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Structural and functional analyses of human
DDX41 DEAD domain

Dear Editor,

DEAD-box proteins, which are named after the strictly con-
served amino acid sequence Asp-Glu-Ala-Asp, were first
identified as a distinct family in the late 1980s when align-
ments based on eight homologues of the yeast eIF4A
highlighted the presence of several conserved motifs (Linder
et al., 1989). DEAD-box proteins are widely distributed in
different life forms, ranging from bacteria to human and
constitute the largest RNA helicase family (Jiang et al.,
2016). They are involved in many aspects of RNA metabo-
lism, such as splicing, mRNA export, transcriptional and
translational regulation, ribosome biogenesis and RNA
decay (Rocak and Linder, 2004). The core of DEAD-box
proteins is organized into two major domains. Domain 1
(DEAD domain) consists of motifs Q, I (Walker A, P-loop), II
(Walker B, DEAD-box), Ia, GG, Ib and III, whereas domain 2
(Helicase domain) consists of motifs IV, V and VI. Different
motifs are involved in nucleotide binding (Q, I and II), RNA
binding (Ia, Ib, IV and V) and ATP hydrolysis (III and possibly
VI). Compared with the two conserved domains, the N- and
C-terminal regions are variable and divergent. Their func-
tions are not fully characterized, but they are thought to
confer their own specificity on different proteins (Hogbom
et al., 2007).

The recognition of pathogen-associated molecular pat-
terns (PAMPs) of pathogens by pattern recognition receptors
(PRRs) is important for the induction of type I interferons
(IFN) (Medzhitov and Janeway, 2000). DDX41, a member of
the DEAD-box proteins, containing a disordered N-terminal
region, a DEAD domain and a Helicase domain (Fig. 1A),
was identified as an intracellular DNA sensor in myeloid
dendritic cells (mDCs) by Yong-Jun Liu’s group. They
showed that DDX41 directly binds DNA and STING via its
DEAD domain and triggers activation of signaling mediated
by mitogen-activated protein kinases TBK1 and transcription
factor IRF3, resulting IFN production (Zhang et al., 2011).
DDX41 can also detect bacterial secondary messengers like
cyclic di-GMP (c-di-GMP) and cyclic di-AMP (c-di-AMP),
leading to formation of a complex with STING. This complex
transmits the signal of bacterial intrusion to TBK1-IRF3 and
activates the interferon response (Parvatiyar et al., 2012).
Phosphorylation of Tyr414 of DDX41 is a pre-requisite for

foreign dsDNA recognition and recruitment of STING.
Besides, BTK’s kinase domain can bind the DEAD domain of
DDX41 (Lee et al., 2015). After immune response, DDX41
will be ubiquitinated by TRIM21 through K48-mediated link-
age for degradation. The ubiquitination sites are Lys9 and
Lys115 (Zhang et al., 2013). Somatic DDX41 mutations have
been reported in the study of sporadic acute myeloid leu-
kemia (AML) syndrome (Ding et al., 2012). A familial MDS/
AML syndrome characterized by long latency and germline
mutations in DDX41 gene is also identified (Polprasert et al.,
2015). DDX41 can associate with spliceosomal proteins, and
its defects lead to loss of tumor suppressor function due to
altered pre-mRNA splicing and RNA processing (Polprasert
et al., 2015). Although DDX41 plays important roles in innate
immunity and diseases, the precise mechanism as well as
the extent of involvement the protein in these processes is
poorly understood.

Here, we report the crystal structure of human DDX41
(hDDX41) DEAD domain complexed with an SO4

2− and an
Mg2+ to 2.26 Å resolution. There are strong interactions
between different motifs to stabilize the whole structure. The
P-loop presents in a half-open conformation. The DEAD
domain protein can bind ADP and AMP but not ATP in vitro
because of the steric hindrance. Most mutated amino acids
related with familial MDS/AML are conserved. In addition, the
N-terminal disordered region (amino acid 1–152) is shown
targeting hDDX41 protein to the nucleus. Our study provides
basic structural information for further researches on
hDDX41 biological function and valuable insights for the
treatment of DDX41-related diseases in the future.

The crystal structure of hDDX41 DEAD domain was
solved by molecular replacement using the structure of
DDX5 domain I (PDB code: 3FE2) as the search model and
refined to 2.26 Å resolution with an R factor of 0.19
(Rfree = 0.23). Details of data collection and refinement
statistics are listed in Table S1. The crystal used for data
collection belonged to space group P21. One asymmetric
unit consists of two molecules of the protein based on the
calculated solvent content of 44.15%. The hDDX41 DEAD
domain consists of an α/β fold, which is similar to those
observed for other members of the DEAD-box proteins for
which structures are available. The overall structure consists
of ten α-helices (α1–α10) and a β-sheet formed by eight β-
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strands (β1–β8). Helices α1–α5 are located on one side of
the β-sheet, while helices α6–α10 are located on the other
side (Fig. 1B). Although there are two monomers in one
asymmetric unit, PDBePISA (http://www.ebi.ac.uk/msd-srv/
prot_int/cgi-bin/piserver) predicted a monomeric biological
assembly. In agreement with this prediction, results of the

static light scattering analysis indicated that the DEAD
domain exists as a monomer in solution (Fig. 1C).

