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ABSTRACT

Protein–DNA recognition is a critical component of
gene regulatory processes but the underlying
molecular mechanisms are not yet completely
understood. Whereas the DNA binding preferences
of transcription factors (TFs) are commonly
described using nucleotide sequences, the 3D
DNA structure is recognized by proteins and is
crucial for achieving binding specificity. However,
the ability to analyze DNA shape in a high-through-
put manner made it only recently feasible to
integrate structural information into studies of
protein–DNA binding. Here we focused on the
homeodomain family of TFs and analyzed the DNA
shape of thousands of their DNA binding sites,
investigating the covariation between the protein
sequence and the sequence and shape of their
DNA targets. We found distinct homeodomain
regions that were more correlated with either the
nucleotide sequence or the DNA shape of their
preferred binding sites, demonstrating different
readout mechanisms through which homeodomains
attain DNA binding specificity. We identified specific
homeodomain residues that likely play key roles in
DNA recognition via shape readout. Finally, we
showed that adding DNA shape information when
characterizing binding sites improved the prediction
accuracy of homeodomain binding specificities.
Taken together, our findings indicate that DNA
shape information can generally provide new mech-
anistic insights into TF binding.

INTRODUCTION

The recognition of DNA binding sites by transcription
factors (TFs) is a critical step in the control of gene
expression. We previously suggested that TFs identify
their binding sites via two mechanisms: (i) base readout,

which involves the recognition of unique chemical signa-
tures at the edges of base pairs, mainly in the major
groove (1), and (ii) shape readout, in which the protein
recognizes the 3D sequence-dependent DNA shape (2,3).
We have shown that the latter plays an important role
in the DNA binding of several TF families (4–7) and
other DNA binding proteins (8–11). Specifically, we
demonstrated that a narrow minor groove width (MGW)
can enhance the negative electrostatic potential in the
minor groove, which can attract positively charged amino
acids such as arginine, lysine (8) and histidine, considering
that the latter can be protonated (11).

Over the past decade, a large effort has been made
to study the binding preferences of TFs at the high-
throughput (HT) level. Studies using experimental HT
technologies, such as in vitro protein binding microarray
(PBM) (12–14), bacterial one-hybrid (B1H) (15,16), HT-
SELEX/SELEX-seq (17–20), in vivo ChIP-chip (21,22)
and ChIP-seq (23), have provided detailed information
on TF binding. Whereas many computational approaches
have been developed to extract the sequence preferences of
TFs from HT binding data, only recently has it become
feasible to derive the preferred local structure of TF
binding sites in a systematic manner. Although the 3D
shape of DNA is dependent on its nucleotide sequence,
degeneracy exists between DNA shape and sequence.
Different nucleotide composition can give rise to a
similar structure, and variations in a single nucleotide
can alter the DNA shape in regions of several base
pairs. We developed a computational HT approach for
predicting the DNA shape features for any given DNA
sequence on a genome-wide scale (24). This HT method
allows the study of DNA shape recognition by TFs using
the increasing number of sequence data sets that have
become available from diverse experimental approaches.

In this study, we focused on the homeodomain family of
TFs, which is the second most abundant TF family
in mammals. Homeodomain proteins have important
functions in many aspects of development, such as the
patterning of the anterior-posterior axis (25,26) and
organogenesis (27) in a large range of organism, including
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fungi, plants and animals. The 3D structures of
homeodomain–DNA complexes (4,28–32) provide
insights into the DNA binding mechanisms of
homeodomains. Homeodomains consist of �60 amino
acids that form a three-helix bundle, of which the third
helix is the recognition helix. The latter is inserted into the
DNA major groove, which provides a unique signature of
the functional groups of the bases and accounts for base
readout. The flexible N-terminal tail is inserted into the
minor groove that, in turn, accounts for shape readout
(4,33). We recently showed that the MGW is used to dis-
tinguish between the preferred binding sites of the anterior
and posterior Hox proteins in Drosophila (20).

For decades, a major goal in the field of protein–DNA
readout has been the identification of a recognition code,
which defines the preferred base pair interactions for
key amino acids. In the case of zinc finger proteins, a
recognition code was derived and shown to fairly well
predict binding specificities (34,35). However, for the
homeodomain family, this definition of a recognition
code seems to be more complicated. Extensive experimen-
tal and computational HT studies have attempted to
unravel the role of individual homeodomain residues in
determining sequence specificity (14,16,36). A recent
study used a reengineered engrailed homeodomain, in
which residues of the recognition helix were randomized
and selected against a B1H library, resulting in a function-
ality map of specific positions in the homeodomain (37).
Other studies have used information-based approaches
to identify pairs of amino acids and nucleotides, demon-
strating significant covariation between residues in the rec-
ognition helix and nucleotides in the core binding sites
(16,38). Overall, although researchers have better defined
the roles of individual residues in the recognition helix, the
role of the N-terminal tail in determining binding specifi-
city remains poorly understood.

