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Medical training simulators have the potential to provide remote and automated
assessment of skill vital for medical training. Consequently, there is a need to develop
“smart” training devices with robust metrics that can quantify clinical skills for effective
training and self-assessment. Recently, metrics that quantify motion smoothness such as
log dimensionless jerk (LDLJ) and spectral arc length (SPARC) are increasingly being
applied in medical simulators. However, two key questions remain about the efficacy of
such metrics: how do these metrics relate to clinical skill, and how to best compute these
metrics from sensor data and relate them with similar metrics? This study addresses these
questions in the context of hemodialysis cannulation by enrolling 52 clinicians who
performed cannulation in a simulated arteriovenous (AV) fistula. For clinical skill, results
demonstrate that the objective outcome metric flash ratio (FR), developed to measure the
quality of task completion, outperformed traditional skill indicator metrics (years of
experience and global rating sheet scores). For computing motion smoothness metrics
for skill assessment, we observed that the lowest amount of smoothing could result in
unreliable metrics. Furthermore, the relative efficacy of motion smoothness metrics when
compared with other process metrics in correlating with skill was similar for FR, the most
accurate measure of skill. These results provide guidance for the computation and use of
motion-based metrics for clinical skill assessment, including utilizing objective outcome
metrics as ideal measures for quantifying skill.

Keywords: motion smoothness, cannulation, medical training simulator, log dimensionless jerk, spectral arc length,
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1 INTRODUCTION

The health of populations is directly related to a well-trained healthcare workforce; therefore,
attention must be given to training our clinical professionals efficiently and safely. There is mounting
evidence that training not only results in better clinical outcomes but also decreases costs and
procedural times [Farnworth et al. (2001)]. To facilitate training, simulators have been gaining
increasing popularity in medical education due to their ability to quantify skill in a simulated
environment while providing feedback on performance. Further, simulators often enable self-paced
learning via metrics that track the performance of trainees over time. In recent years, simulator
training has demonstrated positive results in arthroscopy, laparoscopy, and endovascular surgery
[Rosen (2008), Hafford et al. (2013), Duran et al. (2015), Goyal et al. (2016)]. Many simulators used
in these studies provided skill assessment objectively (i.e., through sensor-based metrics) and not the
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“subjective” assessment of a trainer. Simulator-based training
does not require live animal models or expert trainers and can be
done remotely. Also, studies have brought to attention the fact
that novice medical students can tend to overestimate their ability
[MacDonald et al. (2003)]. Thus, tools must be provided that
accurately and reliably help assess a trainee’s skill and move
students towards proficiency.

In the last few decades, numerous studies have reported on
various simulator-based metrics used in their simulators to
distinguish the skilled performance of a simulated medical
procedure, among which time (T) and path length (PL), the
length traversed by a medical instrument during task
performance, are frequently used. For instance, training on a
simulator has yielded significant differences in completion time
after training on the simulator [Judkins et al. (2009)] and in
completion time after 1 h of training in a clinical environment
[Pedowitz et al. (2002)]. With current simulators featuring state-
of-the-art sensors, numerous types of data can be recorded and
used for computing metrics. In a recent study using an
arthroscopic “box” simulator, time and errors were used to
successfully differentiate medical students from novices in two
tasks [Braman et al. (2015)], whereas the Fundamentals of
Arthroscopic Surgery Training (FAST) saw similar results with
the same metrics across four tasks. PL is used in various
simulators to determine significant differences among experts
and nonexperts [Pedowitz et al. (2002), Jacobsen et al. (2015)].
Metrics such as PL and T, while useful for skill assessment, are
somewhat rudimentary measures of skill since they focus on basic
aspects of clinical skill.

Dexterity has long been regarded as one of the hallmarks of a
good clinician since manymedical procedures involve precise and
deft handling of instruments. Towards quantifying dexterity,
motion smoothness metrics have been recently applied in
medical simulators. The primary facet that these metrics
capture is the “smoothness” of a motion while performing the
task, leading to an understanding of in-the-process task
performance. Since they were first proposed about two decades
ago with rudimentary metrics such as the number of peaks in the
velocity profile (Pks) or various jerk formulations, motion
smoothness metrics have evolved in their robustness for skill
assessment. Currently, two motion smoothness metrics, log
dimensionless jerk (LDLJ) and spectral arc length (SPARC),
are being explored for quantifying medical skills. One
difficulty encountered by researchers seeking to incorporate
these metrics is their dependence on computing derivatives
from often noisy sensor data. Depending on how derivatives
are computed, noise present in the raw sensor data may be heavily
magnified with each order of derivative. To remedy erratic data,
smoothing is often performed on sensor data. However,
“oversmoothing” the data can filter out important motion
features that may be necessary for skill assessment. Therefore,
it is vital to examine the effect of smoothing parameters on the
computation of motion smoothness metrics and their relative
efficacy in quantifying skill in comparison with “traditional”
metrics (e.g., T and PL). This work seeks to contribute
towards a greater understanding of these two issues.

