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Abstract: Parker’s hydrodynamic isothermal solar wind model is extended to apply for a more
realistic polytropic gas flow that can be caused by a variable extended heating of the corona. A com-
patible theoretical formulation is given and detailed numerical and systematic asymptotic theoretical
considerations are presented. The polytropic conditions favor an enhanced conversion of thermal
energy in the solar wind into kinetic energy of the outward flow and are hence shown to enhance the
acceleration of the solar wind, thus indicating a quicker loss of the solar angular momentum.

Keywords: Parker solar wind; polytropic flows

1. Introduction

Stellar wind is a continuous plasma outflow from a star. In the case of the Sun, this
outflow typically emerges from coronal holes (Sakao et al. [1]) and carries a remnant of
the stellar magnetic field that fills the space around the star (in the case of the Sun, this
constitutes the heliosphere (Dialynas et al. [2])). (Note: SOHO observations (Cho et al. [3])
revealed that the structure of the solar wind changes from the solar maximum to the
solar minimum period.) Stellar winds carry off, especially when magnetized, a huge
amount of angular momentum from the stars while causing a very negligible amount of
mass loss from the stars. Weak to moderate stellar winds are generated by an expanding
outer corona due to an extended active heating of the corona in conjunction with high
thermal conduction. (Note: Parker [4–6] proposed that this is caused by the dissipation
of plasma waves produced by micro-flares in the coronal holes. The details of the coronal
heating mechanism are still controversial (Klimchuk [7]).) However, control of coronal
base conditions and high thermal conduction are both inadequate to generate observed
high wind speeds in the case of the Sun (Parker [8,9]). This indicates the rationale for some
additional acceleration mechanism to operate beyond the coronal base. Parker [8] gave an
ingenious stationary model which provided for the smooth acceleration of the solar wind
through transonic speeds by continually converting the thermal energy into the kinetic
energy of the wind. The solar wind was confirmed and its properties were recorded by
in situ observations (Neugebauer and Snyder [10], Hundhausen [11], Meyer-Vernet [12]).
The stellar rotation is found to lead to faster stellar winds and hence enable protostars and
strong rotators to lose their angular momentum quickly via the mechanism of centrifugal
and magnetic driving (Shivamoggi [13]).

One of the main assumptions in Parker’s [8] solar wind model is that the gas flow
occurs under isothermal conditions (in standard notation),

p = a2
0ρ , (1)

where a0 is the constant speed of sound. However, the more realistic non-isothermal nature
of the solar wind, thanks to a variable extended heating of the corona, may be represented
in a first approximation by using the polytropic gas relation (Parker [14], Holzer [15],
Keppens and Goedbloed [16]), (note that: Polytropic gas model provides a more general
framework and is fully compatible with the adiabatic condition which is a special case of
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the polytropic gas model and corresponds to γ = 5
3 . The isothermal gas flow corresponds

to γ = 1),

p = Cργ , (2)

where C is an arbitrary constant and γ is the polytropic exponent, 1 < γ < 5/3. In this
paper, we give the modified Parker’s equation governing the acceleration of solar wind
of a polytropic gas and rectify an apparent error in the formulation given previously by
Holzer [15]. We then present a more compatible formulation and make detailed numerical
and systematic asymptotic theoretical considerations to describe solar wind flow of a
polytropic gas. The polytropic gas conditions are shown to lead to tenuous and faster solar
wind flows and hence enable a quicker loss of the solar angular momentum.

2. Polytropic Gas Solar Wind Model

In Parker’s hydrodynamic model [8], the solar wind is represented by a steady and
spherically symmetric flow, so the flow variables depend only on r, the distance from
the Sun. (Note that: In reality, observations of the solar wind (Wang and Sheeley [17])
suggested and Kopp and Holzer [18] proposed a rapidly-diverging super-radial wind flow,
especially in some active regions such as the coronal holes.) The flow velocity is further
taken to be only in the radial direction—either inward (accretion model) or outward (wind
model). We assume for analytical simplicity that the flow variables and their derivatives
vary continuously so that there are no shocks anywhere in the region under consideration.