A simple recognition code that connects amino
acids with nucleotides might not be applicable for
homeodomain–DNA recognition. Nevertheless, studying
the sequence-structure degeneracy of DNA might eluci-
date how binding specificity is achieved for this protein
family. Here, we examined the correlations between the
amino acid sequences of homeodomains and the corres-
ponding DNA sequence and shape attributes of their
binding sites. We have extracted the available sequence
binding preferences of homeodomains in mouse and
Drosophila, from PBM (14) and B1H (16) data, respect-
ively. By comparing the pair-wise similarities of
homeodomain sequences with the pair-wise similarities
of the sequence and shape of their DNA binding sites,
we show that the N-terminal tail plays a general role in
achieving binding specificity among the homeodomain
proteins via DNA shape recognition. We further con-
ducted statistical analyses to discover specific amino
acids in the N-terminal tail of the homeodomain
proteins that play a role in shape readout. Finally, we
propose a novel homeodomain shape recognition code
that defines the preferred DNA shape for key amino
acids in the N-terminal tail.

MATERIALS AND METHODS

Scoring the amino acid similarity between homeodomains

To quantify the similarities between different homeo-
domains, we aligned 168 homeodomains from mouse
(14) and 84 homeodomains from Drosophila (16) using
MAFFT (39). We calculated pair-wise similarity scores
using BLOSUM45 (40).

Generation of the position frequency matrix and scoring
the nucleotide similarity between DNA binding sites

For the PBM data set, we collected unique 8-mers, each
with a relative enrichment score (E-score) �0.45 (14). To
generate position frequency matrices (PFMs), we used
multiple sequence alignment to align all 8-mers to the con-
sensus homeodomain binding motif NNA(Y/K)N, where
N can be any nucleotide, Y represents C or T and K rep-
resents G or T (Supplementary Figure S1A). Selection
between NNAYN and NNAKN was done by comparison
with published PFMs (14). In cases where the 8-mers had
more than one NNA(Y/K)N motif, we selected the align-
ment that best fitted the published PFM based on the
highest similarity score (14). In all cases, both strands
were considered. For the B1H data, we used the published
alignment (16) to generate PFMs (Supplementary
Figure S1B). We calculated the pair-wise similarity
between all pairs of PFMs using the Pearson correlation
coefficient (PCC). The PCC varies between �1 and 1, and
the maximum score is obtained when two homeodomain
PFMs have a perfect similarity. A flowchart representing
this analysis is shown in Supplementary Figure S1C.

Scoring the shape similarity between DNA binding sites

For each position of the aligned binding sites, we pre-
dicted four structural features, MGW, propeller twist
(ProT), Roll and helix twist (HelT). MGW and ProT
were defined for each nucleotide position. Roll and HelT
are base pair-step parameters; therefore, they were
assigned to dinucleotide positions. For each homeo-
domain, we defined four structural feature vectors (one
for each shape parameter), representing the predicted
average shape parameters over all selected 8-mers for
each position in the alignment. The DNA shape analysis
used our HT method (24) to infer structural features from
a library of all 512 unique pentanucleotides, derived from
2121 Monte Carlo simulations (41). We have recently
applied this approach to Hox proteins (20), basic helix-
loop-helix (bHLH) proteins (7) and the endonuclease
DNase I (10).
Next, we calculated a pair-wise similarity score for each

pair of homeodomains, using the negative absolute value
of the Euclidian distance (–jEuclidian distancej) between
structural feature vectors. This step was done separately
for each structural feature, resulting in four different
DNA shape similarity matrices. The negative absolute
value of the Euclidian distance was 0 when two feature
vectors matched perfectly and assumed its negative
minimum value when the feature vectors differed most.
We used the negative absolute value of the Euclidian
distance to maintain consistency with the nucleotide
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similarity scores in which high values represent high simi-
larity. A flowchart representing this analysis is shown in
Supplementary Figure S2. Notably, although MGW and
ProT are base-pair parameters and Roll and HelT are base
pair-step parameters, the comparison of the same param-
eters between binding sites of different homeodomains
was not affected by this definition.

Statistical analysis

Pearson correlation coefficient
PCC is a measurement of the linear dependency between
two sets of variables. We used the PCC to measure the
correlation between the pair-wise homeodomain sequence
similarity scores and each of the five pair-wise binding site
similarity scores (one pair-wise DNA sequence similarity
and four pair-wise DNA shape similarities), with the PCC
ranging from �1 to +1. A flowchart representing this
analysis is shown in Figure 1. To account for differences
in PFM score distribution, we used an additional approach.
In the latter, we assigned the DNA PFM scores to seven
bins with scores of 0–0.4, 0.4–0.5, 0.5–0.6, 0.6–0.7, 0.7–0.8,
0.8–0.9 and 0.9–1 and selected an equal number of binding
sites from each bin (300 and 200 binding sites for the PBM
and B1H data set, respectively).

Hypergeometric distribution test
We defined hypergeometric scores to examine the presence
of basic amino acids as a function of DNA shape. These
scores were calculated using the frequency of positively
charged residues (arginine, lysine and histidine, which can
be protonated) at each amino acid position of the
homeodomains (all homeodomain sequences were aligned
as described above), and the frequency of occurrence of a
narrow MGW at each nucleotide position of the DNA
binding sites. We defined the threshold for a narrow
MGW as �5.12 Å, which was the average MGW of all
analyzed 24879 binding sites in both homeodomain data
sets. Notably, this value is below the standard B-DNA
value of 5.8 Å because homeodomain binding sites are AT-
rich, which increases the tendency of minor groove narrow-
ing (4). The P-values were calculated using the cumulative
hypergeometric test between each position in the protein and
each position in the DNA binding site, using Equation 1:

P ðX � kÞ ¼ 1�
Xk�1
x¼0

m
x

� �
N�m
s� x

� �

N
s

� � ð1Þ

Here, k is the number of homeodomains that contain
positively charged amino acids and whose binding sites
exhibit a narrowMGW; s is the number of homeodomains
that contain positively charged amino acids at the corres-
ponding position; m is the number of homeodomains that
exhibit a narrow MGW at that specific position of the
binding sites; and N is the total number of homeodomains.