Although ADP or AMP was added in molar excess to the
protein prep before crystallization, no electron density was
observed for these ligands. Instead, clear electron density for
one SO4

2− probably originating from the crystallization
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Figure 1. Overall structure of hDDX41 DEAD domain. (A) Domain organization of hDDX41, composing of DEAD domain and

Helicase domain from N to C terminus. (B) A ribbon representation of DEAD domain with secondary structural elements labeled.

Helix, sheet and loop are colored in red, yellow and green, respectively. (C) The multiangle static light scattering result of DEAD

domain protein. The calculated molecular weight is 29.3 kDa. (D) Structure alignment of hDDX41 (wheat) to the structure of DDX5

(light blue) in complex with ADP (in white sticks from PDB code: 3FE2) reveals that the bound SO4
2− (yellow sticks) is located in

approximately the same position of α-phosphate of ADP. The bound SO4
2− of hDDX41 and ADP are shown sticks. (E) The SO4

2− is

coordinated by P-loop and the Mg2+ is coordinated by T227, K231 from P-loop and E345 from motif II. The electron density map (2Fo-

Fc) of SO4
2−, Mg2+, T227, K231 and E345 is contoured at 1.0 σ. (F) Superposition of the P-loop of hDDX41 with SO4

2− (wheat), Prp28

(yellow), DDX3X with AMP (red), DDX5 with ADP (cyan), VASA with ANP (green).
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solution, was observed in the nucleotide-binding site. When
aligned to the structure of DDX5 in complex with ADP (PDB
code: 3FE2), the SO4

2− overlaps with the position of α-phos-
phate of ADP (Fig. 1D). The P-loop is seen forming the SO4

2−

binding pocket and anMg2+ is observed coordinated by T227,
K231 from P-loop and E345 from motif II (Fig. 1E). Mutating
P-loop or motif II to alanine resulted in insoluble protein. The
structure of DDX41 DEADdomain solved by us containsmotif
Q, P-loop, motif II, motif Ia, motif Ib and motif III. These
structural elements are located at eitherβ-strand-loop or helix-
loop transitions (Fig. S1). There are many interactions
between the different motifs, which probably stabilizes the
overall structure. These interactions are listed in Table S2.

The P-loop is responsible for the nucleotide binding.
Fig. 1F shows superposition of the P-loop of hDDX41 with
SO4

2− (wheat), Prp28 (yellow, PDB code 4NHO), DDX3X
with AMP (red, PDB code 2I4I), DDX5 with ADP (cyan, PDB
code 3FE2), VASA with ANP (green, PDB code 2DB3). It
seems that the P-loop is not restricted to one open or closed
conformation but has a flexibility that allows it to adapt to
different conformations depending on the binding ligands.
The most closed conformation is found in Prp28, which
leaves no room for any ligand. The most open conformation
is found in VASA, which has enough space for ANP. The
P-loop of DDX3X with AMP and DDX5 with ADP adopt the
same half-open conformation compared with Prp28 and
VASA. Although there is no nucleotide in the solved hDDX41
structure, the SO4

2− bound P-loop adopts a half-open con-
formation. The P-loop has a shift in Cα-atom positions by up
to 2.7 Å between the open and half-open states, and by up to
1.7 Å between the half-open and closed states (Fig. 1F). The
conformation of the P-loop seems to be determined by the
nucleotide phosphates, and longer phosphate tails result in a
more open loop. During our manuscript submission, Omura
et al. reported two similar crystal structures of the DDX41
DEAD domain with root-mean-square deviation (RMSD) of
0.5 Å between the main chain Cα atoms of the 330 amino
acids (Fig. S2) (Omura et al., 2016).