The mass conservation equation is

2
r
+

1
ρ

dρ

dr
+

1
vr

dvr

dr
= 0 . (3)

Assuming the gravitational field to be produced by the central solar mass Ms, Euler’s
equation of momentum balance is

ρvr
dvr

dr
= − dp

dr
− GMs

r2 ρ , (4)

G being the gravitational constant.
Using Equations (2) and (3), Equation (4) becomes(

M2 − 1
) 2

vr

dvr

dr
=

4
r2 (r− r∗) . (5)

In Equation (5), r∗ locates the Parker critical point and is given by

r∗ ≡
GMS

2a2 , (6a)

where a = a(r) is the variable sound speed in the polytropic gas described by Equation (2),
and is given by

a2 ≡ dp
dρ

=
γp
ρ

, (6b)

and M is the Mach number of the gas flow,

M ≡ vr

a
. (6c)
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At a given point r, the local conservation of total energy (thermal plus kinetic energy)
of a fluid particle gives,

h +
1
2

v2
r = const = h0 , (7)

where h is the enthalpy and the subscript 0 denotes the stagnation-flow values which are
those that would result if the fluid particle were locally brought to rest isentropically and
are assumed to be independent of r. This assumption becomes more and more sound as
one goes past the Parker critical point and the effect of solar gravity on the solar wind
becomes weak. Alternatively, h0 may be taken to represent an average stagnation enthalpy
over the coronal region of interest.

For a perfect gas, given by the equation of state (in standard notation),

p = ρRT , (8)

we obtain on using Equation (6b) (Shivamoggi [19])

h =

(
γ

γ− 1

)
p
ρ
=

a2

γ− 1
. (9)

Using Equation (9), Equation (7) becomes

a2

γ− 1
+

1
2

v2
r =

a2
0

γ− 1
, (10)

which leads to

a2

a2
0
=

1

1 +
(

γ−1
2

)
M2

. (11)

As indicated by Equation (5), r∗ corresponds to the local sonic conditions (M = 1),
where

a = a∗ ≡ a0

√
2

γ + 1
, (12)

a∗, called the critical sound speed, is the local sound speed at the Parker critical point
r = r∗. Conversely, the Parker critical point r = r∗ is determined by the condition a = a∗.

Using Equation (11), Equation (5) becomes(
M2 − 1

)
M2
[
1 +

(
γ−1

2

)
M2
] d

dr

(
M2
)
=

4
r2 (r− r∗) . (13)

Incidentally, it may be noted that by introducing the total energy

E ≡ v2
r

2
+

a2

γ− 1
− GMs

r
, (14)

the right-hand side of Equation (13) may be written alternatively as

(
M2 − 1

)
M2
[
1 +

(
γ−1

2

)
M2
] d

dr

(
M2
)
=

4E +
(

4γ−6
γ−1 −M2

)
GMs

r

r
(

E + GMs
r

) , (15)
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which shows that the corresponding equation

M2 − 1
M2

d
dr

(
M2
)
=

(
1 + γ−1

2 M2
)(

4E + 3γ−5
γ−1

GMs
r

)
r
(

E + GMs
r

) , (16)

given by Holzer [15] is apparently erroneous. (Note: As Holzer [15] noted, in the adiabatic
gas flow (γ = 5

3 ) case, Equation (16) does not allow smooth acceleration of the solar wind
through transonic speeds. Equation (16) is also found to exhibit some anomalies in the
solar wind velocity near the Sun ( r

r∗ � 1)). However, Equations (15) and (16) reduce to
Parker’s [8] hydrodynamic equation in the isothermal-gas limit, γ→ 1.

Introducing

r∗0 ≡
GMs

2a2
0

, (17)

and using Equation (11), Equation (13) may be rewritten as(
M2 − 1

)
M2
[
1 +

(
γ−1

2

)
M2
] d

dr

(
M2
)
=

4
r2

[
r−

{
1 +

(
γ− 1

2

)
M2
}

r∗0

]
. (18)

The numerical solution of Equation (18) is plotted in Figure 1, which shows the polytropic
gas conditions enhance the acceleration of the solar wind which is plausible because
polytropic gas conditions favor an enhanced conversion of thermal energy in the solar
wind into kinetic energy of the outward flow.

Figure 1. Effect of re-normalized polytropic exponent on solar wind speed. (i) Parker model α̂ = 0
(red), (ii) polytropic gas model α̂ = 0.05 (blue), (iii) polytropic gas model α̂ = 0.1 (black). Here,
α̂ ≡ γ−1

2 .
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We now consider some special asymptotic cases for which Equation (18) facilitates
simpler solutions.

2.1. Transonic Regime

Near the sonic critical point r = r∗, (note: In traditional gas dynamics, the transonic
flow case is taken to mean M ≈ 1.), we may write

r = r∗ + x, M2 = 1 + y . (19)

Using Equations (11) and (17), Equation (18) then gives:

(y− αx)
dy
dx

= βx , (20a)

where

α ≡ 4
r∗0

(γ− 1) ,

β ≡ 4
r2∗0

.

