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Mutation induced infection waves 
in diseases like COVID‑19
Fabian Jan Schwarzendahl1*, Jens Grauer1, Benno Liebchen2 & Hartmut Löwen1

After more than 6 million deaths worldwide, the ongoing vaccination to conquer the COVID‑19 disease 
is now competing with the emergence of increasingly contagious mutations, repeatedly supplanting 
earlier strains. Following the near‑absence of historical examples of the long‑time evolution of 
infectious diseases under similar circumstances, models are crucial to exemplify possible scenarios. 
Accordingly, in the present work we systematically generalize the popular susceptible‑infected‑
recovered model to account for mutations leading to repeatedly occurring new strains, which we 
coarse grain based on tools from statistical mechanics to derive a model predicting the most likely 
outcomes. The model predicts that mutations can induce a super‑exponential growth of infection 
numbers at early times, which self‑amplify to giant infection waves which are caused by a positive 
feedback loop between infection numbers and mutations and lead to a simultaneous infection of 
the majority of the population. At later stages—if vaccination progresses too slowly—mutations can 
interrupt an ongoing decrease of infection numbers and can cause infection revivals which occur as 
single waves or even as whole wave trains featuring alternative periods of decreasing and increasing 
infection numbers. This panorama of possible mutation‑induced scenarios should be tested in more 
detailed models to explore their concrete significance for specific infectious diseases. Further, our 
results might be useful for discussions regarding the importance of a release of vaccine‑patents to 
reduce the risk of mutation‑induced infection revivals but also to coordinate the release of measures 
following a downwards trend of infection numbers.

The COVID-19  pandemic1,2 has led to more than 500 million  infected3 and more than 6 million  death3 worldwide 
until the beginning of Mai 2022. During the course of the pandemic the SARS-CoV-2 virus has mutated into 
various different  strains4,5, some of which have led to an increased infection  rate6–8 as compared to the original 
 strain2 (Wuhan 2019). Examples are the variants B.1.1.7 and B.1.351, which have driven a strong rise of infection 
numbers in the United Kingdom and South  Africa9,10 in late  202011,12 and the P.1 mutation which has induced 
an infection wave in  Brazil13 in early 2021.

The availability and ongoing vaccine production gives hope to slowly gain control of the  disease14–16. However, 
before herd immunity (if at all achievable) is finally reached worldwide it will take many month or even years, 
which the virus will exploit to mutate into a range of new strains. Thus, at the timescale of months or years a 
race is looming ahead between the occurrence of new mutations and the adaption and mass-production of exist-
ing vaccines to get these mutations under control. In particular, this makes it questionable if the present (and 
future) vaccination programs are sufficiently effective to ultimately get diseases like COVID-19 under control. 
It is therefore important to understand possible mutation-induced long-time disease-evolution scenarios e.g. 
in view of the ongoing discussions regarding the release of patents to accelerate worldwide vaccination but also 
regarding requirement of measures like social distancing once the infection numbers show a downwards trend.

Notably, historical examples to assess possible long-time consequences of mutation cascades are scarce, since 
particularly severe mutations have traditionally led to a rapid death of infected individuals eliminating these 
mutations. Thanks to modern medical treatment based e.g. on extracorporeal membrane oxygenation support 
or artificial aspiration, however, such a self-elimination of severe mutations is largely absent. Notably, besides the 
positive effect of immediately saving many lives, these treatments also have the side effect of inducing a poten-
tially disastrous self-amplification of mutations and infection-rates. Here we are interested in particular in the 
effects of mutations on the spreading of an infectious disease in phases where (i) mutations can serve as seeds 
for further mutations some of which are even more infectious than the strain from which they have emerged 
and (ii) mutation rates are either constant or higher when infection numbers are high. Both factors together can 
generally lead to a positive feedback loop between infection numbers and mutations suggesting severe long-time 
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mutation-induced effects for the disease evolution. Actual data for COVID-19 mutations show, in fact, early 
signatures supporting such a possible self-amplification scenario during some phases of the disease: They reveal 
an initial constant and a subsequent nonlinear growth of the relevant infection rate (Fig. 1a). For future pandem-
ics, it would be highly important to understand the possible long-time consequences of such a self-amplification 
mechanism and how fast vaccination has to progress worldwide in order to suppress the most dramatic ones. 
However, following the scarcity of useful historical examples illustrating the possible consequences, we have to 
rely on models to explore the possible impact of mutations on the long-time evolution of the disease dynamics, 
in particular also in the presence of vaccination and other actions counteracting the self-amplification mecha-
nism. To provide a concrete starting point for such an exploration, in the present work, we develop a statistical 