Mutual information
We defined a mutual information (MI) score between each
amino acid position in the protein and each nucleotide
position in the DNA binding site, comparing the amino

acids with MGW. To compute the MI score, we parti-
tioned the continuous structural features into a discrete
alphabet, using a threshold to distinguish a ‘narrow’
from a ‘not narrow’ MGW. The threshold between
‘narrow’ and ‘not narrow’ was defined as the average
MGW over all positions in the homeodomain binding
sites of the combined mouse and Drosophila data sets
(5.12 Å). The MI score between each amino acid
position in the protein and each nucleotide position in
the binding site was calculated using Equation 2:

MI ðX ;YÞ ¼
X
s2Y

X
m2X

p ðm, sÞ log
pðm, sÞ

pðmÞ pðsÞ

� �
ð2Þ

Here, p(m,s) is the joint probability for the occurrences
of m and s; and p(m) and p(s) are the probabilities of
the independent occurrences of m and s in X and Y,
respectively.

Multiple linear regression and receiver operator
characteristic curves

We used multiple linear regression (MLR) with 10-fold
cross validation to predict all 8-mer E-scores for each
homeodomain in the mouse data set (14). E-score is a
measurement for the relative binding affinity of a
protein to a certain 8-mer derived from universal PBM
experiments (42). To predict E-scores, the 8-mers were
randomly assigned to 10 groups, with 9 groups represent-
ing the training data set. Using the training data set, we
fitted a model to predict the E-scores of the remaining
group of 8-mers (test data set). This procedure was
repeated 10 times, each time using one of the 10 groups
as the test data set, until the E-score of each 8-mer was
predicted. The E-score prediction was repeated 50 times,
to account for biases from selecting the training and test
data sets.

We trained three different MLR models: one model
incorporating the nucleotide sequence of each 8-mer as
the input, a second model incorporating the sequence
and the four shape parameters of each 8-mer as input
variables and a third model using the sequence and
randomly shuffled shape parameters. As the response
variable, we used the E-score of each 8-mer. The 8-mer
alignment can result in missing information in both flanks
of the binding site. When this occurred, we extended the
sequences using a randomized nucleotide selection proced-
ure, assigning an average value for the corresponding
shape parameter to the added position.

To measure the predictive power of each model, we
calculated the average R2 (using the squared PCC
defined above) between the predicted and experimental
E-scores over 50 iterations. We used receiver operator
characteristic (ROC) curves to assess the accuracy of the
MLR-based prediction in detecting bound and unbound
8-mers. In agreement with (14), we defined the set of
bound sequences as all 8-mers with experimental
E-scores �0.45 (true positives) and the set of unbound
sequences as all 8-mers with experimental E-scores
<0.45 (true negatives).
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RESULTS AND DISCUSSION

Correlation between homeodomains and their DNA
binding sites

To study the relationship between homeodomains and their
preferred binding sites, we concentrated on HT binding
data from two independent experiments. The first set of
preferred 8-mer sequences of 168 homeodomains in
mouse was extracted from PBM data (14). The second set
of preferred sequences for 84 homeodomains in Drosophila
was generated in an independent study using the B1H
system (16).

We calculated the pair-wise similarity scores between all
pairs of homeodomains (‘Pair-wise HD sequence similar-
ity’), based on their amino acid sequences (Figure 1A) using
the BLOSUM45 matrix (see ‘Materials and Methods’

section). We calculated the pair-wise similarity scores
between the DNA sequences of the homeodomain
binding sites (‘Pair-wise DNA sequence similarity’) by
comparing the preferred binding sequence of each
homeodomain represented as a PFM. We derived the
latter by measuring the PCC between each pair of PFMs
(Figure 1A). We calculated the PCC between the
homeodomain sequence similarity and the DNA sequence
similarity. We found a significant correlation between the
two similarity scores (Figure 2A; Supplementary Figure
S3A), with PCC values of 0.51 (P< 10�16) for the PBM
data set and 0.64 (P< 10�16) for the B1H data set. Our
results are comparable with previously reported correl-
ations (PCC of 0.416) between amino acid sequences of
100 homeodomains from different organisms and the nu-
cleotide sequences of their corresponding binding sites (43).

