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Abstract

Malnutrition is common, morbid, and often correctable, but subject to missed and delayed

diagnosis. Better screening and prediction could improve clinical, functional, and economic

outcomes. This study aimed to assess the predictability of malnutrition from longitudinal

patient records, and the external generalizability of a predictive model. Predictive models

were developed and validated on statewide emergency department (ED) and hospital

admission databases for California, Florida and New York, including visits from October 1,

2015 to December 31, 2018. Visit features included patient demographics, diagnosis codes,

and procedure categories. Models included long short-term memory (LSTM) recurrent neu-

ral networks trained on longitudinal trajectories, and gradient-boosted tree and logistic

regression models trained on cross-sectional patient data. The dataset used for model train-

ing and internal validation (California and Florida) included 62,811 patient trajectories

(266,951 visits). Test sets included 63,997 (California), 63,112 (Florida), and 62,472 (New

York) trajectories, such that each cohort’s composition was proportional to the prevalence of

malnutrition in that state. Trajectories contained seven patient characteristics and up to

2,008 diagnosis categories. Area under the receiver-operating characteristic (AUROC) and

precision-recall curves (AUPRC) were used to characterize prediction of first malnutrition

diagnoses in the test sets. Data analysis was performed from September 2020 to May 2021.

Between 4.0% (New York) and 6.2% (California) of patients received malnutrition diagno-

ses. The longitudinal LSTM model produced the most accurate predictions of malnutrition,

with comparable predictive performance in California (AUROC 0.854, AUPRC 0.258), Flor-

ida (AUROC 0.869, AUPRC 0.234), and New York (AUROC 0.869, AUPRC 0.190). Deep

learning models can reliably predict malnutrition from existing longitudinal patient records,

with better predictive performance and lower data-collection requirements than existing

instruments. This approach may facilitate early nutritional intervention via automated

screening at the point of care.
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Introduction

Malnutrition, in which inadequate or imbalanced nutritional availability leads to deleterious

changes in body composition and function [1], may develop as a result of deficient intake,

inflammation, hypermetabolism, or malabsorption [2]. 15–60% of hospitalized patients are

estimated to be malnourished [3], but the diagnosis is often missed or delayed, leading to pre-

ventable adverse outcomes [4].

Many hospital accrediting agencies, such as the Joint Commission, mandate screening of all

hospital patients for malnutrition [5]. Most hospitals rely on questionnaires such as the Nutri-

tional Risk Screening 2002 (NRS-2002) [6] or the Malnutrition Universal Screening Tool

(MUST) [7], but no universal standard exists [8,9]. These questionnaires commonly measure

recent weight loss, body mass index, acute disease effects, and dietary intake. Screening ques-

tions are susceptible to subjective interpretation [9], and fail to identify many cases of malnu-

trition [10]. Therefore, malnutrition is often under-identified or undocumented.

Early detection and treatment of malnutrition has a major impact on clinical, functional,

and economic outcomes [10]. Compared to non-malnourished patients, malnourished

patients experience hospital admissions of twice the duration and cost. Malnourished inpa-

tients have up to 4.7 times the mortality of the general inpatient population [11]. A malnour-

ished patient is 1.6 times more likely to be readmitted within 30 days of discharge than a non-

malnourished patient, and these readmitted patients are twice as likely to be diagnosed with a

serious infection, compared to readmitted non-malnourished patients [11].

Critically, malnutrition, once identified, can be treated with evidence-based and relatively

low-cost nutritional interventions [12]. Accurate identification and documentation of malnu-

trition is also necessary for coding, reimbursement, risk-adjustment, and overall accuracy of

patient data [13]. In this way, early and accurate identification of malnutrition can improve

patient and health system outcomes [5], raising the need for universal and accurate screening.

Despite the importance of early detection, existing methods to screen for malnutrition have

substantial limitations. One common screening instrument, MUST, achieved an area under

the receiver-operating characteristic curve (AUROC) of 0.662 in one recent evaluation [14].