Figure 1.  The statistics of mutation formation and its impact on the course of an epidemic. (a) Reproduction 
number for different COVID-19 mutations as a function of the their emergence time (for details see “Methods”). 
Green dashed line shows a linear fit to initial constant growth. (b) For a constant mutation rate (middle panel, 
green background) an ensemble average of the multi component description with many infection strains In(t) 
leads to multiple infection waves of the global infection number I(t). Beyond the constant mutation rate, if the 
mutation rate is coupled to the infection number (right panel, red background), the ensemble average produces 
a hidden singularity, as manifested by the giant infection wave. Only one representative realization of the multi 
component description is shown in the blue frames. The left panel (yellow background) indicates the different 
levels of description starting from multi components leading to an effective mean field by coarse graining.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9641  | https://doi.org/10.1038/s41598-022-13137-w

www.nature.com/scientificreports/

minimal model to predict possible mutation-induced effects for the long-time evolution of infectious diseases 
like COVID-19. We first develop a stochastic multi-strain generalization of the popular susceptible-infected-
recovered (SIR) model to account for the random occurrence of mutations and then use the coarse-graining 
concept of statistical physics to derive an effective mean-field model enabling general predictions of the most 
likely scenarios for a given scenario (characterized by parameters such as the mutation and the vaccination rate). 
See Fig. 1b for an schematic illustration of our approach.

One generic prediction of our model is that mutations induce an explosive super-exponential growth of the 
infection numbers rather than the ordinary and much discussed normal exponential growth, in phases where 
the population is far away from herd immunity. At later phases, when a population comes close enough to herd-
immunity that the reproduction number drops below one ( R < 1 ) and infection numbers subsequently decrease 
to a very low level, mutations can raise the reproduction number to R > 1 inducing a new infection wave, which 
is followed by a whole train of further waves. This scenario occurs even for a constant mutation rate (Fig. 1b). If 
the mutation rate increases with the number of infections, as generally expected and discussed above, their effect 
is even more dramatic: then, mutations occur at a self-accelerating pace and continuously prevent the population 
from reaching herd-immunity by persistently enhancing the effective reproduction number of the disease. As a 
result the infection dynamics approaches a hidden singularity and displays signatures of a critical dynamics. That 
is, infection numbers grow extremely fast, giving a giant infection wave, such that the majority of the population 
is infected at the same time (see the values on the vertical axis in Fig. 1b), which would massively overstrain any 
existing medical system. Finally, in phases where vaccination of the population takes place and is sufficiently 
effective to suppress the hidden singularity and hence the explosive self-acceleration of infection numbers, our 
model predicts the possibility of mutation-induced infection wave trains, as in the case of constant vaccination, 
illustrating once more the possible dramatic consequences following from the fact that herd-immunity is not 
necessarily a permanent state in the presence of mutations. To see how these predictions come about, let us now 
discuss our general modelling approach in detail. Based on this approach we will then discuss our results for a 
constant mutation rate model and a model that goes beyond a constant mutation rate.

Model
To describe the impact of mutations on the infection dynamics within a simple statistical framework, we first 
generalize the popular susceptible-infected-recovered (SIR)  model17–37, which has been intensively explored in 
the context of the COVID-19  pandemic38–49. While some recent works have generalized this model to account 
for two different infectious  strains50,51, here we allow for the continuous emergence of new strains with a rate ν , 
which in general depends on the present infection number. Denoting the fraction of susceptible and recovered 
individuals with S and R respectively and the fraction of individuals which is infected with strain n as In , this 
leads use to the following dynamical equations:

 Here, γ is the inverse of the average disease duration, i.e. the recovery/death rate and βn is the infection rate of 
strain n, which we randomly choose from a certain characteristic distribution. As an initial state, we assume that 
initially (time t = 0 ) we have only a single infectious strain with a low positive infection number such that only 
I0 � 0 whereas In =0 = 0 for n = 1, 2...