The context of the current work is evaluating the skill of
cannulating a simulated arteriovenous (AV) fistula, a vascular
access into the patient’s bloodstream, for hemodialysis. This is an
operation that is done in dialysis clinics around the world by
nurses or patient care technicians tens of times each week.
Though this is a relatively simple procedure involving
inserting a 14-17 gauge needle into a blood vessel, the quality
of cannulation is extremely important for patient health as
multiple failures and attempts can lead to several
complications such as hematoma, infection, and aneurysm
formation that could lead to eventual death [Van Loon et al.
(2009)]. One of the main reasons for miscannulation is
infiltration: where the clinician punctures through the AV
fistula and causes blood to leak out [Brouwer (2011)]. A
frequent result of severe miscannulation is a need for surgical
treatment of the vascular access, presenting increased risk to the
patient. Hospital readmissions can lead to exposure of patients to
pathogens that present a greater risk of mortality because of
patient comorbidities. Our team has created a simulator for
practicing cannulation for hemodialysis in a safe environment
with the ability to provide objective metrics based on motion,
force, and time data [Zhang et al. (2019), Liu et al. (2020a), Liu
et al. (2020b)]. In this study, data from nurses and patient care
technicians with various degrees of experience are analyzed for
performance characteristics on the cannulation simulator, which
yields insights into what constitutes skilled cannulation for
hemodialysis.

In addition to systematically quantifying the strength of
motion smoothness metrics for cannulation skill, another key
contribution of this study is the use of an objective metric to
measure the outcome of cannulation. Our simulator features
relevant hardware and software to track whether the needle is
inserted into the fistula accurately (i.e., for blood withdrawal) and
if, during the process, any degree of infiltration was encountered
[Liu et al. (2020b)]. By using an outcome metric that is objective
regarding the success of the task, we reduce or eliminate the need
for other, more “traditional”measures used as surrogates for skill
that may inaccurately appraise skill. Two such commonly used
measures are years of experience (or the number of cases
performed, e.g., in the case of surgeons) and the rating of
experts regarding the performance of a task/procedure. Both
of these metrics have inherent limitations. In the case of
clinical experience, when this measure is used as a surrogate
for skill, the implicit assumption is that greater experience results
in improved skill; however, this may not be the case as some
studies suggest [Hung et al. (2019), Liu et al. (2021)]. By
classifying expertise based on clinical experience, we may be
inaccurately estimating skill. The other metric commonly used to
measure skill is a Likert-scale rating assessed by an expert who
witnesses the task being performed. While there is value to these
evaluations by experts, the limitations of such a method include
the inherent subjectivity of raters and the fact that raters often
give one “global” rating for the whole task. In this work, we not
only introduce a new outcome metric but also provide insights
into how this metric compares with both traditional measures
used to gauge skill.
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2 MOTION SMOOTHNESS

In various specialized as well as everyday tasks, precise and
controlled motion is required for successful execution. Some
domains where this is particularly the case are sports, surgery,
and rehabilitation. To measure skilled performance in these cases,
one cannot simply rely on metrics like time to completion or
economy of motion. While these have been proven to be useful to
assess skill inmany cases, thesemetrics are not designed to quantify
the smoothness (or lack thereof) of movement since they do not
measure in-the-process motion. As an example, PL, a commonly
used metric, only measures the total length of the motion traversed
during amotion; it does not quantify how smooth that motion was.
Some studies demonstrate moderate utility for Pks to examine
smoothness of motion, with limited usage due to lack of
generalizability and robustness [Balasubramanian et al. (2012),
Balasubramanian et al. (2015), Estrada et al. (2016), Gulde and
Hermsdörfer (2018a)]. In the following subsections, we detail more
advanced formulations of motion smoothness metrics that are
based on higher-order derivatives of position data. It should be
noted that these metrics have evolved in their complexity and
applicability since they were first devised for use in rehabilitative
treatments [Flash and Hogan (1985)]. We discuss the particular
strengths and weaknesses of each metric along with their use cases.

2.1 Jerk
In an ideal, smooth motion, acceleration would not have any
discontinuities, as could be determined by the derivative of
acceleration, jerk. This notion has served as the key idea for
quantifying motion smoothness. However, computing “pure”
jerk is too inconsistent to be used as a measure of motion
smoothness [Hogan and Sternad (2009)]. For example, some
studies did not detect significant differences in jerk values among
motor movements in unhealthy and healthy patients [Goldvasser
et al. (2001), Wininger et al. (2009)], while other studies
demonstrate otherwise [Teulings et al. (1997), Smith et al.
(2000), Rohrer et al. (2002)]. From these studies, it was
observed that jerk should be normalized as it depends heavily
on movement duration and range of motion and that minimizing
jerk is essential for smooth motion quantification.

Flash and Hogan (1985) proposed minimizing the cost
function of jerk by squaring and integrating the value as a
viable metric for motion smoothness This measure, known as
integrated square jerk, and others based on this measure were
used in several studies to quantify smooth motion [Smith et al.
(2000), Goldvasser et al. (2001), Rohrer et al. (2002), Wininger
et al. (2009)]. Eventually, these metrics were termed dimensioned
jerk metrics since they rely on the duration and amplitude of
movement. Later, Hogan and Sternad (2009) created a new
metric that eliminated such reliance. This metric, known as
dimensionless jerk, accounted for measuring the intermittency
in motion regardless of its duration or amplitude. Intermittency
in a discrete motion can arise from the lack of controlled
movement, characterized by a period of deceleration preceding
a point of acceleration, or can be due to finite periods of no
motion from uncertainty. Balasubramanian and colleagues noted
that for a motion smoothness metric to be valid, it must have the

following features: it must be dimensionless, monotonically
responsive to motion, sensitive to changes in movement, and
feasible for computation [Balasubramanian et al. (2012)].