Recent attempts to improve the detection or prediction of malnutrition have focused on the

evaluation of diagnostic criteria, or the optimization of information flow within the hospital

[15–18]. Two recent studies have applied random forests, a type of ensemble machine learning

model [19], to the prediction of malnutrition. MUST-Plus, a random forests model relying

heavily on anthropometric and laboratory values, achieved an AUROC of 0.835 for the detec-

tion of malnutrition in one tertiary health center [14]. Talukder and Ahammed applied several

conventional machine learning algorithms to the prediction of malnutrition in a high-preva-

lence pediatric cohort in Bangladesh. Though this study did not report AUROC, their best-

performing model was a random forests model trained on demographic and anthropometric

information, achieving an overall accuracy of 68.51% [20]. Notably, both of these studies used

conventional, cross-sectional machine learning models (random forests), depended heavily on

laboratory or anthropometric measurements not collected in all health care encounters, and

failed to demonstrate external generalizability.

The present study reports the development and external validation of deep learning models

for the prediction of malnutrition from longitudinal patient records. To maximize potential

applicability in screening, these models use only passively collected demographic, diagnostic,

and procedural information, and the evolution of these features over time, to identify patients

who will receive a first diagnosis of malnutrition. To our knowledge, this is the first study to

predict malnutrition with demographic and diagnostic information alone, without requiring

laboratory or anthropometric results, and to specifically characterize the time interval between
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prediction of malnutrition and actual diagnosis, during which a focused nutritional assessment

and intervention could be delivered.

Materials and methods

Data sources and transformations

The study data consisted of comprehensive, statewide administrative databases of emergency

department (ED) visits and hospital admissions for California (California Department of

Health Care Access and Information), Florida, and New York (Healthcare Cost and Utilization

Project). These data sources were selected because they represent large, diverse states, allow

tracking of individual patient trajectories across time, and by virtue of their comprehensive,

all-payer nature, reduce the risk of results biased to a specific population (such as a specific

hospital system or commercial insurer). The study data included 43M Emergency Department

(ED) visits and hospital admissions, representing the trajectories of 5.9M unique adult patients

in California (CA), Florida (FL), and New York (NY), who had at least four visits between

October 1, 2015, when the 10th International Statistical Classification of Diseases and Related

Health Problems (ICD-10) diagnostic coding went into effect, and December 31, 2018. Each

de-identified visit record included patient demographics (age, sex, race, state income quartile

of patient’s zip code), visit characteristics (primary payer, length of stay, number of days since

last visit), up to 24 ICD-10 diagnosis codes (truncated to the first three characters), and up to

20 procedure codes (ICD-10 for admissions, CPT-4 for ED visits), which were standardized to

Clinical Classification Software (CCS) procedure categories [21]. Patients with inconsistent

ages were excluded.

Patients were classified as malnourished upon receipt of one or more diagnoses of protein-

calorie malnutrition or cachexia (S1 Table), selected based on the 2016 HCUP report on mal-

nutrition, and reviewed by a Stanford Health Care registered dietitian [11]. For malnourished

patients, trajectories consisted of 3–5 visits preceding the first diagnosis of malnutrition. The

visit during which malnutrition was diagnosed was excluded, with the goal of developing mod-

els to facilitate early identification of malnutrition. Control trajectories consisted of ED visits

and admissions without a malnutrition diagnosis during the study period. As for case trajecto-

ries, the last visit was excluded, and trajectories consisted of 3–5 visits.

Training, validation, and test sets

CA and FL trajectories were combined to produce training (51,710 patients; 219,796 visits)

and internal validation datasets (11,101 patients; 47,155 visits) with similar numbers of mal-

nourished (39.6%) patients.

To simulate the effectiveness of models as clinical screening instruments, test sets were pro-

duced for each state, randomly sampling malnourished and non-malnourished patient trajec-

tories in proportion to the prevalence of malnourished patients in the complete statewide

datasets: CA (6.2%), FL (4.9%), and NY (4.0%). The size of the test sets (CA = 63,997,

FL = 63,122, NY = 62,472 trajectories) were selected for computational tractability. Although

models were trained on data from CA and FL, none of the test sets contained patients used in

training or validation (S1 Fig).

