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Abstract

Dendritic cells (DCs) constitute a heterogeneous group of antigen-presenting leukocytes important in activation of both
innate and adaptive immunity. We studied the gene expression patterns of DCs incubated with reagents inducing their
activation or inhibition. Total RNA was isolated from DCs and gene expression profiling was performed with oligonucleotide
microarrays. Using a supervised learning algorithm based on Random Forest, we generated a molecular signature of
inflammation from a training set of 77 samples. We then validated this molecular signature in a testing set of 38 samples.
Supervised analysis identified a set of 44 genes that distinguished very accurately between inflammatory and non
inflammatory samples. The diagnostic performance of the signature genes was assessed against an independent set of
samples, by qRT-PCR. Our findings suggest that the gene expression signature of DCs can provide a molecular classification
for use in the selection of anti-inflammatory or adjuvant molecules with specific effects on DC activity.
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Introduction

Dendritic cells (DCs) are bone marrow-derived cells present in

all lymphoid and non lymphoid organs. They play a role in

immune regulation, inducing tolerance and preventing autoim-

munity, inducing anti-tumor immunity and protecting against

infectious agents. DCs constitute a heterogeneous group of cells

with different origins (both myeloid and lymphoid), anatomic

locations, cell surface phenotypes and functions. Within the

different DCs subtypes, myeloid DCs are also the most efficient

antigen-presenting cells in the induction of naive, memory, effector

and regulatory T-cell responses [1–3].

DCs have several pattern recognition receptors (such as Toll-

like receptors). During infection or inflammation, these receptors

interact with microbe-associated molecules (such as LPS, bacterial

DNA and double-stranded RNA), resulting in DC activation [4,5].

Endogenous TLR ligands are also released in conditions of

inflammation, such as cell injury, and induce similar activation

programs [6,7]. These programs affect various DC functions, such

as migration to draining lymph nodes for antigen presentation,

costimulation and the production of a specific cytokine profile

determining the type of T-cell response to be developed. This

process is known as maturation and it enables DCs to initiate and

direct the acquired immune system (B and T cells) and, ultimately,

to mount an antigen (Ag)-specific response [8].

Global transcriptomic analysis has recently been shown to be a

powerful approach yielding new insight into the biology of specific

cell subsets or tissues, by providing information about their specific

gene expression programs [9–12]. Moreover, the analysis of

genome-wide expression profiles is now a widely used technique

for the identification of diagnostic markers of various disease states,

outcomes, or responses to treatment [13–17]. Markers are selected

by scoring each individual gene on the basis of the extent to which

its expression pattern discriminates between different classes of

disease or between cases and controls. The disease status of new

patients is predicted with classifiers tuned to the expression levels

of the marker genes. One potential problem with expression-based

classification is that cellular heterogeneity within tissues and

genetic heterogeneity between samples may decrease the discrim-

inatory power of individual genes in complex diseases [18,19]. As

DCs are involved in various diseases involving the immune system,

from inflammatory diseases to cancer, the identification of

molecular markers in DCs specific to inflammation is of potential

clinical and pharmaceutical value.

A number of time course and end points studies of the DCs

activation process have been published to describe the dynamic

process of interaction among gene transcripts that are important

for controlling many of the observed changes that occur during the

process of activation/maturation [20–28]; however, these studies

utilize analysis methods for differential gene expression and do not

take into account class prediction methods. We applied a

classification algorithm to derive a list of genes able to predict

the DCs activation state. In this study, we identified a genetic

signature of inflammation in mouse DCs. We chose to study mice,

because they are widely used in models of many immunological

diseases. These findings may lead to the identification of a

PLoS ONE | www.plosone.org 1 February 2010 | Volume 5 | Issue 2 | e9404



prospective signature of inflammation and should increase our

understanding of the biological processes underlying chronic

inflammatory diseases.

Results

Sample Selection and Processing
In total, 115 samples were analyzed to develop a prognostic

molecular assay of DC activation. Seventy-seven arrays were used

for the training set and 38 were used for the testing set. We

analyzed different samples of the DC line D1 [29] treated with

inflammatory stimuli including bacteria (Listeria monocytogenes),

helminths (Schistosoma eggs), protozoa (Leishmania promastigotes)

and TLR ligands (LPS, poly I:C and zymosan) and samples of D1

cells treated with dexamethasone, Schistosoma SLA and Leishmania

amastigotes, all of which are known to downregulate the

inflammatory response [30,31]. The microarray data used were

either generated in this study or derived from previous

experiments [23,30,32]. Table 1 describes the sample dataset

used in this study. We amplified total RNA and hybridized it to an

Affymetrix mouse MG-U74Av2 GeneChip oligonucleotide micro-

array containing 12,488 probe sets. The resulting microarray

signal intensities for all 12,488 probe sets were normalized and the

background was subtracted.

Multivariate Analysis Reveals the Existence of an
Inflammatory State for Dendritic Cells

Principal component analysis (PCA) makes it possible to

visualize correlations in datasets by compressing information into

a small number of dimensions. PCA was carried out on the data

for DCs treated with stimuli inducing activation via various

receptors, including the Toll-like receptors. Projection of the

samples onto a plane corresponding to the first two dimensions

derived from PCA resulted in a clear separation along the first

dimension (Figure 1). Control and experimental samples treated

with anti-inflammatory stimuli were projected toward positive

values of the first dimension and samples with signs of activation

were projected toward negative values. The PCA data suggest that

DCs in different functional states could be separated on the bases

of differences in inflammatory stimulation and that the inflamed

samples could be isolated from all the other stimuli in a typical

two-classes partitioning.

Data Analysis Strategy for the Selection of Classifier
Genes

We carried out a step-wise analysis to determine whether it was

possible to select a gene expression signature of inflammation: (a)

an expression index was calculated with RMA [33]; (b) sample

classification: genes capable of discriminating between the two

groups were identified by comparing groups of samples in the

inflammatory group with those in the non inflammatory group

(training set); (c) independent validation of classifier genes: the

genes selected were used to classify an independent group of

samples (testing set); (d) validation of the genetic signature by

quantitative RT-PCR (qRT-PCR) on independent DCs samples

prepared with different stimuli. The procedure used for the

selection and preparation of microarrays is shown in Figure S1.