Dimensionless jerk (DLJ) has been used in several recent studies
to assess clinical skills. In one recent study, participants performed a
pegboard placement task, with DLJ able to differentiate among
surgeons and nonsurgeons as well as among the tasks tested
[Ghasemloonia et al. (2017)]. Further, DLJ was also employed in
a simulated shoulder arthroscopy test, where significant differences
between experts and novices were evidenced in DLJ values
[Kholinne et al. (2018)]. This metric has also been used in a
Fundamentals of Endovascular Skills (FEVS) trainer [Estrada
et al. (2016), O’Malley et al. (2019)], where it differentiated
between novice and expert skill. One notable limitation, however,
is that the values for DLJ vary widely, differing by the thousands
between users in some cases. To eliminate this wide variability, the
use of the natural log of dimensionless jerk (LDLJ) has been
proposed [Balasubramanian et al. (2012), Balasubramanian et al.
(2015), Gulde and Hermsdörfer (2018b), Melendez-Calderon et al.
(2020)]. Studies report more robust measurements and better
sensitivity of this metric to the physiological hand motion range.
Balasubramanian and others emphasize that LDLJ is often affected
by a signal noise since calculating jerk involves computing the third
derivative [Balasubramanian et al. (2012)]. This observation leads to
one of the research questions addressed in this study.

2.2 Spectral Arc Length
In 2012, a new metric to quantify motion smoothness that was
more robust to noise was formulated, known as spectral arc
length (SPARC) [Balasubramanian et al. (2012),
Balasubramanian et al. (2015)]. The metric is derived from the
arc length of the amplitude of the frequency-normalized Fourier
magnitude spectrum of the velocity profile. This metric is based
on the observation that smooth hand movements will yield small
magnitudes of low-frequency profiles, whereas “unsmooth”
movements will yield large magnitudes of different higher-

TABLE 1 | List of commonly used process metrics for evaluating skilled motion.
Several previous studies have used these metrics for various clinical
applications.

Metric Equation

Time t2 − t1

Path length ∫t2
t1

dX
dt

Peaks in the velocity profile Σvmaxima

Integrated square jerk −∫t2
t1
(d3x

dt3)2

Dimensionless jerk − T5

PL2 ∫t2
t1
(d3x

dt3)2

Log dimensionless jerk −ln
∣∣∣∣∣∣∣∣∣∣∣∣ T5

PL2 ∫t2
t1
(d3x

dt3)2
∣∣∣∣∣∣∣∣∣∣∣∣

Spectral arc length −∫ωc

0
⎡⎣( 1

ωc
)2

+ ( dV̂(ω)
dω )⎤⎦1

2

dω;

V̂(ω) � V(ω)
V(0)
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frequency profiles. The larger the magnitudes of different
frequency movements are, the more the arc length of the
profile increases. This idea is analogous to minimizing the cost
function of jerk. Since this metric relies on analyzing motion via
the frequency domain, it is more robust to noise and sensitive to
changes in smaller movements [Balasubramanian et al. (2012)].
SPARC is being increasingly used to measure skilled or smooth
motion, including in the previously mentioned FEVS studies
[Duran et al. (2015), O’Malley et al. (2019), Belvroy et al.
(2020)], in which it consistently demonstrates strong
correlations to skill between experts and novices. In this study,
we systematically compare the efficacy of both SPARC and LDLJ
for quantifying cannulation skill—another clinical skill that
requires smooth motion. A summarized list of metrics is
shown in Table 1.

3 MOTIVATION OF STUDY

In this study, we examine three research questions relevant to the
use of motion smoothness metrics for clinical skill assessment
and training. We present each question, followed by a rationale
motivating the question.

To summarize this section, the three research questions
addressed in this work are as follows:

• Which skill indicator metric best accounts for dexterity
measures?

We define two types of metrics in this study: skill indicator
metrics and process metrics. Skill indicator metrics [e.g., global
rating sheet (GRS)] seek to appraise the skill of clinicians while
process metrics (e.g., LDLJ) quantify certain characteristics of task
performance. To better differentiate between the two, process
metrics are abbreviated with an italicized font, whereas skill
indicator metrics are abbreviated with a bold font. We
introduce a novel metric for objectively assessing skill by
determining the degree of success in cannulation task outcome.
However, of the three skill indicator metrics used in this
study—GRS, clinical experience, and task outcome—which one
best characterizes clinical skill? The answer to this question has
important implications in the way clinical skill is classified in
studies. Further, many metrics are task-specific by definition. That
is, they are effective to the degree that they accurately reflect the
task. Motion smoothness measures are known to be task-specific:
motion smoothness values indicative of skill are not equivalent
across different tasks [Balasubramanian et al. (2012)]. Thus, we
examine which of the three skill indicator metrics is best correlated
with the suite of process measures in this study. Another aspect of
our study about the way skill is classified needs to be mentioned
here. In many studies, skill is binarized as either expert or novice,
greatly simplifying the notion of skill. Our work denotes a skill as a
continuum wherein each skill indicator metric can take on a range
of values, thus enabling a fine-grained classification of skill.

• Does the degree of smoothing of sensor data significantly
affect the computation of motion smoothness metrics?

Studies that involve assessing or training clinical skills on
simulators most often use data from sensors to provide feedback
to trainees. To extract motion smoothness metrics, however, the
inherent noise in sensor data poses a problem while computing
higher-order derivatives. As such, it is important to understand
the role of data smoothing—the type and the degree of smoothing
used—on the computation of metrics. To our knowledge, no
study thus far has presented the effect of the degree of smoothing
for measuring clinical skill. A related study demonstrated that, for
computing SPARC and PL, optimal filtering was obtained for a
specific window span range and for a specific type of filter [Gulde
and Hermsdörfer (2018a)]. This study, however, did not include
computation of LDLJ (or related metrics) wherein obtaining
stable higher-order derivatives of position is critical for
accuracy and interpretability. The Savitzky–Golay (SG) filter is
an established and widely used method for derivative estimation
from sensor/noisy data. The SG filter demonstrates substantially
superior results than discrete finite difference methods for
computing higher-order derivatives [Ahnert and Abel (2007)].
Thus, this study explores degrees of SG smoothing for metric
computation. Figure 1 illustrates the undesirable effect of noise
on the computation of higher-order derivatives motivating the
need for this study.