Diagnosis and procedure code representations

In the primary models, diagnoses, procedures, sex, race, income quartile, and payer were rep-

resented using one-hot encoding (binary indicators). Age, days since last visit, and admission
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length-of-stay were normalized to the range [0,1]. Each visit was thus represented as a

2029-dimensional vector (S2 Fig).

Auxiliary models used pre-trained embeddings developed based on coincident diagnosis

and procedure codes (S1 Methods). Each code in each patient visit was represented by an

embedding vector (S3 Fig), which was averaged to produce a dense embedding in place of the

one-hot encodings (S4 Fig). Each visit could then be represented using a smaller, dense vector

of length 53–277 (32–256 length embeddings + 21 one-hot encoded demographic features),

depending on the size of the embedding used.

Predictive models

Classifiers were trained to predict whether a patient would receive a malnutrition diagnosis.

The demographic baseline models consisted of logistic regression, random forest (n_estima-

tors = 100, max_depth = None) [22], and gradient-boosted tree ensemble classifiers (XGBoost:

n_estimators = 100, max_depth = 3) [23], trained on the demographic variables from the last

visit of each patient trajectory. An XGBoost model was also trained using all codes from all vis-

its in the trajectory (i.e., “flattened” codes, with temporal and sequence information

discarded).

Deep learning models were developed using the long short-term memory (LSTM) architec-

ture [24], a type of recurrent neural network. The LSTM architecture was selected for its per-

formance on time-series data, and demonstrated utility for medical trajectories [25,26]. In this

application, LSTMs are used to model the temporal relationships between visits. LSTM models

consisted of a bidirectional LSTM layer with 32 units, followed by two fully connected layers,

the first with 128 units and a dropout rate of 0.2, and the second with a binary outcome (mal-

nourished or non-malnourished). Binary cross-entropy loss and the Adam optimizer were

used with a learning rate of 0.001. LSTM models were developed on both one-hot encoded

and embedded visit representations. A cross-sectional model was also trained, without an

LSTM layer, on the last visit in each trajectory, with the same hyperparameters except for the

learning rate, which was set to 0.0001.

Model predictions were interpreted using model-agnostic Shapley values, which reflect the

marginal contribution of each variable in each patient’s trajectory to the model’s prediction

[27].

Stratified analyses, ablation studies, lead time experiments

In order to understand the performance of the models in specific populations, the test datasets

were stratified on demographic features. For instance, the test patient trajectories were split

into elderly (�65 years) and non-elderly cohorts (<65 years), and predicted malnutrition for

each of these cohorts using the same model.

In order to understand the relative importance of different features, beyond the Shapley val-

ues described above, ablation studies were conducted, retraining the same models but exclud-

ing a specific feature category, such as all diagnosis codes, for each retrained model.

Prediction lead time refers to the number of days between the last visit observed for each

patient (i.e., the point of prediction), and the visit containing the first malnutrition diagnosis.

For instance, to assess model performance in predicting malnutrition with at least 30 days lead

time, any visits occurring less than 30 days before the malnutrition diagnosis were excluded

from trajectories. To control for the reduction in trajectory lengths with increasing lead time,

performance with trajectories restricted to exactly five visits, after lead time filtering, was also

evaluated.

PLOS ONE Predicting malnutrition from longitudinal patient trajectories

PLOS ONE | https://doi.org/10.1371/journal.pone.0271487 July 28, 2022 4 / 15

https://doi.org/10.1371/journal.pone.0271487


Statistical analysis of model results

Model performance was characterized using area under the receiver-operating characteristic

curve (AUROC), reflecting the relationship between sensitivity and specificity, and area under

the precision-recall curve (AUPRC), reflecting the relationship between positive predictive

value (PPV, ‘precision’) and sensitivity (‘recall’), which may better reflect the prediction of rare

outcomes than AUROC [28]. The 95% confidence intervals (CI) of AUROC and AUPRC were

estimated using the Wilson Score interval method [29]. CIs were validated for the best-per-

forming models with bootstrap sampling.