Transcriptional Signatures Discriminate between
Inflammatory and Steady State Cellular Phenotypes

Raw intensity values from microarray hybridization were

normalized with the robust multiarray average in the R-package

for statistical computing (available at www.R-project.org). A

random forest classification model was built from a training set

(50 observations in conditions of inflammation, 27 observations in

non inflammatory conditions) obtained from the genome-wide

gene expression analysis of DCs incubated with different stimuli.

All the samples were assigned to training or testing sets: two thirds

of the samples (n = 77) were assigned to the training sets, the

remaining third being assigned to testing sets (n = 38; Figure S1).

The results obtained for the untreated samples and those treated

with non inflammatory stimuli were very similar and these two

groups of samples were therefore considered to belong to the same

class (data not shown). This approach resulted in the identification

of 54 genes distinguishing accurately between the two classes of

samples, as demonstrated by analysis with the testing set (data not

shown; Table 2). The molecular signature was illustrated with a

heat map based on Euclidean distance (Figure 2). We identified 18

genes downregulated by inflammation and 36 upregulated by

inflammation. Unsupervised clustering analysis confirmed the

robustness of the set of genes identified, with very clear distinction

between samples treated with and without inflammatory stimuli

(Figure 2). Gene Ontology was used to classify the modulated

genes in terms of function. The genes selected encoded proteins

involved mainly in the immune system process (44%), cell

differentiation (44%), cell death (30%), and regulation of biological

process (55%), as shown in Table 3.

The downregulated genes were found to encode proteins

involved in the biological pathways of cell division (Ccnb2,

Kif20a, Cdc20), lipid metabolic process (Daglb, Elovl6, Lta4h,

Sgpp1), defense response (hdac5, Il1rl1, Il18r1, Lta4h), and

metabolic processes (Txndc16, Hdac5, Il1rl1, Daglb, Lta4h,

Tep1, Sgpp1, H2-DMa, Eif4ebp2, Man2b1, Elovl6, Znrf2,

Cdc20). Two of these genes, Tm7sf3 and Tspan8, could not be

functionally classified (Table 4). The upregulated genes encoded

proteins involved in the immune system response (Psme2, Cd40,

Ccl22, Il1b, Sqstm1, Tap1, Il6, Il12b, Ifit1, Ccr7, Irf8, Isg15,

Nfkbia, Nfkb1, Stat5a, Cdkn1a), cell death (Traf1, Stat5a, Sqstm1,

Il6, Nfkb1, Cd40, Cdkn1a, Gadd45b, Tnfrsf1b, Serpinb9, Daxx),

regulation of biological processes (Nfkbia, Traf1, Stat5a, Il1b,

Clic4, Nfkbiz, Icam1, Gadd45b, Il12b, Irf8, Tnfrsf1b, Serpinb9,

Dnajb6, Sqstm1, Il6, Nfkb1, Cd40, Cdkn1a, Daxx, Gnai3,) and

cell differentiation (Nfkbia, Skil, Traf1, Stat5a, Clic4, Gadd45b,

Table 1. Characteristic of the Microarray Data Set used.

Cell Type Stimulus Nu of Arrays Class Ass

DC D1 None 14 Non Inflamm

DC D1 DEX 6 Non Inflamm

DC D1 Leishmania Ama 8 Non Inflamm

DC D1 Shistosoma SLA 8 Non Inflamm

DC D1 CpG 10 Inflamm

DC D1 Leishmania Pro 8 Inflamm

DC D1 Listeria EGD 20 Inflamm

DC D1 LPS 8 Inflamm

DC D1 PAM3Cys 10 Inflamm

DC D1 Poly I:C 10 Inflamm

DC D1 Shistosoma Eggs 8 Inflamm

DC D1 Zymosan 15 Inflamm

Total 115

doi:10.1371/journal.pone.0009404.t001

Dendritic Cells Signatures
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Il12b, Irf8, Tnfrsf1b, Serpinb9, Sqstm1, Il6, Nfkb1, Cd40,

Cdkn1a, Daxx).

Real-Time Reverse Transcriptase (RT)-PCR Validation of
Microarray Observations

Despite the accuracy of the classifier for random forest-based

class assignment in a test set of DC samples, the mean expression

index of transcripts was low. We therefore performed qRT-PCR

to confirm the relative expression levels recorded for the DC

samples with Affymetrix technology. We used the 18s rRNA gene

as a housekeeping gene for the normalization of target gene

expression. We prepared independent DC line D1 samples by

treating the cells for 24 h with known signals, such as 10 mg/ml

LPS, 20 mg/ml Poly I:C and 500 ng/ml zymosan, and with

1028 M dexamethasone, 1028 M vitamin D and 50 ng/ml IL10,

which are known to have anti-inflammatory activity [34–38]. All

the RNA samples in the study were converted to cDNA using the

same reverse-transcription cocktail and procedure. The pattern of

gene expression observed on qRT-PCR confirmed the microarray

data. We assessed the predictive value of genes by calculating the

median levels of expression for that gene in the known

inflammatory and anti-inflammatory samples and then determin-

ing the mean expression level for the gene between the two classes.

These threshold values were used to determine whether, for a

given stimulus, the level of expression of the gene could be used to

assign the sample to the correct class. We therefore subjected all

the genes to the same test, under different stimulation conditions.