• Are motion smoothness metrics superior to other process
metrics in correlating with skill indicator metrics?

In studies seeking to assess clinical skill in a simulator or
otherwise, a suite of metrics is typically employed. However, are
some metrics more powerful than others in discerning clinical
skills? If so, this might have implications for the design of hardware
as well as in creating training curricula that involve the most
sensitive of metrics. For example, a study on a robotic laparoscopic
skill trainer employed a few rudimentary metrics to assess
performance [Judkins et al. (2009)] and reported significant
differences between the five medical students and five
laparoscopic surgeons who participated. In contrast, several
studies utilize rudimentary metrics and more complicated
motion smoothness metrics to distinguish between skill levels
[Gulde and Hermsdörfer (2018b), Kholinne et al. (2018),
Belvroy et al. (2020)]. The argument commonly made for using
more sophisticated metrics is either that they grasp an aspect of
skill not captured by rudimentary metrics or that they do it better.
In this study, we examine if any of the process metrics, including
both the more sophisticated motion smoothness metrics and the
rudimentary metrics, are superior to the other process metrics in
correlating with the cannulation skill.

4 MATERIALS AND METHODS

4.1 The Cannulation Simulator
This study collected and analyzed data from clinicians on a novel
simulator for hemodialysis cannulation [Zhang et al. (2019), Liu
et al. (2020a), Liu et al. (2020b)]. The simulator comprises four
synthetic arteriovenous (AV) fistulas, each outfitted with a
vibration motor to simulate turbulent blood flow (termed
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“thrill” by clinicians) in a fistula. Figure 2 illustrates a sketch of
the simulator hardware and the experimental setup. There are
four sensors present in the system: an electromagnetic (EM)
position sensor (trakSTAR, Northern Digital Inc.) located inside
the needle; a force sensing system to record forces applied by the
fingers (FingerTPS, Pressure Profile Systems Inc.); the Leap
Motion sensor (Ultraleap Inc.) for tracking finger position;
and infrared (IR) emitters and detectors for determining
whether the needle is inside the fistula. The Leap Motion

sensor is affixed above the simulator while the FingerTPS
sensors are fit onto the user’s thumb, index, and middle
fingers. The IR sensors are embedded within the needle tip
and each fistula located in the simulator. An external camera
(RealSense, Intel Inc.) records video of participants performing
the cannulation task.

Custom software was written in C++ for integrating all sensors
to enable data collection at sensor-specific sample rates [Liu et al.
(2020b)].

FIGURE 1 | The plots here follow a simulated movement profile and a corresponding movement profile with noise added to illustrate the effect of noise on
computing higher-order derivatives. The noise adds peaks averaging 0.06 mm, as seen in the magnified position plot. Subplot (A) shows the position profile with a
magnified view of the clean signal overlaid with the noisy signal. The other subplots illustrate the results of computing derivative estimates for velocity [subplot (B)],
acceleration [subplot (C)], and jerk [subplot (D)] at each step. As can be noted, even a small amount of noise in the position profile causes a relatively noisy jerk
profile, calculated here through a third-order Savitzky–Golay filter with a window span of five.

FIGURE 2 | Illustrated sketch of the simulator with a few of the various sensors alongside a physical example of subject receiving flashback. A needle approaches
one of the four fistulas. tentry occurs when the needle punctures the fistula.
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4.2 Experimental Design
All participants provided informed consent to participate in the
study. Data were recorded from 52 participants comprising of
nurses, nurse practitioners, and dialysis technicians ranging from
0 to 38 years of experience. These participants performed four
cannulation attempts on each of the four fistulas in the simulator
for a total of 16 trials per participant. Data on 53 trials were
excluded due to either LED failure, lack of expert rating, failure to
complete the trial, or data saving errors, resulting in a total of 779
viable trials for analysis. Before performing the task, each
participant filled out a questionnaire that included
participants’ cannulation experience. Once the questionnaire
was answered, participants were debriefed about the
experimental procedure using a self-advanced PowerPoint
presentation. Following this, participants were cannulated on
the simulator following clinical guidelines as closely as
possible. As such, for each attempt, only one (out of the four)
fistula’s vibration motor was activated randomly. The subject was
instructed to first palpate the skin surface to locate the correct
fistula (i.e., the fistula with a “thrill”). They then attempted to
insert the needle into the fistula to attempt successful cannulation.
If the needle tip successfully entered the fistula, a red LED located
inside the cannula was turned on to simulate blood flashback
visible in a clinical setting. Following standard guidelines, if a
stable blood flashback is procured, the participant is instructed to
“level out” (lower the angle of the needle) to allow for taping of
the cannula during dialysis.