Figure 1. Flowchart for uncovering correlations between the amino acid sequences of homeodomains (HDs) and the nucleotide sequences and
structural features of their DNA binding sites (BSs). (A) Based on the sequence alignment of HDs from mouse and Drosophila, we calculated two
pair-wise similarity scores: one representing the similarity between HD sequences (‘Pair-wise HD sequence similarity’; gray) and another representing
the similarity between the nucleotide sequences (shown as PWMs in standardized color code) of their DNA binding sites (‘Pair-wise DNA sequence
similarity’; blue). We compared the two similarity scores using PCC. (B) Based on the sequence alignment of HDs from mouse and Drosophila and
structural features of their DNA binding sites, we calculated five pair-wise similarity scores, one representing the similarity between the HD sequences
(‘Pair-wise HD sequence similarity’; gray) and four representing the similarities between DNA shape parameters (MGW, ProT, Roll and HelT) of
their DNA binding sites (‘Pair-wise DNA shape similarity’; purple). We compared each set of two similarity scores using PCC.
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Next, we asked whether the shapes of the DNA binding
sites alone correlated with the amino acid sequences of the
homeodomains. Among the DNA shape parameters, we
focused on MGW, as we previously observed that MGW
plays a role in achieving homeodomain binding specificity
(4,8,20). We included other relevant shape parameters
(ProT, Roll and HelT) (44) that reportedly affect DNA
shape readout (7,10,41). To characterize the four DNA
shape parameters at each position in the preferred
binding sites of each homeodomain, we used our HT pre-
diction method (24). For each homeodomain, we assigned
four structural feature vectors (one for each shape param-
eter), representing the predicted shape parameter as a
function of nucleotide sequence. Consequently, we
calculated four sets of pair-wise similarity scores by
measuring the Euclidian distances between structural
feature vectors of all pairs of homeodomains termed
‘Pair-wise DNA shape similarity’ (Figure 1B).
We compared the homeodomain similarity scores with

the four DNA shape similarity scores using PCC. Again,
we noticed a high correlation between the pair-wise simi-
larity of the homeodomain sequences and the pair-wise
DNA shape similarity of their corresponding binding
sites for three of the shape parameters (MGW, Roll and
HelT) in the PBM data set (PCC of 0.37, 0.45 and 0.35,
respectively, all P< 10�16) and B1H (PCC of 0.53, 0.43
and 0.40, respectively, all P< 10�16) (Figure 2A and
Supplementary Figures S3 and S4). For ProT, we found
a correlation only in the B1H data set (PCC of 0.35,

P< 10�16). To account for differences in the occurrence
of the similarity scores, we further binned the PFM scores
and selected an equal number of sequences from each
bin. Consistent with the previous results we did not
observe any significant changes in the correlations
(Supplementary Figure S5). To assess the significance of
these results, we randomly shuffled the homeodomain
sequences 1000 times, each time creating a new
homeodomain sequence similarity. We measured the
PCC between each of the shuffled homeodomain
sequence similarities with the DNA sequence and four
DNA shape similarities. As expected, we found no signifi-
cant correlation in the randomly shuffled data, with an
average PCC ranging from �0.001 to 0.001 for all five
comparisons.

Based on experimental structures of several homeo-
domain proteins in complex with their DNA targets (4,
28–30, 45), the recognition helix of the homeodomains is
thought to be engaged in base readout of the major
groove, whereas the N-terminal tail is involved in shape
readout of the minor groove (2,4,33) (Figure 2B). Thus,
we anticipate high correlations between the protein
residues in the recognition helix and the sequence of the
DNA binding sites and between the protein residues at the
N-terminal tail and the DNA shape parameters. To
explore these assumptions, we recalculated the pair-wise
homeodomain sequence similarity scores for each of these
protein regions independently: namely, considering either
the amino acids in the recognition helix only, or the amino

Figure 2. Correlation between homeodomain sequences and the DNA sequences and shapes of their binding sites. (A) PCC between pair-wise HD
sequence similarity and pair-wise DNA sequence and shape similarity are shown for HDs in mouse derived from PBM data (14). (B) Co-crystal
structure of engrailed HD in complex with DNA (PDB ID 3HDD) (29). Purple represents the N-terminal tail, and blue highlights the recognition
helix. (C) PCCs for the comparison of pair-wise HD sequence similarity scores, using only the sequence of the N-terminal tail (purple) or the
recognition helix (blue), with pair-wise DNA sequence and shape similarity scores. PBM data for 168 mouse HDs (14) were used in this analysis.
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acids in the N-terminal tail alone. To define the recogni-
tion helix and the N-terminal tail, we used the crystal
structure of the engrailed homeodomain (PDB ID
3HDD) (Figure 2B), wherein positions 47–55 denote the
recognition helix and positions 1–9 define the N-terminal
tail (29).

When we considered each of the two regional homeo-
domain sequence similarity scores separately, we found
that the correlation for DNA sequence was higher with
the homeodomain sequence similarity derived from the
recognition helix alone, whereas the MGW and Roll
similarities were better correlated with the homeodomain
sequence similarity derived from only the N-terminal tail
(Figure 2C and Supplementary Figure S3A). Similar
results were obtained when using position weight
matrices (PWMs) instead of PFMs to calculate the PCC
(Supplementary Figure S3B). These findings support our
previous studies suggesting that the N-terminal tail of
homeodomains is involved in DNA shape readout (4,20)
and reinforce the idea that DNA shape recognition via the
N-terminal tail may generally contribute to the DNA
binding specificity of the homeodomain family of TFs.