Results

Patient characteristics

Malnourished patients had similar characteristics in all states (S2 Table). Among admitted

patients, malnourished patients had longer hospital stays, with median length-of-stay between

6 (CA) and 8 (NY) days, compared to 3 (CA, FL) or 4 (NY) days for non-malnourished

patients. Malnourished patients were older than non-malnourished patients by a median of 20

(CA) to 23 years (FL, NY). Malnourished patients had more frequent visits, with median inter-

vals between visits ranging from 24 (CA) to 28 (NY) days, compared to 57 (NY) to 77 (CA)

days for non-malnourished patients. Women were diagnosed with malnutrition at higher

rates than men. By primary payer, Medicare was associated with the highest rate of malnour-

ished patients, consistent with the advanced age of these patients. Among racial/ethnic groups,

Asians had the highest prevalence of malnutrition, and Hispanics had the lowest. The propor-

tion of patients with malnutrition diagnoses was highest for zip codes in the highest (FL, NY)

and second highest (CA) income quartiles. Tables 1 and S2 show patient characteristics of the

subsets and the full datasets, respectively.

Prediction of malnutrition. The best-performing model for the prediction of malnutri-

tion was the longitudinal LSTM using one-hot encoding of diagnosis and procedure codes

(Fig 1). This model, trained on patient trajectories from CA and FL, and tested on distinct

cohorts from CA and FL and a completely independent dataset from NY, achieved uniformly

strong predictive performance on independent test cohorts, with AUROCs ranging from 0.854

(CA, 95% CI 0.851–0.857) to 0.869 (FL, NY, 95% CI 0.866–0.872), and AUPRCs ranging from

0.190 (NY, 95% CI 0.187–0.193) to 0.258 (CA, 95% CI 0.255–0.261). Model performance is

summarized in S3 Table, with bootstrap validation of CIs described in S4 Table. The best-per-

forming embeddings (length 256, S5 Table) were slightly less performant by AUPRC, com-

pared to the one-hot encoding strategy.

Models using longitudinal trajectories performed substantially better than models using

only data from the patient’s last visit. Of the cross-sectional models, the best-performing

model was a fully connected neural network, achieving AUROCs from 0.831 (CA, 95% CI

0.828–0.834) to 0.843 (FL, 95% CI 0.840–0.846), and AUPRCs from 0.162 (NY, 95% CI 0.159–

0.165) to 0.233 (CA, 95% CI 0.230–0.236).

A hybrid approach, using XGBoost and collapsing features from all visits, achieved perfor-

mance between that of the cross-sectional and longitudinal models: AUROCs from 0.836 (CA,

95% CI 0.833–0.839) to 0.852 (NY, 95% CI 0.849–0.855), and AUPRCs from 0.177 (NY, 95%

CI 0.174–0.180) to 0.238 (CA, 95% CI 0.235–0.241).

Patient-level risk factors

The implementation of Shapley values allowed determination of patient-level and aggre-

gate predictors of malnutrition (Fig 2). Major predictors of malnutrition identified by the
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model included advanced age, indicators of poor overall health (heart failure, COPD,

malignancies), as well as conditions limiting nutritional intake (aphagia, food allergy,

homelessness).

Table 1. Patient characteristics in test sets used to assess predictive performance.

California Florida New York

Total Malnourished Control Total Malnourished Control Total Malnourished Control

Sample size 63997 3997 60000 63122 3122 60000 62472 2472 60000

Length of stay, median (IQR),

days

3 (2–6) 6 (3–11) 3 (2–6) 3 (2–6) 7 (4–13) 3 (2–5) 4 (2–8) 8 (4–15) 4 (2–7)

Age, median (IQR), years 52 (33–69) 70 (58–82) 50 (32–67) 50 (32–69) 70 (58–82) 48 (32–68) 49 (32–67) 71 (58–82) 48 (31–66)

Time from last visit, median

(IQR), days

72 (15–199) 24 (7–75) 77 (16–207) 73 (18–198) 27 (11–77) 77 (18–204) 55 (14–146) 27 (11–68) 57 (14–150)