A score of 1 was assigned if the expression level exceeded the mean

expression value for an upregulated gene for a sample to be

inflammatory or was less than the mean value for a sample to be

anti-inflammatory. For repressed genes, we applied the opposite, a

score of 1 was assigned if the expression level was less than the

mean expression value for a sample to be inflammatory or was

more than the mean value for a sample to be anti-inflammatory. A

score of 0 was awarded in all other cases (Figure S2). Poly I:C

stimulation was correctly classified by 94% (51/54) of the genes,

whereas LPS and zymosan stimulations were correctly classified by

89% (48/54) and 85% (46/54) of the genes, respectively. As

predicted, dexamethasone was the best anti-inflammatory reagent,

correctly classified by 100% (54/54) of the genes. IL10 and

vitamin D were identified as anti-inflammatory stimuli by 96%

(52/54) and 89% (48/54) of the genes, respectively (Figure 3).

Vitamin D upregulated Il1b, Rab20, Nfkbia, Nfkbiz and Skil.

These genes are upregulated by TLRs ligands (Figure 3). The

effect of vitamin D on IL-1b gene expression has already been

demonstrated in primary mouse keratinocytes and other cell types,

whereas the induction of proteins involved in intracellular

trafficking has not previously been shown [39,40–42]. Rab20

was recently identified as a potential regulator of connexin 43

trafficking [43].

We then assessed the power of the selected genetic signatures to

classify samples treated with different reagents probing different

types of receptors. We treated DCs with live bacteria, such as

Listeria monocytogenes and Lactobacillus paracasei, 10 mM nimesulide

and 1000 U/ml IFNa to modify their functional state. As

expected, live bacteria induced the strongest inflammatory

Figure 1. PCA score plot. Seventy-nine ‘‘inflammatory’’ observations and 36 ‘‘non inflammatory’’ observations (listed in Table 1) used to generate
and test the random forest model. Genome-wide gene expression data were collected with DNA-microarray technology and the normalized
hybridization signals were analyzed by PCA. A score plot with the first and second principal component axes is shown. Inflamed samples are mostly
projected toward negative values of the first PC axis, whereas samples from controls and non inflamed samples are projected toward positive values.
INF: Inflamed samples; NINF: non-inflamed samples.
doi:10.1371/journal.pone.0009404.g001

Dendritic Cells Signatures

PLoS ONE | www.plosone.org 3 February 2010 | Volume 5 | Issue 2 | e9404



Table 2. Fifty-four Genes able to predict Inflammatory Signatures in DC.

Affymetrix ID Gene Title Gene Symbol

100423_f_at SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 5A STAT5A

100540_at LEUKOTRIENE A4 HYDROLASE LTA4H

100584_at ANNEXIN A4 ANXA4

100588_at PROTEASOME (PROSOME, MACROPAIN) 28 SUBUNIT, BETA PSME2

100779_at INTERLEUKIN 12B IL12B

100981_at INTERFERON-INDUCED PROTEIN WITH TETRATRICOPEPTIDE REPEATS 1 IFIT1

101072_at EUKARYOTIC TRANSLATION INITIATION FACTOR 4E BINDING PROTEIN 2 EIF4EBP2

101144_at INTERLEUKIN 18 RECEPTOR 1 IL18R1

101995_at SEQUESTOSOME 1 SQSTM1

102218_at INTERLEUKIN 6 IL6

102310_at CHEMOKINE (C-C MOTIF) LIGAND 22 CCL22

102779_at GROWTH ARREST AND DNA-DAMAGE-INDUCIBLE 45 BETA GADD45B

102831_s_at CD86 ANTIGEN CD86

103035_at TRANSPORTER 1, ATP-BINDING CASSETTE, SUB-FAMILY B (MDR/TAP) TAP1

103040_at CD83 ANTIGEN CD83

103254_at TRAF TYPE ZINC FINGER DOMAIN CONTAINING 1 TRAFD1

103402_at TRANSMEMBRANE 7 SUPERFAMILY MEMBER 3 TM7SF3

103486_at INTERLEUKIN 1 BETA IL1B

103494_at TETRASPANIN 8 TSPAN8

103665_at ELOVL FAMILY MEMBER 6, ELONGATION OF LONG CHAIN FATTY ACIDS (YEAST) ELOVL6

104149_at NUCLEAR FACTOR OF KAPPA LIGHT CHAIN GENE ENHANCER IN B-CELLS INHIBITOR, ALPHA NFKBIA

104376_at HISTONE DEACETYLASE 5 HDAC5

104418_at ZINC AND RING FINGER 2 ZNRF2

104443_at CHEMOKINE (C-C MOTIF) RECEPTOR 7 CCR7

160501_at KINESIN FAMILY MEMBER 20A KIF20A

160608_at RAB20, MEMBER RAS ONCOGENE FAMILY RAB20

161005_at RIKEN CDNA 5730420B22 GENE TXNDC16

92962_at CD40 ANTIGEN CD40

93092_at HISTOCOMPATIBILITY 2, CLASS II, LOCUS DMA H2-DMA

93367_at TELOMERASE ASSOCIATED PROTEIN 1 TEP1

93448_at RIKEN CDNA E330036I19 GENE DAGLB

94186_at TNF RECEPTOR-ASSOCIATED FACTOR 1 TRAF1

94256_at CHLORIDE INTRACELLULAR CHANNEL 4 (MITOCHONDRIAL) CLIC4

94294_at CYCLIN B2 CCNB2

94501_at SPHINGOSINE-1-PHOSPHATE PHOSPHATASE 1 SGPP1

94752_s_at SKI-LIKE SKIL

94814_at GUANINE NUCLEOTIDE BINDING PROTEIN, ALPHA INHIBITING 3 GNAI3

94881_at CYCLIN-DEPENDENT KINASE INHIBITOR 1A (P21) CDKN1A

94928_at TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 1B TNFRSF1B

95024_at UBIQUITIN SPECIFIC PEPTIDASE 18 USP18

96120_at DNAJ (HSP40) HOMOLOG, SUBFAMILY B, MEMBER 6 DNAJB6

96125_at FAS DEATH DOMAIN-ASSOCIATED PROTEIN DAXX

96319_at RIKEN CDNA 2310042N09 GENE CDC20

96515_at INTERLEUKIN 4 INDUCED 1 IL4I1

96752_at INTERCELLULAR ADHESION MOLECULE ICAM1

96935_at PDZK1 INTERACTING PROTEIN 1 PDZK1IP1

98002_at INTERFERON REGULATORY FACTOR 8 IRF8

98405_at SERINE (OR CYSTEINE) PEPTIDASE INHIBITOR, CLADE B, MEMBER 9 SERPINB9

98427_s_at NUCLEAR FACTOR OF KAPPA LIGHT CHAIN GENE ENHANCER IN B-CELLS 1, P105 NFKB1

98500_at INTERLEUKIN 1 RECEPTOR-LIKE 1 IL1RL1

Dendritic Cells Signatures
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signature response in DCs (Figure 4A): Listeria monocytogenes and