To allow predicting the average (or most likely) result of the infection dynamics we now coarse grain this 
model, essentially by averaging over many strains and disease-realizations (see “Methods” section for technical 
details), which leads to the following effective model:

 Here, I is the overall infection number (all strains together) and β(t, I) is the average infection rate, which can 
depend on the overall infection number, depending on the underlying mutation statistics (see “Methods”).

Results
Let us now explore the impact of mutations on the disease evolution by comparing numerical simulations of 
the multi-component model with analytical predictions based on the mean-field model (Fig. 1b). To allow 
distinguishing between direct effects of mutations from the prevailing (and most infectious) strain and indirect 
effects due to the self-accelerating mutation cascade which we have described in the introduction and which 
may or may not become effective in reality, depending on the actual mutation rate and other parameters, we will 

(1)Ṡ = −
∑

n

βnSIn,

(2)İn = βnSIn − γ In,

(3)Ṙ =
∑

n

γ In.

(4)Ṡ = −β(t, I)SI ,

(5)İ = β(t, I)SI − γ I ,

(6)Ṙ = γ I ,
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sequentially follow on the cases of (i) a constant mutation rate µ leading to the emergence of new strains in our 
simulations with a constant rate and (ii) a mutation rate which depends on the present infection number µ(I).

Constant mutation rate. Mutation-driven infection dynamics. Let us assume that the infection rate βn 
of a newly occurring virus-strain is randomly selected from a normal distribution p with standard deviation σ 
centered around the infection rate of the presently prevailing strain:

 Here βmax,n−1 denotes the largest infection rate of all currently existing strains. This distribution, the average 
of which moves towards higher values in the course of a disease, is motivated by the fact that newly occurring 
mutations typically become visible only if they have a higher (or at least not much lower) infection rate than 
the currently prevailing ones. Coarse graining this mutation statistic (see “Methods”: “Details on model beyond 
constant mutation rate”) yields an the following average infection rate for our mean-field model

where µ is the constant mutation rate and β0 is the initial infection rate. That is, coarse graining the distribution 
(7) leads to a constant increase of the infection rate with time.

Let us first explore the disease evolution at early times when the majority of the population is susceptible, 
such that S(t) ≈ 1 . Then Eq. (5) reduces to

Now using Eq. (8) we find

 Thus, the fraction of infected individuals does not grow exponentially as in the standard SIR model but even 
faster. Following Eq. (10) if the mutation rate is high enough that tµ ≫ 2(β0 − γ ) long before herd-immunity 
is reached, the infection dynamics generically converges towards I(t) ∝ eµt

2 , which is completely mutation-
driven. To test this prediction, we now numerically solve the full multi-component model and show the overall 
I(t) =

∑

n In(t) in Fig. 2a. Notably, the result is close to the analytical prediction of the mean-field model and 
shows an even slightly larger growth.

Clearly, the predicted (super)exponential growth of the infection numbers can not continue forever but has 
to saturate once the population reaches herd-immunity either by collectively going through the infection or 
through vaccination. Once herd-immunity is reached, the infection numbers are normally expected to monot-
onously decrease, as predicted by the standard SIR model. However, numerical solutions of our mean-field 
model show that after a phase where the population recovers and infection numbers decay to a very low level, 
they can rapidly grow again (Fig. 2b). This sequence of decreasing and increasing infection numbers can even 
repeat for many times, leading to an infection wave-train. The maxima of the wave-trains follow a scaling law 
of Imax ∼ 1/(β0 + µtmax)