Income, n (%)

Unknown 2527

(3.949)

158

(3.953)

2369

(3.948)

2169

(3.436)

114

(3.652)

2055 (3.425) 834

(1.335)

37

(1.497)

797

(1.328)

Quartile 1 13635

(21.306)

815

(20.390)

12820

(21.367)

17472

(27.680)

800

(25.625)

16672

(27.787)

26548

(42.496)

816

(33.010)

25732

(42.887)

Quartile 2 18903

(29.537)

1077

(26.945)

17826

(29.710)

15207

(24.091)

725

(23.222)

14482

(24.137)

10527

(16.851)

387

(15.655)

10140

(16.900)

Quartile 3 16815

(26.275)

1055

(26.395)

15760

(26.267)

17668

(27.990)

838

(26.842)

16830

(28.050)

11504

(18.415)

476

(19.256)

11028

(18.380)

Quartile 4 12117

(18.934)

892

(22.317)

11225

(18.708)

10606

(16.802)

645

(20.606)

9961

(16.602)

13059

(20.904)

756

(30.583)

12303

(20.505)

Payer, n (%)

Medicaid 23993

(37.491)

751

(18.789)

23242

(38.737)

12113

(19.190)

321

(10.282)

11792

(19.653)

24015

(38.441)

414

(16.748)

23601

(39.335)

Medicare 22281

(34.816)

2679

(67.025)

19602

(32.670)

22682

(35.934)

2204

(70.596)

20478

(34.130)

21077

(33.738)

1682

(68.042)

19395

(32.325)

Other 1698

(2.653)

62

(1.551)

1636

(2.727)

3899

(6.177)

119

(3.812)

3780 (6.300) 1635 (2.617) 38

(1.537)

1597

(2.662)

Private 13446

(21.010)

471

(11.784)

12975

(21.625)

14263

(22.596)

370

(11.851)

13893

(23.155)

12250

(19.609)

315

(12.743)

11935

(19.892)

Self 2579

(4.030)

34

(0.851)

2545

(4.242)

10165

(16.104)

108

(3.459)

10057

(16.762)

3495 (5.595) 23

(0.930)

3472

(5.787)

Race, n (%)

Asian 3504

(5.475)

323

(8.081)

3181

(5.302)

305

(0.483)

20

(0.641)

285

(0.475)

1502 (2.404) 56

(2.265)

1446

(2.410)

Black 8041

(12.565)

482

(12.059)

7559

(12.598)

15202

(24.084)

511

(16.368)

14691

(24.485)

15624

(25.010)

443

(17.921)

15181

(25.302)

Hispanic 20459

(31.969)

864

(21.616)

19595

(32.658)

11237

(17.802)

378

(12.108)

10859

(18.098)

9751

(15.609)

239

(9.668)

9512

(15.853)

Native 341

(0.533)

18

(0.450)

323

(0.538)

64

(0.101)

1

(0.032)

63

(0.105)

175

(0.280)

5

(0.202)

170

(0.283)

Other 2953

(4.614)

174

(4.353)

2779

(4.632)

1188

(1.882)

58

(1.858)

1130 (1.883) 6291

(10.070)

234

(9.466)

6057

(10.095)

White 28699

(44.844)

2136

(53.440)

26563

(44.272)

35126

(55.648)

2154

(68.994)

32972

(54.953)

29129

(46.627)

1495

(60.477)

27634

(46.057)

Sex, n (%)

Female 37399

(58.439)

2017

(50.463)

35382

(58.970)

38343

(60.744)

1619

(51.858)

36724

(61.207)

36928

(59.111)

1245

(50.364)

35683

(59.472)

Male 26598

(41.561)

1980

(49.537)

24618

(41.030)

24779

(39.256)

1503

(48.142)

23276

(38.793)

25544

(40.889)

1227

(49.636)

24317

(40.528)

https://doi.org/10.1371/journal.pone.0271487.t001
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Fig 1. Receiver-operating characteristic (left) and precision-recall curves (right) for malnutrition prediction

models, in three states. The long short-term memory (LSTM) models used longitudinal patient trajectories. The

gradient-boosted tree model (XGBoost) used collapsed features from all visits. The logistic regression baseline model

used only demographic data.

https://doi.org/10.1371/journal.pone.0271487.g001
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Stratified analyses

In stratified analyses (S6 Table), predictive performance reflected the size and the baseline

rates of malnutrition in the population of interest. For instance, models had better PPV

(reflected in AUPRC) in elderly patients compared to non-elderly patients, because PPV is

dependent on base rates of malnutrition, which are higher in the elderly.