Lactobacillus paracasei were correctly classified as inflammatory by

98% (53/54) and 94% (51/54) of the genes, respectively. Listeria

monocytogenes is known to induce the production of type I IFNs. We

therefore expected this bacterium to induce the interferon-

responsive genes Ifit1 and Isg15. Levels of transcription for Il1b,

Pdzk1ip1, Isg15, Ifit1 and Usp18 were strongly reduced by

Lactobacillus paracasei. We therefore conclude that Lactobacillus

paracasei is less able to induce a type I IFN response than other

genes of the inflammatory signature, suggesting that commensal

bacteria may specifically modulate inflammatory genes in DCs

(Figure 4A). Finally, we measured the effect of IFNa and

nimesulide treatment on DCs. We compared the results obtained

with nimesulide and IFNa with the signatures obtained with

dexamethasone, IL10 and vitamin D (Figure 4B). Nimesulide and

IFNa were classified as anti-inflammatory by 98% (53/54) and

80% (43/54) of the genes, respectively. Isg15, Ifit1, Usp18 are

known to be regulated by IFNa, whereas Clic4, Trafd1 and Il4i1

Affymetrix ID Gene Title Gene Symbol

98822_at INTERFERON, ALPHA-INDUCIBLE PROTEIN ISG15

98988_at NUCLEAR FACTOR OF KAPPA LIGHT POLYPEPTIDE GENE ENHANCER IN B-CELLS INHIBITOR, ZETA NFKBIZ

99562_at MANNOSIDASE 2, ALPHA B1 MAN2B1

99982_at NUCLEAR FACTOR OF KAPPA LIGHT CHAIN GENE ENHANCER IN B-CELLS INHIBITOR, BETA NFKBIB

doi:10.1371/journal.pone.0009404.t002

Table 2. Cont.

Figure 2. Heat map of the dendritic cell-specific signature. Genes with different levels of expression in DCs treated with inflammatory stimuli
and in those treated with anti-inflammatory molecules. Each column represents a sample and each row represents a gene. Levels of gene expression
are indicated on a color scale, with red corresponding to the highest level of expression and blue corresponding to the lowest level. The Log2 ratio is
expressed with respect to the mean expression level of each gene.
doi:10.1371/journal.pone.0009404.g002
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have not been shown to be affected by IFNa. This confirms the

role of IFNa in the regulation of DC activity [44,45].

We were able to classify samples treated with IFNa, Il10, vitamin

D as non inflammatory with this system, whereas live bacteria

(Listeria and Lactobacillus) were classified as inflammatory on the basis

of the strong inflammatory signatures induced. LPS and Poly I:C

were found to be stronger inducers of DC activation than zymosan

(46/54), at least in our experimental conditions. Zymosan has also

been shown to induce a regulatory phenotype in DCs [46].

Transcription Signatures Are Dendritic Cell-Specific
We assessed the specificity of the classifier genes by analyzing 44

of the 54 genes that gave consistent results for different samples by

qRT-PCR, in the macrophage cell line MT2 [47]. The MT2 cells

were stimulated with 1028 M dexamethasone or 10 mg/ml LPS.

The genes of the inflammation signature were not well expressed

in MT2 cells if compared to the D1 cells (Figure 5). Only 41%

(18/44) of the genes showed the expected pattern of change in

expression in response to LPS stimulation in MT2 cells. Indeed,

Table 3. Upregulated genes are grouped functionally based on ontologies, and levels of significance are shown.

GO Biological Process N. of Genes % pValue Gene symbol Benjamini FDR

GO:0002376-immune system process 16 44,44 2,69E-11 Psme2, Nfkbia, Stat5a, IL1b, Tap1,
IL12b, Irf8, Ccl22, Sqstm1, Il6, Nfkb1,
CD40, Cdkn1a, Ifit1, Ccr7, Isg15

1,39E-07 5,13E-08

GO:0030154- cell differentiation 16 44,44 9,5E-07 Nfkbia, Skil, Traf1, Stat5a, Clic4,
Gadd45b, Il12b, Irf8, Tnfrsf1b,
Serpinb9, Sqstm1, Il6, Nfkb1,
Cd40, Cdkn1a, Daxx

1,23E-03 1,82E-03

GO:0008219- cell death 11 30,56 1,16E-06 Traf1, Stat5a, Sqstm1, Il6, Nfkb1,
Cd40, Cdkn1a, Gadd45b, Tnfrsf1b,
Serpinb9, Daxx

1,21E-03 2,23E-03

GO:0001816-cytokine production 6 16,67 3,86E-06 Stat5a, Il1b, Il6, Nfkb1, Cd40, Il12b 2,86E-03 7,37E-03

GO:0012501- programmed cell death 10 27,78 7,97E-06 Traf1, Stat5a, Sqstm1, Il6, Nfkb1,
Cd40, Cdkn1a, Gadd45b,
Serpinb9, Daxx

4,59E-03 1,52E-02

GO:0006954- inflammatory response 6 16,67 9,43E-05 Ccl22, Stat5a, Il1b, Il6, Nfkbiz, Tnfrsf1b 3,01E-02 1,80E-01