2 (see SI for derivation), which is shown in Fig. 2c. The prediction of wave trains is 
also confirmed by numerical solutions of the multi-component model, but somewhat weakened, because the 
individual strains can show waves occurring at individual “frequencies”. Let us now ask about the mechanism 
leading to these infection waves. They are induced by the nonlinear coupling of the infected and susceptible. 
First, the number of infected people grows, when the term βS in Eq. (5) is large enough. At a certain point, the 
number of susceptible is too small and the saturation effect from the recovery rate γ in Eq. (5) takes over such 
that the number of infected decreases. However, the infection rate β continues growing with time, such that βS 
can become large enough to induce a second wave. This feedback continues on multiple times giving rise to the 
oscillatory behavior shown in Fig. 2b. One a more intuitive level, these considerations show that in the presence 
of mutations herd-immunity is not necessarily a persistent state of a population and that strongly decreasing 
infection numbers are not an overall reliable sign that the population has overcome the disease. From a socio-
political viewpoint each growth phase within such wave trains might evoke (nonpharmaceutical) interventions, 
creating an immense mental burden on the population.

Phase diagram. To see how strong measures have to be taken to prevent such an infection wave train (or a 
super-exponential growth) in the first place, we now systematically vary the parameters in the model to create a 
state diagram providing a systematic overview on the possible scenarios. It turns out that there are three dimen-
sionless control parameters in our system (see SI), one of which is the initial infection number and the other 
two ones are the effective reproduction number S0β0/γ and a dimensionless mutation rate µ/β2

0 . Varying both 
parameters systematically and solving the mean-field mutation susceptible-infected-recovered (MSIR) model 
for each parameter combination we obtain the phase diagram shown in Fig.  2e, which shows four qualitatively 
different epidemic courses: a lethargic phase, which is characterized by an exponential decay, multiple waves, 
super exponential wave, and a rebound, with an initial local minimum and a proceeding super exponential 
increase. The occurrence of these states in parameter space is summarized in Fig. 2d. At large reproduction 
number the dynamics is “super exponential” (green domain) for any positive mutation rate. When decreasing 
the reproduction number, depending on the mutation rate, one reaches the regime of “multiple waves” which we 
have previously discussed (pink) or a “rebound” phase (blue) where infection numbers initially decrease, pass 

(7)p(βn) =
1√
2πσ

Exp

(

−
(βn − βmax,n−1)

2

2σ 2

)

,

(8)β = β0 + µt

(9)İ = β(I , t)I − γ I .

(10)I(t) = I0exp

[

1

2
t(2β0 − 2γ + tµ)

]
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a minimum and then increase to reach a single maximum before finally decreasing (Fig. 2e). For even lower 
mutation rates, the population is in the “lethargic” regime, where the infection numbers monotonously decrease.

Nonpharmaceutical interventions, vaccination, and immune escape. In practice the goal is of course be to apply 
appropriate measures to safely reach the lethargic regime in Fig. 2d and not to end up in the multiple wave or 
rebound regime where the evolution of infection numbers show a promising initial trend but a severe evolu-
tion at later times. To understand the impact of nonpharmaceutical interventions, we reduce the reproduction 
 number38–40,42,52,53, from R0 to a reduced reproduction number including measures R0,int at a time tint in our sim-
ulations and numerical solutions of the MSIR model. Starting in the super exponential wave regime ( R0 = 1.5 ) 
we apply interventions during the rise of a first wave (see Fig. 3a). By including weak measures ( R0,int = 1.3 ), 

Figure 2.  Power law dependence of infection dynamics, phase diagram and state classification for constant 
mutation rate. (a) Fraction of infected people I at short times t for the coarse grained MSIR, multi component 
MSIR and the early time approximation Eq. (10). ( I0 = 10−5 , R0 = 1 , µ/β2

0 = 0.05 ). (b) Long time wave pattern 
of fraction of infected people for coarse grained MSIR and multi component MSIR approach. ( I0 = 10−5 , 
R0 = 1 , µ/β2

0 = 0.2 ). (c) Scaling of maxima of infections for coarse grained MSIR and multi component MSIR 
approach. ( I0 = 10−5 , R0 = 1 , µ/β2

0 = 0.2 ). (d) Phase diagram for our coarse grained infection dynamics 
showing the occurrence of four different courses of the pandemic for varying mutation rate and reproduction 
number ( I0 = 2× 10−4 ). (e) Different courses of infections during an epidemic: lethargic, multiple waves, super 
exponential, and rebound.