Inferring dependencies between homeodomain residues
and DNA shape

We previously demonstrated that the mechanism by which
DNA-binding proteins recognize DNA shape involves elec-
trostatic attraction between positively charged residues and
the shape-dependent negative electrostatic potential of the
minor groove (8). Therefore, we sought to identify the
homeodomain residues that are involved in this kind of
DNA shape readout mode, by searching for coappearance
of basic amino acids with narrow minor groove regions at
given nucleotide positions. Using the PBM data set and, to
a lesser extent, the B1H data set, we found a significantly
high correlation between the positively charged residues at
amino acid positions 2, 3 and 5 of the N-terminal tail with a
narrow minor groove at nucleotide positions 1, 4 and 5
of the binding sites (Figure 3A, Supplementary Figure S6
and Supplementary Tables S1–S2). Interestingly, all three
residues were previously shown to be involved in DNA
shape recognition based on the analysis of independent
homeodomain–DNA complexes (4,8). We obtained con-
sistent results when we used different thresholds to define
a narrow MGW (4.9, 5.0, 5.1 and 5.2 Å).

Next, we separately analyzed individual residues in the
N-terminal tail to determine if different amino acids
in these positions would lead to different DNA shape
preferences of the homeodomains. We clustered the
homeodomains based on their amino acid similarity at
positions 2, 3 or 5 of the N-terminal tail and calculated
the MGW preferences for each cluster (Figure 3B).
Homeodomains with an arginine at position 5 seemed to
significantly prefer binding sites with a narrower MGW
at nucleotide positions 1, 4 and 5, compared with
homeodomains with a non-positively charged amino
acid at position 5 (Wilcoxon P< 5� 10�5). Furthermore,
homeodomains with an arginine or lysine at position 2 or
3 seemed to prefer targets with a narrower MGW at

nucleotide position 5, compared with homeodomains
with no positively charged amino acid at position 2 or 3.
A previous study stressed the importance of an ala-

nine at position 8 by showing that mutating alanine to
phenylalanine in that position seemed to change the
binding specificity of Caup homeodomains (16).
Although the alanine at position 8 does not penetrate
into the minor groove, the previous study suggested that
this mutation influences the conformation of the
N-terminal tail over the minor groove and, thus,
changes the DNA binding specificity without directly
interacting with the minor groove (16). To identify the
residues that are important for DNA shape readout but
that do not necessarily recognize the minor groove
directly, we calculated the MI score between the protein
residues and the DNA shape of their binding site. Previous
studies have used MI to study the correlation between
amino acids in the homeodomain and the nucleotide
sequence of their binding sites (16,36,38). Using HT
DNA shape prediction, we were able to gain further
insights into the relationship between the homeodomain
sequence and the shape of their DNA binding sites.
We partitioned the continuous shape values into

discrete bins by using the average MGW over all
sequences and positions (5.12 Å) as the threshold for a
narrow MGW. Then, we calculated the MI score
between occurrences of amino acids at each position in
the homeodomains and each nucleotide in the DNA
binding sites, which were assigned a narrow or wide
MGW (Figure 3C). We ranked the correlations between
each amino acid position and each nucleotide position
based on their MI scores, with a high MI score suggesting
covariance. The resulting MI score matrix indicated that
specific homeodomain residues correlated with preferred
structural features of their binding sites (Figure 3C for
N-terminal tail residues; Supplementary Figure S7 for all
residues; Supplementary Tables S3–S4). Specifically, we
found the highest MI scores between residues 4, 6 and 7
in the N-terminal tail of the homeodomains and the
MGW at positions 4 and 5 in the binding sites in the
PBM and B1H data sets, reemphasizing the importance
of these amino acid positions for DNA shape readout. To
verify that these results were not dependent on the thresh-
old used for a narrow MGW, we repeated the analysis
using different thresholds ranging from 4.9 to 5.2 Å. We
found high MI scores between residues 4, 6 and 7 when
lowering the threshold to 4.9, 5.0 and 5.1 Å. Raising the
threshold to 5.2 Å resulted in only one high MI score at
position 6. We observed high MI scores for positions in
the recognition helix that are known to be important for
base readout (e.g., positions 50 and 54). This finding likely
reflects the dependency of structural features on the DNA
sequence.
Zooming into the residues with the highest MI scores

in the N-terminal tail (residues 4, 6 and 7) (Figure 3D),
we noticed that homeodomains with positively charged
amino acids at position 6 seemed to prefer binding sites
with wider MGW at nucleotide positions 4 and 5,
compared with homeodomains without a basic amino
acid at position 6 (Wilcoxon P< 5� 10�5 for homeo-
domains with lysine at position 6). The preference for a
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positively charged amino acid at position 6 to bind to
sequences with a wider MGW, rather than a narrow
MGW, indicates that these positions are not directly
involved in interactions with the DNA but instead assist
in positioning the N-terminal tail. Furthermore, we
noticed that homeodomains with a lysine at position
4 seemed to significantly prefer binding sites with a
narrower MGW at nucleotide position 2 and wider
MGW at positions 4 and 5 of their DNA binding sites.
However, we could not find any distinct shape preference
for a positively charged amino acid at position 7.

Deriving a shape recognition code for homeodomains

The aforementioned findings suggest a set of recognition
rules for the key amino acids in the N-terminal tail
(Figure 4A). Overall, we identified a clear preference of
the homeodomain family to select sites possessing two
narrow minor groove regions at nucleotide positions 1

and 4–5. The selection of minor groove geometry, which
is a general feature of the entire family, is most likely due
to basic residues in the N-terminal tail, whereas differ-
ences in shape preferences within the homeodomain
family are due to amino acid variations in these
N-terminal residues. We can further divide the amino
acid positions in the N-terminal tail into two groups.
The first group includes positions wherein basic residues
correlate with a narrow MGW and are engaged in DNA
shape readout through physical interactions. In contrast,
the second group includes positions wherein residues are
not necessarily engaged in direct physical interactions with
the DNA. However, these residues correlate with DNA
shape preferences, possibly influencing the protein con-
formation at the interface.