GO:0032502- developmental process 17 47,22 9,91E-05 Nfkbia, Skil, Traf1, Stat5a, Clic4,
Anxa4, Gadd45b, Il12b, Irf8,
Tnfrsf1b, Serpinb9, Sqstm1, Il6,
Nfkb1, Cd40, Cdkn1a, Daxx,

2,98E-02 1,89E-01

GO:0050789- regulation of
biological process

20 55,56 1,13E-04 Nfkbia, Traf1, Stat5a, Il1b, Clic4,
Nfkbiz, Icam1, Gadd45b, Il12b,
Irf8, Tnfrsf1b, Serpinb9, Dnajb6,
Sqstm1, Il6, Nfkb1, Cd40,
Cdkn1a, Daxx, Gnai3

3,21E-02 2,16E-01

GO:0050896- response to stimulus 17 47,22 4,73E-04 Nfkbia, Stat5a, Il1b, Nfkbiz,
Tap1, Il12b, Irf8, Tnfrsf1b,
Ccl22, Sqstm1, Il6, Cd86, Cd40,
Cdkn1a, Ifit1, Ccr7, Isg15

7,87E-02 9,01E-01

GO:0032020- ISG15 protein conjugation 2 5,56 1,03E-02 Usp18, Isg15 5,69E-01 1,80E+01

GO:0007154-cell communication 16 44,44 1,49E-02 Nfkbia, Traf1, Stat5a, Il1b, Rab20,
Gadd45b, Il12b, Tnfrsf1b, Ccl22,
Sqstm1, Il6, Nfkb1, Cd40, Ccr7,
Daxx, Gnai3

6,86E-01 2,49E+01

doi:10.1371/journal.pone.0009404.t003

Table 4. Downregulated genes are grouped functionally based on ontologies.

GO Biological Process N. of Genes % pValue Gene symbol Benjamini FDR

GO:0051301- cell division 3 16,67 2,45E-02 Ccnb2, Kif20a, Cdc20 1 37,754

GO:0006629- lipid metabolic process 4 22,22 2,57E-02 Daglb, Elovl6, Lta4h, Sgpp1 1 39,157

GO:defense response 4 22,22 3,36E-02 Hdac5, Il1rl1, Il18r1, Lta4h 1 47,956

GO:0008152- metabolic process 13 72,22 3,38E-02 Txndc16, Hdac5, Il1rl1, Daglb6, Lta4h,
Tep1, Sgpp1, H2-DMa, Eif4ebp2,
Man2b1, Elovl6, Znrf2, Cdc20

1 48,194

GO:0002376- immune system process 4 22,22 5,10E-02 Hdac5, H2-DMa, Il1rl1, Il18r1 1 63,237

GO:0045087- innate immune response 2 11,11 9,56E-02 Il1rl1, Il18r1 1 85,352

doi:10.1371/journal.pone.0009404.t004
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some genes displayed opposite patterns of expression in the two

cell lines tested. Il18r1 was induced in MT2 cells but downreg-

ulated in DCs in response to LPS. We therefore conclude that the

inflammatory signature identified in this study is specific to DCs.

Classifier Genes Can Be Used to Predict the Inflammatory
Process in DCs In Vivo

Preclinical animal models of inflammation and infections have

become important tools for improving our understanding of the

regulation of inflammatory reactions in general and for the

development of novel treatment strategies to modulate excessive,

deleterious inflammatory reactions. We measured the gene

expression signature associated with inflammation in ex vivo splenic

DCs derived from mice treated with the endotoxin LPS, and

dexamethasone with the aim of converting our in vitro DC assay

into a useful tool for preclinical mouse models of inflammatory

diseases.

Splenic DCs detect antigens derived from the blood and are

widely used as a model system for testing treatments that affect DC

recruitment or for detecting DC activation during systemic

infection. We analyzed the pattern of expression of the 44 genes

in splenic DCs in vivo. We treated a group of mice with 50 mg of

LPS/mouse or dexamethasone and, after 5 h, CD11c+ cells were

purified from spleen by magnetic bead separation. Cell purity was

checked by FACS analysis and 90% of the cells were found to be

CD11c+ (data not shown) then assessed the prognostic value of the

44 genes by qRT-PCR: 91% (40/44) and 80% (35/44) of the

genes correctly predicted the inflammatory or non inflammatory

Figure 3. Sample validation by quantitative real-time PCR. qRT-PCR confirmation of classifier transcript levels in inflamed samples derived
from DCs treated with TLR ligands (LPS, PolyI:C and zymosan) and in non inflamed samples treated with anti-inflammatory stimuli (dexamethasone,
vitamin D and IL-10) for 24 h. Reactions were performed in two wells, normalized to 18s rRNA levels. The results in the table are expressed relative to
the corresponding level of expression of each transcript in the untreated sample. Data are presented as mean fold changes in classifier gene
transcript levels in three independent experiments per group. The columns in the left reflect the pattern of expression as determined by microarray
analysis. NI: Non inflamed samples; INF; Inflamed samples.
doi:10.1371/journal.pone.0009404.g003
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phenotype of splenic DCs, confirming that the inflammatory

signature selected in this study was also induced in DCs in vivo

(Figure 6 and Figure S3). We were unable to confirm the induction

of Il12b, Irf8 and Nfkb1 by LPS in vivo, possibly due to a lower

expression of these genes in vivo.

Discussion

The development and marketing of microarray platforms has

led to extensive investigation of global gene expression profiles in

health and disease. The expression profiling of diverse healthy

tissues provides a comprehensive view of the range of transcrip-

tional regulation in physiological conditions [43,48–50]. Similarly,

the identification of gene expression signatures indicative of disease

subtypes improves our understanding of the molecular basis of

disease [13,14,51]. Small sample size and the large number of

measurements required for each sample currently limit the efficacy

of gene expression profiling, leading to efforts to develop new

analytical methods. Gene expression profiles have recently found

applications in diagnosis, prognosis and the provision of predictive

information, and in the classification of human cancers and

inflammatory diseases [52,53].

