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Bridging integrator-1 (BIN1) gene is associated with an increased risk to develop
Alzheimer’s disease, a tauopathy characterized by intra-neuronal accumulation of
phosphorylated Tau protein as paired helical filaments. Direct interaction of BIN1 and Tau
proteins was demonstrated to be mediated through BIN1 SH3 C-terminal domain and
Tau (210–240) peptide within Tau proline-rich domain. We previously showed that BIN1
SH3 interaction with Tau is decreased by phosphorylation within Tau proline-rich domain,
of at least T231. In addition, the BIN1/Tau interaction is characterized by a dynamic
equilibrium between a closed and open conformations of BIN1 isoform 1, involving an
intramolecular interaction with its C-terminal BIN1 SH3 domain. However, the role of the
BIN1/Tau interaction, and its potential dysregulation in Alzheimer’s disease, is not yet
fully understood. Here we showed that within Tau (210–240) peptide, among the two
proline-rich motifs potentially recognized by SH3 domains, only motif P216TPPTR221 is
bound by BIN1 SH3. A structural model of the complex between BIN1 SH3 and Tau
peptide (213–229), based on nuclear magnetic resonance spectroscopy data, revealed
the molecular detail of the interaction. P216 and P219 within the proline-rich motif were
in direct contact with the aromatic F588 and W562 of the BIN1 SH3 domain. The
contact surface is extended through electrostatic interactions between the positively
charged R221 and K224 residues of Tau peptide and those negatively charged of BIN1
SH3, corresponding to E556 and E557. We next investigated the impact of multiple
Tau phosphorylations within Tau (210–240) on its interaction with BIN1 isoform 1. Tau
(210–240) phosphorylated at four different sites (T212, T217, T231, and S235), contrary
to unphosphorylated Tau, was unable to compete with the intramolecular interaction
of BIN1 SH3 domain with its CLAP domain. In accordance, the affinity of BIN1 SH3
for phosphorylated Tau (210–240) peptide was reduced, with a five-fold increase in the
dissociation constant, from a Kd of 44 to 256 µM. This study highlights the complexity of
the regulation of BIN1 isoform 1 with Tau. As abnormal phosphorylation of Tau is linked
to the pathology development, this regulation by phosphorylation might have important
functional consequences.

Keywords: protein-protein interaction, nuclear magnetic resonance spectroscopy, Alzheimer’s disease, bridging
integrator-1 BIN1, SH3 domain, tau, phosphorylation
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia
and the most prevalent tauopathy. In genome-wide association
studies, variants of the BIN1 gene coding for bridging integrator-
1 (also known as amphiphysin 2) have been identified as
the second highest genetic risk factor for AD after the ApoE
gene, (Seshadri et al., 2010; Genin et al., 2011; Lambert et al.,
2013). Several hypothesis have emerged on how BIN1 protein
contributes to the increased risk of developing AD, which could
involve both Aβ and Tau neurodegeneration pathways (Chapuis
et al., 2013; Calafate et al., 2016; Ubelmann et al., 2017). The BIN1
gene is subject to extensive tissue-specific alternative splicing,
leading to several isoforms with different cellular localizations
and functions. BIN1 protein isoforms 1–7 are expressed in
the brain, isoform 8 is expressed in the muscle, and isoforms
9 and 10 are expressed ubiquitously (Prokic et al., 2014).
All BIN1 isoforms contain a N-terminal Bin/amphiphysin/Rvs
(BAR) domain and a C-terminal SH3 domain (BIN1 SH3)
(Prokic et al., 2014). The BAR domain has a role in membrane
remodeling by inducing curvature (Frost et al., 2009), and the
SH3 domain mediates BIN1’s interactions with several partners
(such as dynamin). However, only the brain-specific BIN1
isoforms contain a clathrin and AP-2-binding domain (CLAP)
that mediates the interaction with clathrin and AP2 – suggesting
a specific role for BIN1 in clathrin-mediated endocytosis in
the brain (David et al., 1996; Takei et al., 1999). BIN1 was
recently shown to negatively regulate this process and it has been
proposed that lower Bin1 expression may favor Tau propagation
through increased endocytosis (Calafate et al., 2016). Regulation
of endosomal trafficking by BIN1 is also proposed to affect Aβ42
endocytic production by negatively regulating APP and BACE1
convergence in early endosomes (Ubelmann et al., 2017). BIN1
loss of function thus prevents APP and BACE1 segregation at
early endosomes and may boost Aβ accumulation.