Shape readout based on physical interactions
We previously showed that a narrow MGW enhances the
negative electrostatic potential within the minor groove,

Figure 3. Dependencies between N-terminal tail residues (amino acid positions 1–9) and MGW of the DNA binding sites based on PBM data. (A) A
heat map (blue) shows �log of the P-values of hypergeometric scores between positively charged amino acids (highlighted in blue) and narrow minor
groove regions at each position of the HD-DNA binding sites derived from PBM data for 168 mouse HDs (14). Sequence logos representing the
alignment of these 168 HD sequences are shown above. Basic amino acids in the logos are highlighted in blue. Numbering of the amino acid
positions corresponds to the convention for Hoxa9 in mouse (32). (B) For the three HD positions with the highest hypergeometric scores (residues 2,
3 and 5), the average MGW for the DNA binding sites of all HDs with arginine (blue), lysine (cyan), histidine (purple) and non-positively charged
amino acids (black) is plotted. Asterisks (color code referring to amino acid type) indicate nucleotide positions with significant differences in MGW
(Wilcoxon P< 5� 10�5). (C) A heat map (maroon) shows MI scores between each amino acid position in the HDs and MGW at each nucleotide
position of their preferred DNA binding sites for the PBM data from mouse (14). Sequence logos representing the alignment of all 168 homeodomain
sequences in mouse are shown above. Numbering of the amino acids corresponds with the convention for Hoxa9 in mouse. (D) For the three
positions with the highest MI scores (residues 4, 6 and 7), the average MGW for the binding sites of all HDs with arginine (blue), lysine (cyan),
histidine (purple) and non-positively charged amino acids (black) is plotted. Asterisks (color code referring to amino acid type) indicate nucleotide
positions with significant differences in MGW (Wilcoxon P< 5� 10�5).
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which assists in attracting positively charged amino acids
(8). In this study, using hypergeometric tests, we detected
high correlations between narrow minor groove regions in
the binding site and the presence of basic amino acids at
the N-terminal positions 2, 3 and 5. This result suggests
that the residues at these positions play key roles in shape
readout through interactions with the shape-dependent
properties of the DNA. Positions 2, 3 and 5 in the
N-terminal tail are known to be important for homeo-
domain–DNA recognition. All three positions were
shown to be inserted into narrow minor groove regions
in co-crystal structures of various homeodomain–DNA
complexes: namely, MATa1-MATa2 (30) (Figure 4B),
Exd-Scr (4) (Figure 4C), Exd-Ubx (28) and Oct-1 (46).

Homeodomains with positively charged amino acids at
position 2 and 3 seemed to prefer sequences with narrow
minor groove regions at nucleotide positions 4–5,
compared with homeodomains that do not possess basic
amino acids at these positions. These residues have been
shown to be inserted into the minor groove in several
co-crystal structures (Figure 4B and C) (4,29,30,32).
Homeodomains with basic amino acids at position 5
seemed to prefer sequences with two narrow minor
groove regions at nucleotide positions 1 and 4–5. In
contrast, homeodomains without a basic amino acid at
this position seemed to lack a strong minor groove
geometry preference. The high conservation of arginine
at position 5 reinforces the importance of this position
at the N-terminal tail. Arginine 5 has been shown to
insert into the minor groove at the 50 end of the binding
site in many homeodomain–DNA complexes (Figure 4B
and C) (4, 29–32). Whereas previous studies have observed
the electrostatic interactions between the amino acid at
position 5 of the N-terminal tail and nucleotide position
1 in the binding site (4,20), we also found interactions of
this amino acid position with nucleotide positions 4 and 5
in the binding site. These interactions likely are mediated
through conformational properties of the protein, or are a

result of a dependency between amino acid position 5 and
other amino acid positions.

Shape readout based on protein conformation
Using MI, we identified high correlations between amino
acids at positions 4, 6 and 7 of the N-terminal tail and the
MGW of their binding sites. The fact that we did not
observe a high correlation between narrow MGW and
basic amino acids at these positions suggests that these
residues may be involved in DNA recognition without
direct physical interactions. We hypothesize that these
residues are involved in placing the flexible N-terminal
tail in the correct orientation that allows for the insertion
of key amino acids at positions 2, 3 and 5 into the minor
groove.
Homeodomains with a lysine at position 4 seemed to

prefer binding sites with a wider MGW at nucleotide pos-
itions 4–5. This observation is consistent with our recent
HT shape analysis of Drosophila Hox protein binding sites
(20). In the latter study, we found that anterior Hox
proteins in complex with their cofactor Extradenticle
(Exd) preferred sequences with two MGW minima,
whereas all posterior Hox proteins in complex with Exd
preferred sequences with only one MGW minimum.
Interestingly, most Hox proteins share the same amino
acids at key positions of their recognition helix
(Supplementary Figure S8). Furthermore, most anterior
and posterior Hox proteins in mouse have basic amino
acids at positions 2, 3 and 5. The main difference
between the two groups is position 4. Whereas almost
all posterior Hox proteins exhibit a lysine at position 4
(only Hoxc9 possesses an arginine at this position), none
of the anterior Hox proteins have a lysine at position 4 of
the N-terminal tail. Therefore, the lysine at position 4 can
explain the difference in binding specificity between the
two groups of Hox TFs. The preference for a lysine at
this position can also be influenced by its larger
desolvation energy compared with arginine (8): an intru-
sion into a narrow minor groove requires desolvation,