4.3 Data Segmentation
Sensor data were collected at a rate of 100 Hz and synchronized in
Visual Studio 2017 (Microsoft Inc.), and data segmentation and
metric calculations were conducted through MATLAB R2020a
(MathWorks Inc.). We computed the position of the needle tip
based on the location of the EM sensor inside the needle and
needle geometry using a pivot calibration. Following the
procedure outlined in Liu et al. (2020b), data were extracted
and segmented into specific cannulation subtasks: insertion,
flashback, and leveling out (Figure 3). In this figure, a plot of
x, y, and z needle positions of a sample cannulation trial is seen.
The trial is separated with a dotted line and its subtask is seen in
the title. Each subtask also has a corresponding visual sketch
above the segmented plot. By comparing the z-position of the
electromagnetic sensor with the height of the surface of the skin,
we determined the timestamp at which the needle punctured the
surface of the skin (denoted as tentry). Movement data were
segmented from tentry until the end of the task (tend). This
segmentation also allowed for multiple reinsertion attempts
that a participant may have used. As has been noted in studies
that use motion smoothness metrics, it is essential to constrain
the task since motion smoothness metrics are task-dependent.
That is, without a consistent start and end point, evaluation of
motion smoothness profiles would be meaningless. Once these
data are segmented, derivatives are approximated through a
third-order (SG) smoothing filter. To compare various degrees
of smoothing, SG window spans of minimum (5 samples), a
fourth of a second (25 samples), a half of a second (51 samples),
1 s (101 samples), and 2 s (201 samples) were used. A flowchart

detailing the data segmentation and the metrics calculation
process is shown in Figure 4.

4.4 Metrics
4.4.1 Process Metrics
We define dexterity process metrics calculated in our study as
follows:

• Time (T): The total time from tentry to tend of the task.

T � tend − tentry. (1)

• Peaks (Pks): The number of local maxima (peaks) in the
velocity profile, computed using the built-in MATLAB
function.

Pks � findpeaks(dX
dt

), (2)

X �
����������
x2 + y2 + z2

√
. (3)

• Path length (PL): The sum of Euclidean distances between
points traversed by the needle tip.

PL � ∫tend

tentry

dX
dt

(4)

• Log dimensionless jerk (LDLJ): The natural log of jerk
integrated and squared.

LDLJ � −ln
∣∣∣∣∣∣∣∣∣ T5

PL2
∫tend

tentry
(d3X
dt3

)2∣∣∣∣∣∣∣∣∣. (5)

• Spectral arc length (SPARC): As defined in
Balasubramanian et al. (2012), SPARC is the arc length of
the Fourier transform of the velocity profile, from the
provided MATLAB code.

SPARC � −∫ωc

0

⎡⎢⎢⎣( 1
ωc
)2

+ ( dV̂(ω)
dω

)1
2⎤⎥⎥⎦dω; (6)

V̂(ω) � V(ω)
V(0) (7)

4.4.2 Skill Indicator Metric Definition
For data analysis, we created three statistical models, one for each
skill indicator metric, to examine their effectiveness in
quantifying skill. A general sense of the descriptive statistics
can be gleaned from Figure 5. We defined the three skill
indicator metrics as follows:

• Cannulation experience (Exp): Subjects were asked to fill
out a questionnaire that included the amount of clinical
cannulation experience the participant had. Our
participants’ years of experience cannulating ranged from
0 to 38 years, with a mean of 11 years and a standard
deviation of 8.6 years.
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• Global rating sheet (GRS): A commonly used method to
determine skill level in various medical fields is by experts
observing and rating the performance of a task on a Likert-
scale questionnaire. Participants were rated by one of three
experts on a Likert scale from 1 to 7 on the following aspects:
palpation skill, needle holding, needle movement, flashback
quality, and overall quality. Ignoring palpation skill, as it was
deemed unrelated to the motion of the needle, we summed
the scores of the remaining categories for an overall rating
forGRS. Summed expert scores ranged from 16 to 35, with a
mean of 28 and a standard deviation of 6.

• Flash ratio (FR): This outcome metric was devised as an
objective measure of cannulation task completion. FR is
defined as the ratio of the sum of total time with flashback to
the time from the first flashback Liu et al. (2020b). If
flashback stops for any period of time before tend , the

subject’s score is negatively affected, whereas if no
flashback occurs, the subject’s score is 0. It is
mathematically expressed as follows:

FR � ∑(tflash end − tflash begin)
tend − tflash

(8)

Subjects’ scores ranged from 0 to 1, with a mean of 0.79 and a
standard deviation of 0.30.

4.5 Statistical Analysis
Linear regressions were performed individually for each process
metric per each skill indicator metric. Due to the inherent skew of
the process metrics, all but LDLJ were log-transformed to enable
regression modeling. After log transformation, all process metrics

FIGURE 3 | Steps of needle insertion illustrated alongside an example of trial position data. The images show the needle approaching the fistula, entering the fistula
and receiving flashback, and leveling out the needle. x, y, and z needle positions during these stages are presented in the bottom row plot. The position data are
segmented by tentry (the first dotted line) and tflashback (the second dotted line).

FIGURE 4 | Flowchart presenting how data are collected and processed and how the process metrics are calculated.
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were standardized to have zero mean and unit variances to allow
for direct comparison of estimated coefficients. We then
regressed each skill indicator metric onto each process metric,
recording the estimated slopes and associated standard errors.
This process was repeated for each window size. After model
fitting, pairwise comparisons between estimated coefficients were
made. The t-test was chosen for comparing differences between
parameters due to ease of interpretation, and since the number of
comparisons was large, Tukey’s multiple comparison adjustment
was computed for assessing significance at the α � 0.05 level based
on the equation below. This procedure was repeated comparing
association with skill between the various window spans for LDLJ
and SPARC individually.