Figure 3.  Nonpharmaceutical interventions, vaccinating, and immune escape. (a) Infections as function of 
time for a super exponential wave. Measures are taken by reducing the reproduction number to R0,int at time 
tint . Inset: zoom in to the early time regime (black line has no interventions, R0 = 1.5 , µ/β2

0 = 0.004 , tint = 10.5 
weeks). (b) Infections as function of time for a wave like pandemic course. Measures are taken by reducing the 
reproduction number to R0,int at time tint (black line has no interventions, R0 = 1 , µ/β2

0 = 10−3 , tint = 210 
weeks). (c) Infections as function of time of different vaccination rates α (black line has no vaccination, R0 = 1 , 
µ/β2

0 = 10−3 , I0 = 2× 10−4 ). (d) Infections as function of time of different immune escape rates ω (black line 
has no immune escape, R0 = 1.2 , µ/β2

0 = 2 , I0 = 2× 10−4).
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the maximum of infections decreases as intended, however, the wave needs a longer time to decay, implying a 
longer period of restrictions for the public. Lowering the reproduction number to R0,int = 0.9 , results in the 
appearance of a second and third intervention-mutation induced wave. These waves are enabled by the increased 
infection rate and the fact that due to the interventions there are more susceptible at a later point in time, where 
they can facilitate the growth of infections. Here, the situation would be particularly confounding to the public, 
since it was subjected to measures to decrease the number of infections in the first place; however, this results in 
more waves and a likely extension of the period of interventions. On the other hand, a strong reduction of the 
reproduction number ( R0,int = 0.7 ) gives a fast decay of infections, as intended. Of course the situation changes 
when we start from an infection dynamics with multiple waves ( R0 = 1 ) and apply measures during the rise of 
the second wave (see Fig. 3b). As expected, strong measures ( R0,int = 0.8 ) have the intended effect of eliminating 
the epidemic. On the other hand, if the measures are slightly weaker ( R0,int = 0.85 ), the infections first decrease, 
but then lead to a second intervention-mutation induced delayed wave, which is stronger in magnitude than the 
first wave. Again, this wave is induced by the growing infection rate and the enhanced number of susceptible 
individuals due to interventions. To decision makers and the public this type of wave could likely appear as 
unexpected. However, note that at least the overall number of recovered people at the end of our the epidemic is 
decreasing with stronger interventions, meaning that if only the cumulative number of infections is considered 
every reduction of R0 is useful.

Specifically for COVID-19 vaccines have become available and their continuous production gives hope to 
get the disease under control. However, one and half a years after vaccines have first become available only 
about 67% of the worldwide population has been fully vaccinated (early Mai 2022), leaving much time for the 
emergence of highly infectious mutations. Vaccinations effectively reduce the number of susceptible in the SIR 
 model14, such that we modify Eq. (4) as

with a vaccination rate α . Note that a more realistic model for vaccination would also account for a time depend-
ent roll out. We investigate the effect of vaccination on the infection dynamics for a situation leading to multiple 
waves (see Fig. 3c). Following Fig. 3c vaccinations have a clear effect; they have to be applied fast enough to 
significantly reduce the number of infections and temper the train of waves. This further shows the importance 
of manufacturing and distributing vaccinations as fast as possible.

When newly mutated strains arise the possibility of an immune escape increases, where a recovered indi-
vidual does not stay immune against the new strain. Let us therefore now include a term which accounts for an 
effective immune escape in our model in the form of a transition from recovered to susceptible. Explicitly we 
modify Eqs. (4)–(6) to read

where ω is the immune escape rate. The transition rate between susceptible and recovered introduces two new 
effects. First, this term leads to a positive feedback loop between the number of susceptible and recovered 
individuals which induces infection waves (see Fig. 3d), which can also be seen from a linear stability analysis 
(see SI) of Eqs. (12)–(14). Second, the infected population fraction saturates to a nonzero steady state, due to a 
replenishment of susceptibles (see also SI).