In this study, we used the random forest algorithm [54] to

identify specific transcriptional signatures of inflammation in DCs

and to evaluate whether these molecular signatures could be used

to determine the activation state of DCs in vitro and in vivo. We

found that the selected predictive genes upregulated during DCs

activation fell into distinct functional classes, with major

involvement in immune system processes (47%) cell differentiation

(44%), metabolic process (42%) and cell death (31%). Gene

Ontology analysis identified the genes involved in immune system

processes as Psme2, Cd40, Ccl22, Il1b, Sqstm1, Tap1, Il6, Il12b,

Ifit1, Ccr7, Irf8, Isg15, Nfkbia, Nfkb1, Stat5a and Cdkn1a. The

genes involved in cell differentiation identified were Nfkbia, Skil,

Traf1, Stat5a, Clic4, Gadd45b, Il12b, Irf8, Tnfrsf1b, Serpinb9,

Sqstm1, Il6, Nfkb1, Cd40, Cdkn1a and Daxx. Gene Ontology

analysis also identified genes involved in cell death, such as Traf1,

Stat5a, Sqstm1, Il6, Nfkb1, Cd40, Cdkn1a, Gadd45b, Tnfrsf1b,

Serpinb9 and Daxx. The downregulated predictive genes were

identified as involved in cell division (Ccnb2, Kif20a, Cdc20), lipid

metabolism (Daglb, Elovl6, Lta4h, Sgpp1), defense responses

(hdac5, Il1rl1, Il18r1, Lta4h) and metabolic processes (Txndc16,

Hdac5, Il1rl1, Daglb, Lta4h, Tep1, Sgpp1, H2-DMa, Eif4ebp2,

Man2b1, Elovl6, Znrf2, Cdc20).

Most of the genes selected showed a sustained up-regulation or

down-regulation suggesting that the processes they sustain, are

important throughout the maturation process. Nevertheless, to

deeply understand their functional role during DCs maturation,

knock down studies should be performed on one or more genes of

the signature.

Our findings clearly demonstrate that the gene expression

profiling of DCs reliably distinguishes between activating and non

activating stimuli. We validated our findings on an independent set

of samples treated with molecules inducing the activity of different

Figure 4. q-Real-time PCR analysis of gene expression on independent samples for class prediction. A) Expression levels of 54 genes in
DCs treated with the bacteria Listeria monocytogenes (Lm) and Lactobacillus paracasei (Lp) for 24 h. B) DC samples treated with nimesulide and IFNa
for 24 h. Comparison with cells treated with dexamethasone (DEX), IL-10 and vitamin D (VitD). Data are presented as mean fold changes in classifier
gene transcript levels in three independent experiments per group. NI: Non inflamed samples; INF; Inflamed samples.
doi:10.1371/journal.pone.0009404.g004
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receptors and DC activation. Dexamethasone, Il10 and vitamin D

were used as typical anti-inflammatory stimuli. They were

generally classified as non activating signals. By contrast, TLR

ligands and whole bacteria, which are widely recognized as

inflammatory signals, were classified as such by this system. The

signature expression profile identified here consists of 44 highly

predictive genes. These 44 genes provide a unique gene expression

profile indicative of activation in DCs and providing important

biological insight into the host response mediated by DCs. Genes

already identified as involved in inflammation and DC activation

were selected, including those encoding the interleukins Il6, Il12b

and Il1b [55], the chemokine Ccl22 [56], the membrane

molecules Cd40, Cd83, Cd86, Icam1, and Ccr7 and the

transcription factors Stat5a and Irf8, although the precise role of

Irf8 in DC activation is currently unknown.

Some of the genes selected have no known role in inflammation.

For example, the Pdzk1ip1 gene encodes a protein associated with

various tumors when abundant. This protein seems to play a role

in Akt activation and its gene was strongly induced by L.

monocytogenes and LPS, whereas no overexpression was associated

with poly I:C treatment. Thus, the induction of this gene is

dependent on surface TLR stimulation. Rab20 encodes a protein

Figure 5. Specificity of the genetic signature. Real-time PCR confirmation of 44 inflammatory signature genes in the DC line D1 and the absence
of this signature in MT2 cells. Both cell lines were treated with LPS (10 mg/ml) and 1028 M dexamethasone (DEX) for 24 h. Data are presented as mean
fold changes in classifier gene transcript levels in three independent experiments per group.
doi:10.1371/journal.pone.0009404.g005
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that regulates intracellular trafficking and may play an important

role in inflammation. Rab20 has been shown to interact with

connexin 45 [43]. Il4i1 was recently identified as an oxidize active

against l-amino acids with potential effects on lymphocyte

proliferation. It is strongly induced by DC activation.

The genes encoding proteins involved in the NF-kB pathway

were more strongly induced by bacteria than TLR ligands.

Inhibitor genes, such as Nfkbia and Nfkbib, were also overex-

pressed after stimulation with bacteria, consistent with the

activation of regulatory mechanisms that control the inflamma-

tion. The downregulated genes include a large proportion of

membrane proteins, such as Il18r1, Il1rl1, Tspan8 and Tm7sf3,

and genes encoding proteins with enzymatic activity, such as

Man2b1 (an m-mannosidase), Lta4h (leukotriene A4 hydrolase),

Txndc16 (thioredoxin domain-containing 16), Sgpp1 (sphingosine-

1-phosphate phosphatase 1), Hdac5 (histone deacetylase 5). The

role of this dowregulation is currently unknown and requires

further investigation.

We used the dendritic cell line D1 to optimize the sensitivity and

precision of our gene expression profiling. We decided to

determine an inflammation signature for DCs rather than for

any other type of leukocyte, because DCs link innate and adaptive

Figure 6. In vivo validation of the DC-specific inflammatory signature. C57BL/6 mice were treated with LPS and, after 5 h, CD11c+ cells were
isolated and tested for the inflammatory signature. Data are presented as mean fold changes in classifier gene transcript levels in three independent
experiments.
doi:10.1371/journal.pone.0009404.g006
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immunity [57]. The prediction of DC activation state is therefore

of potential value for the testing of exogenous molecules with

potential anti-inflammatory or adjuvant activity in DCs, to favor

the repression or induction of T-cell responses. We validated the

inflammatory signature in vivo, by testing the response in splenic

DCs from mice treated with LPS and dexamethasone. Most of the

genes (80%) studied successfully characterized the activation state

of splenic DCs, and differentiated the profile of these cells from

that of DCs derived from mice treated with dexamethasone.