Confidence interval for Tukey’s method

� β1,i• − β1,j• ±
qa;r,n−r�

2
√ σ̂ε

��
2
n

√
i, j � 1, . . . r; i≠ j.

(9)

where α corresponds to the significance level 0.05, β is the
regression coefficient, q denotes the critical value of the
studentized range distribution, n corresponds to the total
number of observations (779), r is the total number of groups
(5 for each analysis), and i and j are group indicators.

5 RESULTS

The first part of our analysis examined which of the skill indicator
metrics best accounted for the dexterity process metrics. We
begin by summarizing model fits associated with each regression
model. The absolute value of the Pearson correlation coefficient

between each process metric and skill indicator metric across all
the window sizes and the mean of R2 for all regression models are
presented in Figure 6. It can be noted that FR has a much higher
fit than GRS (approximately 25 vs. 8%) and that Exp has an
extremely poor model fit (about 0.5%). It is also worth noting that
none of the process metrics are very strongly correlated with Exp
(as is evidenced in subplot (c) in Figure 7, which demonstrates
each process metric’s correlation to the subplot’s indicator

FIGURE 5 | Individual distributions of each skill indicator metric. Subplot (A) shows the distribution of FR values observed among the 779 trials. Subplot (B) shows
the distribution of the 49 GRS participant values. Subplot (C) shows the distribution of 49 Exp values for the participants.

FIGURE 6 | R2 coefficient fits of each skill indicator metric are plotted per
window span. The averages of these values are presented in the inset table.
The objective outcome metric, FR, best accounted for the process metrics
used in the study to measure skill.
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metric). Therefore, any conclusions made for Exp are not reliable
owing to the poor fit. The most salient observation from this
analysis is the superiority of FR, the objective outcome metric, in
accounting for dexterity process metrics.

The second question we examined in this work is if the degree of
smoothing affected the computation of LDLJ and SPARC, the two
motion smoothnessmetrics used here.Figure 8 reveals the changes in
the values of LDLJ and SPARCwhen plotted as a function of window
span (indicative of the degree of smoothing). This result indicates that
motion smoothness values are affected by the degree of smoothing.
However, does this change result in a significant difference in the

correlation of LDLJ or SPARC with each skill indicator metric? This
question is important in the context of this study which seeks to
investigate the power ofmetrics to quantify skill. As seen in Figures 9,
10, the window size does not affect the correlation of LDLJ and
SPARC with FR. Even the “noisiest” span of five correlated well with
FR and the other spans. For GRS, however, a window span of five is
significantly less associated with GRS than the other window spans
for both LDLJ and SPARC. That is, when minimal smoothing is
applied, metric values do not correlate with GRS as well.

The third research question we examined is if motion
smoothness metrics are superior to other process metrics in

FIGURE 7 |Correlation coefficients of each process metric with respect to each skill indicator metric. The coefficients are plotted across all window spans. This plot
demonstrates the effect of the degree of smoothing on the strength of association between process and skill indicator metrics.

FIGURE 8 | Distributions of LDLJ [subplot (A)] and SPARC [subplot (B)] values for each window span. An asterisk indicates that a t-test between two distributions
demonstrated statistical significance.

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 6250039

Singh et al. Metrics for Cannulation Skill Assessment

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


correlating with skill indicator metrics. Figures 11–13 show the
confidence intervals of the significant differences of association
with skill among the process metrics across the five window spans
for each skill indicator metric. It is important to note that the
formulations of PL, T, and Pks have a negative modifier added to
the value to enable comparisons between the slopes. As a result, a
decrease in any of the process metric values denotes a worse
performance. Our pairwise comparison results demonstrate that
no process metric is significantly better than any other metric in
association with FR. This holds true across all window spans.
While some significant differences were observed in association
with GRS, we conclude that these differences are erratic, since
neither of the process metrics demonstrates consistency in
superior association with the other process metrics across
window spans. Note from the earlier discussion that GRS has
a low R2 of about 8%. PL indicates a consistently higher
association with Exp in comparison with the other metrics.
However, due to the model’s exceptionally poor fit, it is
difficult to make any meaningful assertions regarding Exp.

6 DISCUSSION

6.1 Which Skill Indicator Metric Best
Accounts for Dexterity Measures?
Methods for classifying the level of skill must be robust for
effective application in medical training simulators. In this
study, we present an objective outcome metric for assessing

the degree of success in a simulated clinical task and examined
its power for quantifying skill in comparisonwith themore generally
used skill indicator metrics. In addition, unlike many studies that
binarize expertise into “expert” or “novice,” we collected years of
clinical experience as a finer-grained measure for analysis. This
detail in our experimental design enabled the investigation of the
research questions presented in this work. From our results, the
objective outcome metric FR better accounted for the process
metrics used in the study to capture skilled movement.
Traditionally used metrics as surrogates for clinical skill
demonstrated inferior performance to quantify dexterity.
Furthermore, the correlation coefficients for each process metric
in Figure 7 drastically changed in association with each skill
indicator metric, with FR having the best correlations.

In Figure 6, the overall fit for each indicator metric, although
comparatively different, is relatively low (about 25% for FR). This
can be attributed to the process metrics examined accounting
primarily for dexterity. We would likely see improvements in
model fit if other aspects of skill, such as force, needle positioning
and angle, and decision making, are measured and incorporated.
Despite being a regularly used skill indicator metric in the field of
medical skills training, Exp performs poorly for the cannulation
task, accounting for only about 0.5% of the variation in the model.
It is important to take into account the current task: although
cannulation is an important medical procedure, it is not as
complicated and multifaceted as surgery. As a result, it is
possible that simply having experience in cannulation does not
necessarily result in increased skills for successful cannulation.