Beyond constant mutation rate. As a second possible scenario, let us now assume that the mutation rate 
is coupled to the infection number, such that mutations are more likely in phases where the infection numbers 
are large. To account for this effect in our model, we assume that new (relevant) mutations occur with a prob-
ability of p0In−1 from the most infectious strain where p0 is constant and also that the infection rates of new 
strains follow from a random walk with a mutation-induced bias as βn = βn−1 +�β (see “Methods” for details). 
Coarse graining the biased random walk yields a mean field infection rate which evolves as

with a mutation rate � . Intuitively, this means that new mutations occur in our mean-field model with a rate 
which is proportional to the present infection number.

Mutation-induced dynamics. At early times, where S ≈ 1 we obtain again Eq. (9), which yields together with 
Eq. (15)

where δ1 and δ2 are constants that are given in the SI. Importantly, the infections in Eq. (16) do not grow expo-
nentially, but there is an explosive super exponential growth, which asymptotically has a scaling behavior fol-
lowing Isc(t) ∼ 1/|t − tc|2 with a critical time tc (see SI for explicit expression). Crucially, this giant infection 

(11)Ṡ = −β(I , t)SI − α,

(12)Ṡ = −β(t, I)SI + ωR,

(13)İ = β(t, I)SI − γ I ,

(14)Ṙ = γ I − ωR,

(15)β(t) =
∫ t

0
�I(t ′)dt ′,

(16)I(t) = −
δ1

�
[

1+ cosh
(

2 ln δ2 + t
√
δ1
)] ,
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wave qualitatively differs from the comparatively mild super-exponential behaviour which we have encountered 
for the case of a constant mutation rate in that it leads to a much more extreme self-acceleration of the infection 
numbers. As a result, the infection numbers peak only at extremely high values where a large fraction of the 
population is infected at the same time (see Figs. 1b and 4a). Clearly, such an explosive growth would be inter-
rupted at some point as the population approaches herd immunity. To quantify to which extend the predicted 
explosive growth would occur before herd-immunity causes significant deviations, we consider the expression 
min(ln(Isc)− ln(I)) , which quantifies how closely the fraction of infections approaches the underlying (idealized) 
power law dependence in the presence of saturation effects. We find that for large mutation rates the power-law 
dependence is strong for any reproduction number (Fig. 4b) and weakens for lower mutation rates. Remarkably, 
the explosive growth depends only weakly on the reproduction which is the parameter that is controllable due 
to interventions. After the initial super-exponential increase of infections the saturation effects from people 
recovering induce a maximum and a succeeding decrease in infection numbers.

Phase diagram. Depending on the basic reproduction number and the mutation rate the MSIR model predicts 
four distinct courses summarized in the phase diagram Fig. 4c, which has been obtained analytically (see SI). 
We find a lethargic regime characterized by an exponential decay (purple regime, Fig. 4d); an explosive regime 
(cyan regime); a rebound regime (dark yellow) where we have a minimum followed by a mutant induced super 
exponential increase; and weak rebound (red) leading to an infection maximum which is smaller than the initial 
fraction of infected individuals. Generally, the explosive (or super exponential) regime occurs for reproduction 
numbers R0 > 1 and any positive mutation rate, whereas the other three regimes occur for R0 < 1 . For low 
mutation rate and R0 < 1 the epidemic is in the desired lethargic regime, increasing the mutation rate leads to a 
small region of weak rebound which then transitions to a rebound dynamics.