Figure 4. Homeodomain–DNA shape recognition code. (A) We defined a DNA shape recognition code based on interactions between amino acids
in the N-terminal tail (top) (HD positions 2–6) and the preferred MGW at each position of the DNA binding site (bottom). The average MGW of all
homeodomains in mouse is plotted along the logo representing the combined DNA sequence and shape preference of all homeodomains [using the
mouse PBM data (14)]. Nucleotide pairs (red) represent regions of the narrow minor groove. A diagonal line over the amino acid labels at positions 4
and 6 indicates amino acids that are correlated with a wider minor groove. (B) Co-crystal structure of MATa2 in complex with MATa1 and DNA
(PDB ID 1YRN) (30). Shown here are residues 2–6 of the N-terminal tail with amino acids at positions 2 and 5 (blue) engaged in physical
interactions with DNA. Nucleotide pairs 1, 4 and 5 (red) represent regions with a narrow minor groove. (C) Co-crystal structure of Sex combs
reduced (Scr) in complex with Exd and DNA (PDB ID 2R5Z) (4). Shown here are N-terminal tail residues at positions 3–6 with amino acids 3 and 5
(blue) engaged in physical interactions with DNA. Nucleotide pairs 1, 4 and 5 (red) represent regions with a narrow minor groove.
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whereas a wider minor groove likely allows a lysine to
retain part of its hydration shell. Homeodomains with
basic amino acids, especially lysine, at position 6 of the
N-terminal tail seemed to prefer sequences with wider
minor groove regions at positions 4 and 5 of the binding
site. These results are in agreement with previous studies,
which suggested that residues at positions 6 can influence
the binding specificity within the homeodomain family
(16,36).

DNA shape information improves binding
affinity predictions

Our results indicate that DNA shape information can
provide a new mechanistic understanding of homeo-
domain–DNA recognition. Consequently we asked
whether DNA shape information can contribute to the
prediction accuracy of binding affinities of homeodomains
to their DNA binding sites. We trained an MLR model to
predict the PBM E-scores (14) for each homeodomain
separately (without taking into account the amino acid
sequence) as a measure of binding affinity to all possible
8-mers. The model was trained using DNA sequence and
shape parameters (MGW, ProT, Roll and HelT) (24). To
assess the effect of adding DNA shape information to the
model, we also trained an MLR model to predict E-scores
using DNA sequence alone. Using 10-fold cross valid-
ation, we showed that adding all four DNA shape
features can provide additional predictive power, with a
median R2 of 0.42 over all homeodomains, compared
with a median R2 of 0.38 when only the DNA sequence
information was considered. This improvement in bind-
ing affinity prediction accuracy of �10.5% was statistic-
ally significant (Mann–Whitney U P=1.95� 10�7,
Figure 5A and Supplementary Table S5). This result is
in agreement with our recent study on bHLH TFs in
which we also showed that adding shape information
improved binding affinity prediction accuracies (7).
To assess whether using one of the shape parameters is

sufficient to achieve the improvement in R2, we further
calculated R2 using the DNA sequence and each of the
shape parameters separately. The contribution of each
shape parameter was similar, reaching a median R2 of
0.39 for MGW, ProT and HelT, and 0.4 for Roll.
Because adding independent variables to an MLR model
generally tends to improve the R2, we predicted the
E-scores again, this time shuffling the four added vari-
ables. The median R2 over all homeodomains remained
at the original value of 0.38. Based on these results, we
concluded that the increase in R2 was due to the additional
shape information that was added to the MLR model.
We further assessed the accuracy of our DNA shape-

based prediction of binding affinities and calculated
the ROC curve for each homeodomain and evaluated
the accuracy of our prediction in distinguishing bound
(E-score� 0.45) from unbound (E-score< 0.45) 8-mers.
Adding the four DNA shape features increased the area
under the curve (AUC) (median AUC=0.964 over all 168
homeodomains) compared with a model based on DNA
sequence information alone (median AUC=0.958 over
all 168 homeodomains). Although the increase was

relatively small, it was statistically significant (Mann–
Whitney U P=of 0.004; Figure 5B and Supplementary
Table S6). This finding demonstrates that adding DNA
shape information can improve the predictive power of
homeodomain binding affinities to different 8-mers. In
comparison, DNA sequence information with shuffled
DNA shape values did not improve the prediction
(median AUC=0.958 over all 168 homeodomains;
Mann–Whitney U P=0.004). The AUC scores depend
on the selection of a threshold defining bound and
unbound probes. Although the E-score threshold, which
is consistent with previous studies (14), was rather arbi-
trary, the AUC results complemented the results obtained
using R2.