Fig 2. Overall and patient-specific features predictive of malnutrition. Upper panel shows the top 50 features predictive of

malnutrition from the best performing model (LSTM with one-hot encoded trajectories) in descending order of influence (mean

Shapley values over five visits for 1000 patients in California). Bottom panel shows risk factors for an individual malnourished patient.

https://doi.org/10.1371/journal.pone.0271487.g002
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Ablation studies

When ablating categories of features to assess their relative impacts on model performance,

diagnosis codes had the greatest collective effect. This was most prominent in CA, where the

AUROC decreased from 0.854 (95% CI, 0.851–0.857) to 0.806 (95% CI, 0.803–0.809) with

ablation of diagnostic information. Next most important were demographic data, then CCS

procedure categories. Models exposed to procedure codes alone achieved an AUROC of 0.717

(95% CI, 0.714–0.720) in CA, lower than the baseline demographic models (S7 Table).

Effect of prediction lead time

Predictive performance declined with increasing lead time between the date of prediction (i.e.,

the last visit in each trajectory seen by the model) and the first diagnosis of malnutrition.

Fewer visits are used for prediction as lead time increases, with up to 49% of the data in NY

trajectories removed at a lead time of one year. Controlling for total number of visits, greater

lead time remains associated with less accurate prediction (Fig 3). The steepest decline is seen

between<1 month and 1–2 months, where, for instance, the AUPRC in CA drops from 0.258

(95% CI, 0.255–0.261) to 0.229 (95% CI, 0.226–0.232), though the corresponding AUROC

dropped only from 0.854 (95% CI, 0.851–0.857) to 0.837 (95% CI, 0.834–0.840), suggesting a

greater impact of lead time in lower-prevalence settings. AUPRC (reflective of positive predic-

tive value) at over one year was 0.113 in CA (95% CI, 0.110–0.116), 0.104 in FL (95% CI,

0.101–0.107), and 0.075 in NY (95% CI, 0.072–0.078) (S8 Table).

Discussion

Malnutrition is a major global comorbidity, with deleterious effects on patient trajectories and

healthcare costs. Evidence-based interventions can mitigate these effects [2], but malnutrition

is often overlooked until its complications are already manifest, and more difficult to correct

[30]. Moreover, non-standard screening practices can produce large variation in diagnosis

Fig 3. Effect of lead time on malnutrition prediction. Prediction performance of the best-performing model declines

with longer intervals between prediction and diagnosis (left). Holding trajectory length constant, the detrimental effect

of lead time is attenuated for AUROC but not for AUPRC (right).

https://doi.org/10.1371/journal.pone.0271487.g003
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rates [31]. This study presents a deep learning approach to predicting malnutrition risk, using

longitudinal modeling of ubiquitously recorded visit features (demographics, diagnoses, pro-

cedures). The best-performing models, which exploit the longitudinal structure of patient

data, are highly accurate in predicting which patients will receive a diagnosis of malnutrition,

and generalize extremely well to a population not used at all in model development. In many

cases, predictions can be made with considerable lead time that could allow for focused evalua-

tion and intervention.

The most comparable published model, MUST-Plus, is a random forest classifier trained

on a single-center population used for both model development and validation, and achieved

an AUROC of 0.835 [14]. In comparison, this study’s longitudinal deep learning model

achieves higher performance by AUROC in all three states (0.854–0.869), and demonstrates

excellent generalizability to a large, diverse population not used in model development. More-

over, whereas existing models rely heavily on laboratory or anthropometric values requiring

active collection at the point of screening [14,20], this study’s approach derives most of its pre-

dictive ability from diagnostic trajectories that are passively and widely recorded, requiring no

additional data collection for first-pass screening at the point of care.

