytoplasmic IkBa and nuclear p65 levels in chondrocytes were
assessed via Western blotting (A) and were quantified (C, D). (B) p65 nuclear translocation was assessed via immunofluorescent staining, with 4′,6-diamidino-2-
phenylindole (DAPI) used for nuclear detection (scale bar: 10 mm). Data are means ± SD. ##P < 0.01 vs. control; **P < 0.01 vs. IL-1b-only; n = 5.
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binding pocket, consistent with these in vitro findings.
Importantly, in vivo SCU was able to protect against ECM
degradation and chondrocyte loss in a murine model of OA,
suggesting that this compound may be a potentially viable
Frontiers in Pharmacology | www.frontiersin.org 8
treatment for this disorder. While further work is needed to
validate and refine these results, our findings provide promising
ev idence that SCU may be a viab le tool for OA
therapeutic intervention.
FIGURE 6 | Scutellarin (SCU) interacts with nuclear factor erythroid-derived 2-like 2 (Nrf2) in a docking study. A ribbon model is used to represent protein residues,
with a two-dimensional (2D) binding model shown. SCU was able to dock strongly within the Nrf2 binding site (affinity = -8 kcal/mol). This proposed binding
interaction involves SCU interacting with SER508, SER602, and ARG483 on Nrf2. The binding of SCU in the Nrf2 pocket is shown using a space filling model.
FIGURE 5 | Scutellarin (SCU) affects the nuclear factor erythroid-derived 2-like 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Nuclear Nrf2 and cytoplasmic HO-1
levels in chondrocytes were assessed via Western blotting (A) and were quantified (C, D). (B) Nrf2 nuclear translocation was assessed via immunofluorescent
staining, with 4′,6-diamidino-2-phenylindole (DAPI) used for nuclear detection (scale bar: 10 mm). Data are means ± SD. **P < 0.01 vs. control; n = 5.
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FIGURE 7 | Scutellarin (SCU) slows osteoarthritis (OA) development in a murine destabilization of the medial meniscus (DMM) model system. OA progression was
gauged based on X-ray assessment of murine knee joints, with joint space narrowing being evident in the OA and treated groups, and with clear signs of cartilage
calcification in the OA group (black arrows) (A). Representative cartilage SO staining at 8 weeks after operation (scale bar: 200 mm) (B, C). Immunohistochemical
analysis of COX-2 (D). Expression of cyclooxygenase (COX)-1, COX-2, microsomal prostaglandin E synthase 1 (mPGES-1), and mPGES-2 were measured via qRT-
PCR (E). Cartilage OARSI scores (F). Data are means ± SD. #P < 0.05, ##P < 0.01 vs. sham; *P < 0.05, **P < 0.01 vs. DMM + SCU group; n = 15.
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