FIGURE 9 | Confidence intervals of each skill indicator metric’s association with LDLJ between the tested window spans. If the confidence limits are both positive,
the minuend is more associated with the corresponding skill indicator metric, and vice versa if the confidence limits are both negative. If the confidence interval passes
through zero, there is no significant difference in the association.
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We can surmise that Exp is not a useful measure of skill in our
cannulation simulator.

GRS yields a better fit than Exp, but still relatively poor at
about 8.2%. This increase is likely due to the expert’s knowledge
of skill as he or she rates canulation performance by direct
observation. This metric, therefore, provides a better
assessment of skill than Exp. Nevertheless, the fit is still
relatively small and can be attributed to two primary reasons:
(1) GRS evaluates each subject as a whole, rather than on a trial-
by-trial basis, and (2) expert raters lack true knowledge of the
success of a task frommere observation. In contrast, FRmeasures
the true success of the trial and, consequently, sees a significant
improvement in model fit at about 25%. This result may
encourage the formulation of more outcome metrics to
measure the degree of success in a clinical task objectively.
Some examples of this are measuring the leakage after a
surgeon sutures a vascular anastomosis or measuring the
degree of motion after orthopedic surgery. Such metrics may
yield a truer measure of skill, potentially impacting skill
assessment and training in a positive way.

6.2 Does the Degree of Smoothing
Significantly Affect the Computation of
Motion Smoothness Metrics?
As mentioned earlier, there has been some discussion in recent
literature on the relative benefits of SPARC and LDLJ in

measuring motion smoothness. One limitation pointed out is
LDLJ’s sensitivity to noise due to its use of the third derivative of
position. In comparison, SPARC uses velocity, requiring only one
derivative of position with respect to time. The effects of
derivative computation and sensor data smoothing have not
been systematically explored in the literature. We hypothesized
that the degree of smoothing affects the computation of both
motion smoothness metrics. As seen in Figure 8, both LDLJ and
SPARC see significant differences in means as a function of
window span. Nevertheless, as also evidenced in our results,
the significant differences of means between window spans did
not affect the discerning power of motion smoothness metrics in
our task, calculated using correlation coefficients and regression
slope comparisons across a variety of SG window spans. In
comparison with the other process metrics, LDLJ and SPARC
see the largest increase in correlation when moving from a
window span of 5 to 25 for each skill indicator metric in
Figure 7. This is most likely due to the noise present in
sensor data not being adequately filtered in the small window
span. After the window span of 25 (some smoothing), the stability
of LDLJ and SPARC is similar.

When comparing the effect of the degree of smoothing (via
window spans) on the strength of correlation between indicator
metrics and motion smoothness metrics (Figures 9, 10), we see
no significant differences in association with FR for both LDLJ
and SPARC across all window spans. As a result, the level of
smoothing does not ultimately affect the motion smoothness

FIGURE 10 | Confidence intervals of each skill indicator metric’s association with SPARC between the tested window spans. If the confidence limits are both
positive, the minuend is more associated with the corresponding skill indicator metric, and vice versa if the confidence limits are both negative. If the confidence interval
passes through zero, there is no significant difference in the association.
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metrics’ level of association with the objective outcome metric in
our study. On the other hand, a window span of five is
significantly less associated with GRS than all other window
spans for both motion smoothness metrics. Most of these
differences become insignificant as the degree of smoothing
increases. This is likely due to the noise present in the data at
window span five, causing motion smoothness metric values to be
more erratic. These results follow the trend that a moderate
amount of smoothing, particularly when calculating derivatives,
is important for more robust results. We refrain frommaking any
claims for Exp since this skill indicator metric has a poor
model fit.

There are few studies examining derivative formulations and
smoothing for motion smoothness calculations present in the
literature. An in-depth study on the effects of noise on various
motion smoothness metrics raises concern with LDLJ’s
sensitivity to noise, though it was deemed not as sensitive as
Pks or DLJ [Balasubramanian et al. (2012)]. In contrast,
Balasubramanian et al. (2012) presented SPARC as a viable
metric due to its robustness to noise. However, motion
smoothness metrics are task-dependent; a recent study
reported that SPARC may not be as effective as LDLJ in a
specific application [Melendez-Calderon et al. (2020)]. The
choice of motion smoothness metrics used in a study should

depend on the task performed. Our work also brings to light the
importance of the quality of smoothing. Gulde and Hermsdörfer
(2018a) reported that minimal window spans yielded the largest
relative deviations, whereas window spans between 280 and
690 ms had the lowest relative deviations. One limitation of this
study is that the effect of derivative calculations was not
examined since jerk-based motion smoothness metrics were
not computed. To examine the effects of smoothing parameters
on derivative approximations, we chose the SG method due to
its superiority over finite difference methods [Ahnert and Abel
(2007)]. We saw no significant differences in association with
skill after a reasonable degree of smoothing for LDLJ with the
highest fit skill indicator metric, FR. Similar to Gulde and
colleagues’ findings, for LDLJ and SPARC, the window span
of five had significantly less association with GRS than the other
window spans. Consequently, a reasonable level of smoothing
enables meaningful use of motion smoothness metrics for skill
assessment.