While predictions were generally more accurate with shorter lead times between prediction

and diagnosis (Fig 3), malnutrition diagnoses can still be predicted at clinically relevant levels

even one year in advance. This provides ample opportunity to intervene on high-risk patients,

which has clinical, operational, and economic benefits [32]. Somanchi et al., for instance,

found that early nutritional intervention reduced average length of stay by 1.93 days, produc-

ing an annual savings of $1.16 million for 1,275 patients [33].

Fig 4 illustrates how a model like those presented in this study could be applied in practice:

upon a patient encounter (whether to clinic, ED, or hospital), the model is applied as a univer-

sal screen and flags high-risk patients without an existing malnutrition diagnosis for clinical

review, using pre-existing demographic, diagnostic, and procedural data from the patient’s

electronic health record. Personalized patient-level risk factors as shown in Fig 2 provide at-a-

glance model interpretation that can evolve over time as additional patient visits are recorded.

The provider can then assess the patient and determine whether the patient would benefit

Fig 4. Proposed clinical implementation strategy to identify patients at risk for malnutrition and trigger dietitian referral or consultation.

https://doi.org/10.1371/journal.pone.0271487.g004
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from consultation with or referral to a registered dietitian, who can then perform a targeted

nutritional assessment, and suggest interventions tailored to the patient’s specific needs and

risks. In current practice, malnutrition is seldom diagnosed in the ED [34], despite its being a

more common point of contact with the healthcare system than hospital admissions. Automat-

ing screening for malnutrition in the ED, where providers are otherwise preoccupied with

more acute diagnoses, could expose a larger and more diverse population to nutritional

screening and concomitant interventions.

This study has several limitations. Because this study relied on large administrative datasets

and recorded diagnoses for identification of malnutrition, it was difficult to discern whether a

patient identified by the model as high-risk had yet to develop malnutrition, or was already

malnourished but had not yet received a diagnosis. For many practical purposes, however, the

distinction may not be important, as malnourished patients without diagnoses of malnutrition

are less likely to have received focused nutritional evaluation and intervention [35], so predict-

ing either future or undiagnosed malnutrition may be of comparable clinical benefit. Though

malnutrition includes inflammatory and hypermetabolic conditions in addition to deficient

intake and malabsorption, these former are less commonly diagnosed, and are poorly charac-

terized in the data. By considering only patient trajectories with at least three visits, patients

with no or minimal prior medical history were excluded, which may bias the analyses towards

sicker populations at higher risk for malnutrition, though the proportions of malnourished

patients in this study’s cohorts are still less than the 15–60% of hospitalized patients elsewhere

estimated to be malnourished [3].

For similar reasons, relying on recorded diagnoses subjects the models to any biases in

recording of diagnoses. For instance, if a group of patients had fewer diagnoses for a given rate

of true malnutrition due to poorer access to healthcare, a model trained on this data could

recapitulate this bias [36]. Indeed, the higher malnutrition rates in patients from wealthier

communities could reflect such a bias, whereby patients from these communities are exposed

to superior healthcare resources with greater capacity to diagnose and treat malnutrition.

However, the limited reliance of the models on demographic compared to diagnostic features,

and the excellent generalization of the models to independent test sets of different patient com-

positions, collectively suggest that this algorithmic screening approach is likelier to reduce

than to exacerbate biases in the diagnosis of malnutrition.

Conclusions

This study suggests opportunities for early intervention in malnutrition via automated screen-

ing of longitudinal patient records with deep learning. The best-performing model outper-

formed existing instruments, and generalized well to an external validation cohort. Using only

passively collected demographic, diagnostic, and procedural data, this model could be easily

integrated into existing clinical systems. Despite external validation in retrospective data, the

model presented in this study requires prospective clinical validation, and the development of

a resource-efficient mechanism for dietitian consultation or referral, before consideration for

clinical use.
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