We generally observed improved binding affinity pre-
diction accuracies on adding shape information.
However, this improvement was not uniform; predictions
for some homeodomains resulted in a larger improvement
than for others (see Supplementary Tables S7 and S8 for
coefficients and binding site logos derived from MLR
models). Two proteins from the Irx and Six subfamilies
demonstrated significant improvements in binding affinity
prediction accuracies of 0.11 in R2, and 0.08 and 0.06 in
AUC, respectively, on adding shape parameters (Figure
5C–J). Two other examples of homeodomains, Pou2f2
and Nkx6-1, yielded more subtle improvements in predic-
tion accuracies of only 0.02 in R2 and no improvement in
AUC on adding shape parameters. Overall, the effect of
DNA shape information on binding affinity predictions
may depend on the specific mechanisms of structural
and electrostatic readout used by a given protein (2).

Until recently, the binding specificity of most TFs was
modeled using the traditional definition of PWMs (18),
which assumes that the nucleotide positions within a
binding site contribute independently to binding affinity
(19,47,48). However, several studies have shown that this
assumption is an approximation that does not always
hold, and there can be significant correlations between
positions within the binding site (49–51). Indeed, informa-
tion from dinucleotides can improve the modeling and
identification of TF binding sites (52,53). We suggest
that by adding DNA shape features we can implicitly
account for the multiple dependencies between positions
within a binding site. This concept complements observa-
tions made with dinucleotide-based models (52), but only
the ability to derive DNA shape parameters in a HT
manner makes this approach feasible. Moreover, the use
of structural information allows shape-augmented models
to be trained with only a modest increase in the number of
independent variables in contrast to extended sequence
features such as 2-, 3- and 4-mers (7). This aspect is
important because models with fewer parameters can be
trained with much smaller data sets, which can lead to
additional applications.

CONCLUSIONS

Growing evidence suggests that the sequence-dependent
DNA shape plays an important role in homeodomain–
DNA recognition (4,20). However, the few available
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experimentally solved structures of homeodomain–DNA
complexes do not provide a complete understanding of
the roles of individual amino acids in shape readout.
To improve our understanding of the mechanisms of
homeodomain–DNA recognition, we used a new HT

approach for DNA shape prediction (24) and analyzed
the structural feature preferences of a large set of
homeodomain binding data from HT experiments
(14,16). We studied the correlation between the amino
acid sequences of homeodomain TFs and the nucleotide

Figure 5. Prediction of PBM binding affinity based on a combination of DNA sequence and shape compared with DNA sequence alone. MLR was
used to predict the binding affinity of each 8-mer, using the nucleotide sequences of the 8-mers (blue), the sequence and four DNA shape parameters
of the 8-mers (purple) and the sequence and shuffle of the four DNA shape parameters of the 8-mers (black). (A) Box plots representing the
distribution of R2 for all 168 homeodomains in mouse in the PBM data set (14). Wilcoxon P-values between the models indicate the significant
contribution of DNA shape features. Boxes represent the median (line inside the box), 25th and 75th percentiles (edges of the box) and 5th and 95th
percentiles (whiskers). (B) Box plots representing the distribution of the AUC values for all 168 homeodomains in mouse in the PBM data set (14).
Wilcoxon P-values between the models indicate the significant contribution of DNA shape features. The boxes represent the median (line inside the
box), 25th and 75th percentiles (edges of the box) and 5th and 95th percentiles (whiskers). (C–F) Correlations between experimental and predicted
binding affinities for each 8-mer for the homeodomains Irx6, Six1, Pou2f2 and Nkx6-1. (G–J) ROC curves analyzing binding affinity prediction
accuracies for Irx6, Six1, Pou2f2 and Nkx6-1.
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sequences and shapes of their DNA binding sites. We
detected high correlation between the amino acids in the
recognition helix and the sequence of the binding sites,
and also between the amino acids in the N-terminal tail
and the shape of the DNA binding sites. These findings
suggest that the recognition helix is important for base
readout and the N-terminal tail is important for shape
readout, generalizing previous observations made for a
small number of co-crystal structures (2,3,54). The inser-
tion of a recognition helix into the major groove likely
stabilizes intrinsic minor groove geometries (4,8), resulting
in the homeodomain family of TFs using conformation
capture as a predominant recognition mode.
By analyzing large sets of sequence data derived from

experimental HT studies of homeodomain–DNA binding,
with no available structures for most of the homeodomains,
we identified amino acids that are important for shape
readout. Using hypergeometric and MI tests, we found
high correlations between specific amino acids at positions
2–7 of the N-terminal tail and the shape of their DNA
binding sites. One drawback of MI and hypergeometric
analyses is that interdependencies between residues could
influence the results. For example, if there is a high inter-
dependency between two positions—one that is important
for recognition and one that is not—then both positions
can appear to be important for recognition. Thus, it is
not possible to determine the precise impact of individual
amino acids in selecting different DNA shape features.
Some proteins (including bHLH TFs) contact different
base pairs in the major and the minor grooves (7).
However, in homeodomain TFs, shape recognition in the
minor groove is determined by the same base pairs that are
recognized in the major groove through base readout,
making it difficult to separate the effects of sequence and
shape readout for these proteins. Nonetheless, combining
our results with what is known from different experimental
structures of homeodomain–DNA complexes enabled us to
define specific rules, which represent a rather simple DNA
shape recognition code for homeodomain TFs. We believe
that our results add another important layer of information
to the current understanding of homeodomain–DNA
recognition.
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