Nonpharmaceutical interventions, vaccination, and immune escape. To explore the efficiency of measures which 
effectively reduce the reproduction number, we again change the reproduction number R0 to a value of R0,int at 
time tint . Now starting from the explosive (super exponential) regime ( R0 = 1.2 ) we decrease the reproduction 

Figure 4.  Scaling law of short time infection dynamics, Phase diagram and state classification of approach 
beyond constant mutation rate. (a) Infections as function of reduced time |t − tc| where tc is the critical time at 
which the infections diverge (see SI for details). We show the scaling law, coarse grained MSIR and our multi 
component MSIR approach. ( R0 = 2 , �/β2

0 = 2× 104 , I0 = 10−4 ). (b) Deviation of the fraction of infections 
at short times from our corse grained MSIR approach to the a 1/|t − tc|2 scaling by using min(ln(Isc)− ln(I)) . 
Mutation rate and reproduction number are varied ( I0 = 2× 10−4 ). (c) Phase diagram of our coarse grained 
MSIR approach showing the occurrence of four different courses of the pandemic for varying mutation rate and 
reproduction number ( I0 = 2× 10−4 ). (d) Example plots of the infections as function of time for four different 
courses of the pandemic: lethargic, super exponential wave; rebound, and weak rebound.
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number during the rise of the wave (Fig. 5). Strong measures yielding R0,int = 0.7 or R0,int = 0.8 ) induce an 
immediate decay of the infection numbers as desired. However, weak measures, leading to R0,int = 1 only delay 
the occurrence of the infection maximum but hardly change the value of I at the peak. Hence, it is clear that 
measures need to be strong enough to have a significant effect, while weak measures only delay the infection 
number explosion.

We finally ask how fast vaccination would have to progress in order to suppress a mutation-induced explo-
sion of infection numbers or a mutation-induced rebound at initial reproduction numbers smaller than 1. 
Vaccinations effectively reduce the number of susceptibles by a vaccination rate α (see also Eq. 11). If we start in 
the explosive (super exponential) regime, a high vaccination rate is needed to interrupt the rapid growth of the 
infection numbers (Fig. 5b): while small vaccination rates ( α/β0 = 0.01 ) merely shift the infection maximum 
to a later time, while having little change in the number of infections, larger vaccination rates ( α/β0 = 0.025 ) 
effectively suppress the explosion of infection numbers. Therefore, to prevent possible mutation-induced long-
time consequences it is imperative to maximize vaccine production worldwide. Enhancing vaccine production 
is particularly important in countries with a weak healthcare system, which face the threat of being overloaded 
by COVID-19  cases54–59.

Newly mutated strains allow for an immune escape of the virus, effectively representing a transition of 
recovered individuals to susceptible ones with an immune escape rate ω (see also Eqs. (12)–(14)). This leads to 
a continued recovery of the number of susceptibles and drives the population away from herd immunity, which 
in turn can cause new infection waves (see Fig. 5c), that can also be predicted using a linear stability analysis (see 
SI). Further, we find that the number of infected saturates to a nonzero steady state (see also SI).

Discussion
Inspired by the ongoing COVID-19 disease and the continued emergence of new mutations supplanting pre-
ceding ones, in the present work we have developed a stochastic multistrain generalization of the popular SIR 
model. Combining this model with coarse graining concepts from statistical physics has allowed us to predict a 
panorama of possible scenarios for the mutation-controlled evolution of infectious diseases.

In particular, our approach suggests that mutations can induce a super-exponential growth of infection 
numbers in populations which are highly susceptible to the disease (e.g. because they are far from reaching herd 
immunity). As compared to the standard exponential growth, interrupting such an super-exponential growth 
is much more difficult and requires stronger and stronger measures as the disease evolves. In practice, such a 
super-exponential growth may occur e.g. if measures are applied too late, or if vaccines suddenly become inef-
fective against mutations.

One particularly severe form of such an super-exponential growth can occur if the mutation rate of a virus is 
proportional to the current number of infections. For this case our model predicts a giant infection wave, which 
is based on a positive feedback loop between the mutation-rate and the infection number causing a massive-self 
acceleration of the latter resulting in a state where the majority of the population gets infected at the same time. 
Clearly, such a situation would not only massively overstress any existing health system but once in action it 
would hardly be interruptable through vaccination.