In conclusion, we used a meta-analysis of microarray data to

identify gene modules predictive of DC activation. Accuracy and

simplicity are essential characteristics of predictors for molecular

assays. The predictive accuracy of predictors generally ranges from

65% to 100% (mean, 82%) [58]. It is therefore important to

identify the best way to select a suitable classifier for data, to

maximize accuracy. In this study we used random forest methods

for the selection of genes and the classification of microarray data

[54,59]. The potential of array-based multidimensional predictors

to outperform traditional parameters is increasing for biomarker

discovery. The number of array-based studies is likely to increase

exponentially, particularly in the field of inflammatory diseases.

Such studies have been widely used for cancer classification

[60,61]. In this study, we identified and validated a prognostic

gene expression signature in DCs associated with inflammation.

The signaling events affected by many of the genes in this

signature occur in pathways essential for the immune response and

cell activation. These genes may therefore be suitable targets,

alone or in combination, for trials of anti-inflammatory and

adjuvant treatments. We have demonstrated that a genome-wide

systems biology approach may have advantages over traditional

methods for biomarker discovery. Moreover, the small number of

genes in our signature makes it possible to use simple, conventional

assays, such as quantitative reverse transcriptase-polymerase chain

reaction [62]. The increasing availability of laboratory diagnosis

by polymerase chain reaction has opened up new possibilities for

genomic testing based on the use of genetic signatures, in routine

clinical conditions.

Materials and Methods

Cell Culture
D1 cells [29] were maintained in vitro in Iscove’s modified

Dulbecco’s medium (IMDM, Euroclone) supplemented with 10%

heat-inactivated fetal bovine serum (Gibco, origin: Australia),

100 IU/ml penicillin, 100 mg/ml streptomycin, 2 mM L-gluta-

mine (all from Euroclone) and 50 mM b-mercaptoethanol (Sigma)

plus 30% R1 medium (supernatant from NIH3T3 fibroblasts

transfected with GM-CSF).

MT2 cells are immortalized macrophages. They were derived

from mouse thymus as previously described [47]. They were

cultured in IMDM (Euroclone) supplemented with 5% heat-

inactivated fetal bovine serum, 100 IU/ml penicillin, 100 mg/ml

streptomycin, 2 mM L-glutamine (all from Euroclone) and 50 mM

b-mercaptoethanol (Sigma).

Microarray Dataset
We obtained published gene expression datasets for microarray

experiments performed with D1 cells, dexamethasone (1028 M),

the live microorganisms Schistosoma mansoni (MOI 1:200 parasites/

cell) and Leishmania mexicana (MOI 1:8) [23,30,31]. All the other

samples were prepared specifically for this study. D1 cells were

infected with Listeria monocytogenes EGD (MOI 1:20; provided by P.

Cossard, Pasteur Institute, France) or treated with various TLR

agonists: rLPS (10 mg/ml, Alexis, serotype R515), CpG (10 mg/ml,

Sigma), poly I:C (20 mg/ml, Amersham), Pam3Cys (1 mM, Sigma)

and zymosan (500 ng/ml, Sigma). In summary, the data set is

composed by: a) 14 untreated samples; b) 10 samples each of CpG,

Listeria monocytogenes, Pam3cis and polyI:C at time points 2 h, 4 h,

8 h, 12 h and 24 h in duplicates; c) 8 samples each of Leishmania

amastigote, Leishmania promastigote, Shistosoma SLA, Shistosoma EGGS

and LPS at the time points 4 h, 8 h, 12 h and 24 h in duplicates;

d) 6 samples of dexamethasone treated cells for the time points

4 h, 8 h and 24 h in duplicates; e) 15 zymosan treated samples at

time points 2 h, 4 h, 8 h, 12, and 24 h in triplicates. The data set

is composed in total of 115 microarrays.

Microarray Assay
We harvested 107 D1 cells in the immature state or after 4 h,

8 h, 12 h or 24 h of stimulation. Total RNA was isolated with

Trizol Reagent (Invitrogen, Life Technologies, Karlruhe, Ger-

many) and purified on a Qiagen RNeasy column (Qiagen, Hilden,

Germany) to remove small fragments. RNA quality was assessed

on an Agilent 2100 Bioanalyzer RNA 6000 Nano LabChip

(Agilent Technologies, Palo Alto, CA). Only samples with intact

total RNA profiles (retention of both ribosomal bands and the

broad central peak of mRNA) were used for the microarray and

quantitative RT-PCR gene expression analyses. In vitro transcrip-

tion (IVT) products were generated and oligonucleotide array

hybridization and scanning were carried out according to the

instructions supplied by Affymetrix (Santa Clara, CA). We used 10

to 16 mg of total RNA from each sample and T7-linked oligo-dT

primers for first-strand cDNA synthesis. The fragmented biotiny-

lated cDNA (15 mg) was hybridized onto the MG-U74Av2

GeneChip (Affymetrix), using the recommended procedures for

prehybridization, hybridization, washing and staining with

streptavidin–phycoerythrin (SAPE).

Microarray Data Analysis and Supervised Class Prediction
Array images were analyzed with the RMA algorithm [33].

Samples displaying a signal ratio .3.0 for the b-actin and

GAPDH probe sets were considered to be poor-quality targets and

were excluded from the dataset.