The binding affinity of hDDX41 DEAD domain with ATP,
ADP, AMP, c-di-GMP and cGAMP was detected in vitro by
Thermal Shift Assay (TSA) and Isothermal Titration
Calorimetry (ITC) (Fig. 2A). The thermal denaturation profiles
indicated a Tm of 41°C for unliganded hDDX41DEADdomain.
Addition of ATP, c-di-GMP, and cGAMP to the protein did not
increase the Tm. However, the Tm increased in presence of
ADP and AMP by 2.2°C and 3.9°C, respectively, implying that
the protein probably binds ADP and AMP but not ATP. There
was no detectable interaction between hDDX41 DEAD
domain with c-di-GMP and cGAMP, although the full length
protein is reported to bind c-di-GMP (Parvatiyar et al., 2012).
ITC results suggested a binding affinity of 31 µMand 61 µM for
ADP and AMP, respectively. Furthermore, the ITC results
indicated that the DEAD domain of DDX41 does not interact
with ATP, c-di-GMP, or cGAMP, which is consistent with the
TSA results. AMP or ADP could be modeled into the binding
pocket of hDDX41 DEAD domain by superimposing the

crystal structure of VASA (PDB code: 2DB3) and DDX5 (PDB
code: 3FE2) over that of DDX41. The adenosine moiety fits
well into the pocket and the α-, β-phosphate can also be
accommodated. However, a γ-phosphate as in the case of
ATP would clash with T227 of the P-loop (Fig. 2B). The neg-
atively charged binding pocket is not big enough for ATP
(Fig. 2B). This may explain why we could not detect any sig-
nificant affinity of the protein for ATP in vitro.

hDDX41 is frequently mutated in familial MDS/AML (Pol-
prasert et al., 2015).Weanalyzed theconservation of hDDX41
amino acids using theConSurf Server (http://consurf.tau.ac.il/
) and found out that the mutated amino acids associated with
MDS/AML are conserved (Fig. S3). Of the nine mutations
identified, seven mutations (p.M155I, p.R164W, p.F183I, p.
A225D, p.E247K, p.P321L, p.I396T) are locate in the DEAD
domain, suggesting hDDX41 function is more sensitive to
mutations in DEAD domain than Helicase domain. MDS/AML
is now the only reported disease related to hDDX41 protein.
However, the relationship between themutations and disease
is still unknown. hDDX41 could serve as a drug target and our
study provides a structural basis for disease treatment.

Secondary structure prediction of hDDX41 (Fig. S4)
reveals that the N-terminal region (aa 1–160) is disordered.
In addition, the role of this region is unclear. Interestingly, the
N-terminal 1–194 amino acids of a homologue of DDX41,
Abstrkt, from Drosophila play a role in the translocation of the
protein to the nucleus (Abdul-Ghani et al., 2005). Alignment
of the N-terminal regions of the two proteins shows that they
share 41.9% identity (Fig. S5). We generated GFP-fusions of
full length hDDX41 and truncations of hDDX41 missing aa
153–622 and monitored their cellular localization after
transfection in HEK293T cells. GFP-fusions containing the
full length protein showed nuclear localization while deletion
of aa 153–622 resulted in distinct punctate cytoplasmic
distribution and loss of nuclear localization (Fig. 2C). Taken
together, we conclude that the N-terminal disordered region
(aa 1–152) of hDDX41 can target the protein to the nucleus.

DDX41 is reported to bind dsDNA and c-di-GMP directy by
DEAD domain. However, the affinity of DEAD domain with
dsDNA and c-di-GMP can’t be detected in vitro. Different
lengths of dsDNA and c-di-GMP were tested by TSA, ITC and
Surface PlasmonResonance (SPR) assay, but no binding was
detected. As intracellular condition is much more complicated,
DDX41’s functions in innate immunity may need other com-
ponents or depends on both domains. Besides c-di-GMP,
STING is also a direct sensor of c-di-GMP (Burdette et al.,
2011). We solved the complex structure of hSTING (aa 139–
379) and c-di-GMP (Ouyang et al., 2012). One c-di-GMP binds
to the interface of STING dimer with a uniquemode. Wemixed
c-di-GMP with hDDX41 DEAD domain before crystallization,
but there is no electron density for c-di-GMP in the structure.

In summary, we report the crystal structure of hDDX41
DEAD domain complexed with an SO4

2− and an Mg2+ to
2.26 Å resolution. But the mechanism of hDDX41 recognition
with foreign dsDNA and c-di-GMP remains unclear. Our
study provides basic structural information for further
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Figure 2. The binding of hDDX41 DEAD domain with different molecules and N-terminal region targets hDDX41 to the

nucleus. (A) Thermal Shift Assay and Isothermal Titration Calorimetry of hDDX41 DEAD domain protein with ATP, ADP, AMP, c-di-

GMP and cGAMP. (B) Left: the modeled ADP and ANP are colored in cyan and green. The γ-phosphate of ANP clashes with T227 of

hDDX41. Right: surface electrostatic potential representation of the nucleotide binding pocket. Blue, positive potential; red, negative

potential. The positively charged binding pocket is not big enough for ANP binding. (C) Fluorescence microscopy of HEK293T cells

transfected with expression plasmids for GFP-tagged hDDX41 full length protein (1–622) and GFP-tagged hDDX41 N-terminal region

deleted truncation (153–622). Nuclei are stained with DAPI.
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researches on DDX41 biological functions and the treatment
of DDX41-related diseases in the future.
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