6.3 Are Motion-Based Process Metrics
Superior in Correlation to Skill?
When LDLJ and SPARC are used alongside other metrics like T
and PL in the literature, there is a lack of direct comparison

FIGURE 11 | Confidence intervals of pairwise comparisons of process metrics with respect to FR plotted against all tested window spans. To visualize the
relationships between effects sizes of process metrics and window spans, a line is plotted through the point estimates. A horizontal line is drawn through 0. If the
confidence limits are both above zero, theminuend ismore strongly associated with FR; if the limits pass through zero, the differences are insignificant; and if the limits are
below zero, the subtrahend is more strongly associated with FR.
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between the relative powers of these metrics to discern skill.
For example, PL was unable to demonstrate a significant
difference between novices and experts, while both SPARC
and idle time distinguished between the groups [Belvroy et al.
(2020)]. One reason for this may be that PL may not
effectively quantify surgical skill in the FEVS simulator.
Even so, is there a benefit to using one metric over another
(e.g., SPARC over idle time) if they can both determine
significant differences in the groups? Similarly, when
comparing hand movements of elderly vs. young patients,
though all metrics demonstrated significance, Pks normalized
per meter demonstrated a higher multiple linear regression
R-squared than SPARC [Gulde and Hermsdörfer (2018b)].
However, in another study on the FEVS, Pks did not have a
significant correlation to skill, whereas DLJ and SPARC did,
with SPARC having the higher correlation to skill out of the
two [Estrada et al. (2016)]. In our results, T had a higher
correlation to FR, as expected due to the nature of how FR is
formulated. Nonetheless, PL had similar or higher
correlations when compared to SPARC and LDLJ.

By directly comparing how the process metrics associate
with skill, we desired to determine if any process metric was
more significantly superior in association with the skill to each

other due to their varying results. As observed in Figure 11,
there are no significant differences in the pairwise comparisons
of the strength of the process metrics’ association with FR.
Note that FR has the highest reliability for assessing skill in the
study. In contrast, significant differences in association with
GRS were observed in some cases in Figure 12. The differences
were generally seen when the degree of smoothing was
minimal (window span � 5). One may infer from this that,
after some smoothing is applied to position sensor data, both
motion smoothness metrics may have a similar ability to
discern skill. This result is reiterated by noting the
correlation plots in Figure 7. Correlation coefficients are the
least at the lowest window span with the only minimal
smoothing (and the greatest amount of potential noise).
After some smoothing, however, the correlation coefficients
become relatively stable.

Based on our results, we conclude that having a strong
measure of skill like the objective outcome metric FR yielded
the most stable set of process metric comparisons. GRS, on the
other hand, yielded less explainable results as a function of
metrics and degree of smoothing. One key finding of this
work is the need for a robust amount of smoothing and an
accurate metric for measuring skill outcome.

FIGURE 12 | Confidence intervals of significant differences of pairwise comparisons of process metrics with respect to GRS plotted against all tested window
spans. A line is drawn through the intercepts to better visualize the trend of the confidence intervals of eachwindow span increase. If the confidence interval is above zero,
the minuend is more strongly associated with GRS; if it passes through zero, the differences are insignificant; and if it is below zero, the subtrahend is more strongly
associated with GRS.
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Our study does not test whether each process metric can
predict the value of each skill indicator metric, but rather each
process metric’s association with that skill indicator metric.
Future work involving said prediction models could provide
insight into the superiority of the process metrics. It is also
important to take into account the dependence of task
constraint of motion smoothness metrics when making these
analyses: the cannulation procedure consists of a simple motion
from tentry to tend . The task may not be complex enough to see
these differences in association with skill. Another aspect we wish
to highlight is that the efficacy and superiority of motion
smoothness metrics depend on the task being studied. As
mentioned previously, motion smoothness metrics capture the
dexterity of hand movements, examining precise movements.
Our cannulation simulator task does not require precise motion,
possibly causing the lack of significant difference in process
metric association with FR. Previous studies report varying
results on process metrics differentiating between experts and
novices, yet motion smoothness metrics tend to consistently
demonstrate significant differences if effective calculations are
performed. Therefore, despite their task dependency, we can
conclude that motion smoothness metrics are at least as
effective in their skill evaluation as other process metrics.

Future work on a simulator involving testing across tasks
requiring different hand movements would allow for a study
on the robustness of motion smoothness metrics vs. other process
metrics.

6.4 Conclusion
Clinical skills training is critical for sustaining an efficient
workforce. The use of remote and automated simulators for
skills training is especially appealing. In this study, we
demonstrate that commonly used skill indicator metrics may
be limited in their assessment. In contrast, an objective metric for
measuring the degree of task success proved to be a superior skill
indicator metric, exhibiting stronger goodness of fit to process
metrics. Moreover, the lack of significant differences in
association in the process to FR, combined with the much
higher model fit, may demonstrate the robustness of this
measure. Our results also demonstrated that the degree of
smoothing of sensor data affects the computation of motion
smoothness metrics under certain conditions. These results
directly inform the design and use of simulator-based training
methods. The flexibility of training simulators is an excellent asset
towards effective training of medical practitioners and students,
but it is vital to optimize simulators for efficient use in remote,

FIGURE 13 | Confidence intervals of significant differences of pairwise comparisons of process metrics with respect to Exp plotted against all tested window
spans. A line is drawn through the intercepts to better visualize the trend of the confidence intervals of eachwindow span increase. If the confidence interval is above zero,
the minuend is more strongly associated with Exp; if it passes through zero, the differences are insignificant; and if it is below zero, the subtrahend is more strongly
associated with Exp.

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 62500314

Singh et al. Metrics for Cannulation Skill Assessment

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


automated assessment without the need for expert raters or on-
site training.
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