The final dataset contained the results for 115 arrays (79 DC

samples subjected to pro-inflammatory stimuli and 36 samples

with anti-inflammatory reagents). A single log scale normalized

expression measure for each probe set was obtained from the low-

level data files (CEL files), by the robust multiarray analysis (RMA)

procedure [33]. The data were subjected to Z-score-based

transformation. A diagnostic model was obtained by applying

the random forest (RF) method to the training set [54]. The model

was based on 1000 bootstrap samples of the training set, with 1000

classification trees generated with a view to classifying cases as

‘‘inflammatory’’ and ‘‘not-inflammatory’’ on the basis of micro-

array gene expression measurements. RF is a method of the

‘‘decision tree classifiers’’ family, but it works on a collection of

trees (a ‘forest’) rather than a single tree. In a decision tree, each

node represents an attribute — in our case, the probeset — and

the terminal nodes (the ‘leaves’) represent the attribute producing

the best separation between the classes –(‘‘inflammatory’’ and ‘‘not

inflammatory’’ in this analysis) of a dataset. RF feeds each tree

with an independent subset of attributes from a training set and

individual instances are classified by a voting procedure, with the

majority of the decision trees in the collection indicating the

appropriate classification. Finally, during the classification process,

RF determines the relative importance of each attribute, through

various methods, such as calculation of the Gini Index, which

assesses the importance of the variable and carries out accurate

variable selection.
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Quantitative Real-Time Polymerase Chain Reaction (qRT-
PCR)

D1 cells were infected with Listeria monocytogenes EGD (multi-

plicities of infection, MOI, 1:20) and Lactobacillus paracasei (MOI

1:1000) or were treated with various stimuli: sLPS (10 mg/ml,

Alexis, serotype SO55:B5), poly I:C (20 mg/ml, Amersham),

zymosan (500 ng/ml, Sigma), dexamethasone (1028 M, Sigma),

vitamin D (1028 M, Sigma), IL-10 (50 ng/ml, Immunok), IFNa
(1000 U/ml, PBL Biomedical Laboratories) and Nimesulide

(10 mM, Cayman).

We harvested 56106 D1 cells either at 0 h or after 24 h of

stimulation. Total RNA was isolated with Trizol Reagent

(Invitrogen) and purified on a Qiagen RNeasy column (Mini kit,

Qiagen). DNase digestion was carried out in the column during

RNA extraction (RNase-free DNase Set, Qiagen). RNA quantity

and quality was evaluated spectrophotometrically (NanoDrop ND-

1000 Spectrophotometer, Thermo Scientific). We reverse tran-

scribed 1 mg of total RNA with random primers (High Capacity

cDNA Reverse Transcription Kit, Applied Biosystems). Quanti-

tative RT-PCR (qRT-PCR) was performed on 10 ng of total

cDNA from independent samples, using primer sets specific for 54

selected genes and the 18s housekeeping gene. qRT-PCR was

carried out on a 7500 machine (Applied Biosystems), with Power

SYBR Green PCR Master Mix (Applied Biosystems). Assays were

carried out in duplicate. Primers were designed with Primer3

software (http://frodo.wi.mit.edu/) and checked with other tools

(BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi; m-fold, http://

mfold.bioinfo.rpi.edu/cgi-bin/dna-form1.cgi; IDT oligo analy-

zer,http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer/

). Primers were validated, and only primers with an amplification

efficiency of 85 to 115% were accepted (Primm srl, Italy). Primer

sequences are reported in Figure S4. The raw data (Ct, threshold

cycle) were obtained with Applied Biosystems software. Relative

mRNA levels were calculated by the 22DDCt method (DCt =

Cttarget2Ct18s, DDCt = DCtstimulated 2 DCtnot treated), using 18s as

the housekeeping gene.

In Vivo Experiment
Three mice per group of six-week-old C57BL/6 were injected

with rLPS (50 mg/mouse, Alexis, serotype R515), dexamethasone

(50 mg/mouse, Sigma), or with PBS as a control. The spleen was

removed five hours later, and CD11c+ cells (DCs) were purified by

magnetic bead separation (Miltenyi Biotec). C57BL/6 mice were

purchased from Charles River and were maintained in our animal

facility at the University of Milano-Bicocca. The in vivo experiment

has been repeated two times. All experiments were performed

using protocols approved by University of Milano-Bicocca Animal

Care and Use Committee. Mice were housed in containment

facilities of the animal facility and maintained on a regular

12:12 hour light:dark cycle with food and water ad libitum.

Supporting Information

Figure S1 Training and test sets, as used for the development of

a classifier for the predictive analysis of microarrays. All samples

were chosen based on the stimulus used for DC activation. The

classifier, the random forest, was developed on the basis of two

thirds of the samples (77 samples) and was then validated on the

remaining one third (38 samples).

Found at: doi:10.1371/journal.pone.0009404.s001 (0.36 MB TIF)

Figure S2 Selection of genes discriminating between DC

phenotypes. A) We investigated the predictive value of genes by

calculating the median level of expression for the gene in the

inflamed and non inflamed samples (LPS, PolyI:C, zymosan,

dexamethasone, IL-10 and vitamin D) and then calculating mean

expression levels for that gene. B-C) These values were used to

assess whether, for a particular stimulus (Listeria monocytogenes,

Lactobacillus paracasei, nimesulide or IFNÎ6), the expression

level of the gene concerned could be used to assign the sample to

the correct class. A score of 1 was assigned if the expression level

exceeded the mean value for inflammatory treatment or was below

the mean level for anti-inflammatory treatment. A score of 0 was

assigned in all other cases.

Found at: doi:10.1371/journal.pone.0009404.s002 (10.47 MB

TIF)

Figure S3 Selection of genes discriminating between different

DC phenotypes in vitro and in vivo. Class predictor genes were

identified on the basis of their mean levels of expression with

known stimuli and their classification performance was determined

in MT2 cells (A) and in ex vivo CD11c+ cells derived from the

spleens of mice treated with LPS (B).

Found at: doi:10.1371/journal.pone.0009404.s003 (1.16 MB TIF)

Figure S4 Primer sequences of house keeping and 54 genes

used.

Found at: doi:10.1371/journal.pone.0009404.s004 (0.03 MB

XLS)
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