Equation (20a) is a first order ordinary differential equation of the homogeneous type,
which may be recast as

(y− αx)dy = βx dx . (20b)

We therefore introduce

z ≡ x
y

. (21)

Equation (20b) then becomes an ordinary differential equation of a separable type,(
1− αz− βz2

)
dy = βyz dz , (22a)

or

dy
y

=
z

1
β −

α
β z− z2

dz . (22b)

The solution of Equation (22b) is:

y

[(
z +

α

2β

)2
−
(

1
β
+

α2

4β2

)] 1
2

(

z + α
2β

)
+
√

1
β + α2

4β2(
z + α

2β

)
−
√

1
β + α2

4β2


α

4β√
1
β
+ α2

4β2
= 0 , (23)

from which,

y =

 1√
1
β + α2

4β2 − α
2β

x , (24a)

or

(
M2 − 1

)
=

 1√
1
β + α2

4β2 − α
2β

(r− r∗) . (24b)
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Equation (24b), numerically displayed in Figure 2, shows an enhanced acceleration
of the polytropic wind (γ > 1) past the Parker critical point, in agreement with the
numerical solution of Equation (18). (Note: In the near isothermal-gas case, γ ≈ 1, putting
ε = γ− 1 > 0, Equation (24a) becomes y ≈ 2(1 + ε) x

r∗0
which indicates again an enhanced

acceleration of the polytropic gas flow past the Parker critical point).
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Figure 2. Acceleration of polytropic wind (Equation (17)) for various values of the polytropic
exponent (two limit values and one for Hydrogen).

2.2. Near-Sun Regime

For r/r∗ << 1, Equation (18) may be approximated by

1

M2
[
1 +

(
γ−1

2

)
M2
]2

d
dr

(
M2
)
≈ 4r∗0

r2 , (25)

from which

M2

1 +
(

γ−1
2

)
M2
≈ e−(4r∗0 /r) . (26)

In the isothermal limit (γ→ 1), Equation (26) leads to

M2 ≈ e−(4r∗0 /r) . (27)

Comparison of Equation (26) with Equation (27) shows again an enhanced acceleration
of the polytropic solar wind (γ > 1) near the Sun.

2.3. Far-Sun Regime

For r/r∗ >> 1, Equation (18) may be approximated by

d
dr

(
M2
)
≈ 2(γ− 1)

r
M2 , (28)
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from which follows that

M2 ≈ r[2(γ−1)] . (29)

Equation (28) shows again an enhanced acceleration of the polytropic solar wind
(γ > 1) far from the Sun.

2.4. Effective de Laval Nozzle for a Polytropic Solar Wind

The continuous acceleration of the polytropic solar wind flow, seen above, from
subsonic speeds at the coronal base to supersonic speeds away from the Sun implies a de
Laval nozzle-type situation operational near the Sun (Clauser [20]).

If A = A(r) is the cross section area of an effective de Laval nozzle associated with
the polytropic solar wind flow, we have from equations Equations (5) and (13)(

M2 − 1
)

M2

(
2vr

a2

)
dvr

dr
=

(
M2 − 1

)
M2
[
1 +

(
γ−1

2

)
M2
] d

dr

(
M2
)

(30)

=
2
A

dA
dr

=
4
r2 (r− r∗) ,

from which follows that

A(r) = 4πr2e−2r∗0
∫ r

ro
1
r2

[
1+
(

γ−1
2

)
M2
]

dr , (31)

where r = r0 at the coronal base. Equation (31) implies that the cross section area of the
effective de Laval nozzle for the polytropic solar wind (γ > 1) varies faster, in consistency
with the enhanced acceleration of the polytropic solar wind.

3. Discussion

Thanks to the more realistic non-isothermal nature of the solar wind that can be
caused by a variable extended heating of the corona, a polytropic gas model is in order
to describe the solar wind flow. In recognition of this, the present paper is aimed at
putting forward a compatible theoretical formulation and providing detailed numerical
and systematic asymptotic theoretical considerations to describe acceleration of the solar
wind of a polytropic gas. The polytropic gas conditions have been shown to lead to
tenuous and faster solar wind flows because polytropic gas conditions favor an enhanced
conversion of thermal energy in the solar wind into kinetic energy of the outward flow,
hence enabling a quicker loss of the solar angular momentum.

On the other hand, it may be mentioned that explicit investigation of the effects of
coronal heat addition has been made numerically (Leer et al. [21,22]). Though some coronal
heating scenarios (caused by a variable thermal conductivity or dissipation of waves) may
rather qualitatively simulate polytropic gas effects in the solar wind, a coronal heat addition
is not explicitly included in our present formulation. So, it is not possible to identify clear
relationships between the parameters characterizing the two scenarios and, hence, to make
definitive comparisons of our present theoretical results on the polytropic gas effects with
the numerical results on the effects of explicit inclusion of coronal heat addition.
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