At later stages of an infectious disease, where the population approaches herd immunity and the infection 
numbers decrease, an obvious political reaction would be to release measures. However, our simulations suggest 
that mutations can drive new infection waves even after a longer downwards trend. Such waves can even self-
repeat and lead to a pattern of repeated phases of strongly decaying and increasing infection numbers provoking 
an endless sequence of renewed non-pharmaceutical interventions.

Since our work is on a conceptual basis we did not include explicit data to model COVID-19. However, the 
panorama of mutation induced phenomena which we have identified might inspire detailed modeling works 
to test them for specific infectious diseases such as COVID-19. Further, our results could be applied to diseases 
in the animal world such as the avian  influenza60. These results might also be useful for discussions regarding 

Figure 5.  Nonpharmaceutical interventions, vaccinating, and immune escape. (a) Infections as function of 
time for a super exponential wave. Measures are taken by reducing the reproduction number to R0,int at time 
tint (black line has no intervention. R0 = 1.2 , �/β2

0 = 50 , I0 = 2× 10−4 , tint = 3.85 weeks). (b) Infections 
as function of time of different vaccination rates α (black line has no vaccination. R0 = 1.2 , �/β2

0 = 50 , 
I0 = 2× 10−4 ). (c) Infections as function of time of different immune escape rates ω (black line has no immune 
escape. R0 = 1.2 , �/β2

0 = 2 , I0 = 2× 10−4).
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the importance of a release of vaccine-patents to reduce the risk of mutation-induced infection revivals and to 
coordinate the release of measures following a downwards trend of infection numbers.

Methods
Basic reproduction number of COVID‑19 mutants. The basic reproduction numbers where extracted 
from: original  variant61, B.1.1.7 (α)11, B.1.351 (β)62, P.1 (γ)13, B.1.617.2 (δ)63, and B.1.1.529 (o)64. The time point 
at which a variant has reached 5% in the sequenced genomes reported  in4 (https:// nexts train. org/ ncov/ global) is 
used as the emergence time.

Details on constant mutation rate. We assume that the new infection rates βn are drawn from a Gauss-
ian distribution, whose mean is the largest current infection rate. Explicitly we have

where βmax,n−1 denotes the maximal infection rate of the current strains, βn is the infection rate of the newly 
mutated strain, σ is the standard deviation of the distribution, and new strains are produced at a rate m (in our 
multi component simulations we use β0/γ = 1 , σ = 2× 10−4 , m/γ = 2 , and the new strain obtains an initial 
In(0) = 10−7).

To coarse grain this mutation model, we assume that the infections immediately assume the maximal infec-
tion rate of the newly mutated strain βmax,n . It follows that the mean infection rate is dominated by βmax,n , since 
all other infections grow exponentially slower. This reduces our multicomponent model to an effective one 
component model with the infection rate βmax,n . To determine βmax,n we compute

where m is the number of times drawn from the distribution Eq. (17). Explicitly, Eq. (18) yields

where erf−1(∗) is the inverse error function and can here be approximated by a negative constant −C1 . We now 
write the standard deviation as σ = µ∗τ , with a mutation rate µ∗ and mutation timescale τ , giving

which is a discretized version of β̇ = µ , and equivalent to our coarse grained constant mutation rate model.

Details on model beyond constant mutation rate.  For the model beyond constant mutation rate 
the infection rates perform a biased random walk. Given an infection rate βn it will mutate with a probabil-
ity p0 and not mutate with probability 1− p0 . Furthermore, this strain has In infections, which are all able to 
mutate, giving a total mutation probability of 1− (1− p0)

In = p0In +O(p20) . A mutation gives a new strain In 
with an increased βn = βn−1 +�β (in our multi component simulations we use β0 = 0.1 , γ = 0.1 , �β = 0.03 , 
p0 = 2× 10−4 , and the new strain obtains an initial In(0) = 10−6).

To coarse grain, we assume that the expectation value of the infection rate 〈βn〉 is proportional to the mutation 
probability. Then a new mutation has the expectation value �βn+1� = p0In and the old strain has �βn� = 1− p0In . 
Computing the difference gives

which is a discretization of β̇ = �I , which is our coarse grained model beyond a constant mutation rate.
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