The BIN1 gene is the first of the sporadic AD genetic
determinants to have been linked to a Tau pathology (Chapuis
et al., 2013). BIN1 is upregulated in the AD brain, and
its expression correlates with the neurofibrillary tangle
pathology caused by intraneuronal aggregates of abnormally
phosphorylated Tau proteins (Chapuis et al., 2013; Holler et al.,
2014). Furthermore, the BIN1 homolog AMPH mediates Tau
toxicity in a Drosophila melanogaster model overexpressing
Tau (Chapuis et al., 2013; Dourlen et al., 2017). BIN1 directly
interacts with Tau and the BIN1/Tau complex is observed
at specific locations in primary neurons (partly co-localized
with the actin cytoskeleton network) (Sottejeau et al., 2015).
BIN1 was indeed shown to modulate actin dynamics by both
having actin bundling activity and stabilizing Tau-induced actin
bundles (Dräger et al., 2017). Deregulation of BIN1/Tau complex
formation may thus impact neuronal functions.

Abbreviations: AD, Alzheimer’s disease; BIN1, bridging integrator-1; BIN1 SH3,
SH3 domain of BIN1; HSQC, heteronuclear single quantum correlation tau; NMR,
nuclear magnetic resonance; NOESY, nuclear overhauser effect spectroscopy; PRD,
proline-rich domain; pS, phosphoserine; pT, phosphothreonine; RMSD, root mean
square deviation; SH3, Scr-homology-3.

During the disease progression, Tau presents both an
increased phosphorylation level and a modification of its pattern
of phosphorylation. Tau is phosphorylated by various kinases,
including proline-directed kinases [like CDK5 (Baumann et al.,
1993; Kimura et al., 2014), GSK3 (Ishiguro et al., 1993; Cho and
Johnson, 2003), and ERK2 (Drewes et al., 1992)], that mainly
target the proline rich domain (PRD) of Tau (Landrieu et al.,
2010; Leroy et al., 2010; Qi et al., 2016). For example, the AT8
diagnostic monoclonal antibody [pS202 + pT205 + (pS208)
epitope] can be used to track the spatial progression of the
pathology in the AD brain over time (Braak et al., 2006).
Given that Tau has so many phosphorylation sites, characterizing
the impact of these modifications on Tau functions is an
analytical challenge (Lippens et al., 2012a,b). Yet, it remains of
interest to decipher the functional consequences of specific Tau
phosphorylation, and in the case of the present study, how it
could modulate the BIN1/Tau interaction.

We have previously reported that the BIN1 SH3 binds directly
to Tau PRD (Sottejeau et al., 2015). The interaction motif
within the Tau PRD was narrowed down to a sequence located
between amino acid residues 210–240, which contains two PXXP
SH3 binding motifs (Sottejeau et al., 2015). This interaction is
weakened by phosphorylation of the Tau PRD (Sottejeau et al.,
2015), and in particular, phosphorylation of T231 (Sottejeau et al.,
2015). Furthermore, we recently showed that the SH3 domain
of the neuronal-specific BIN1 isoform 1 protein is engaged in
a dynamic equilibrium between open and closed conformations
(Malki et al., 2017). The closed conformation results from BIN1-
SH3’s interaction with the BIN1-CLAP domain. Tau (210–240)
is able to shift the equilibrium toward the intermolecular
interaction – indicating a subtle regulation of the Tau/BIN1
interaction.

As studying the regulation of the BIN1/Tau interaction is
an important step in understanding its specific contribution to
the AD process, we further pursued this investigation. Here,
we first determined which PXXP motif(s) is(are) critical for the
BIN1/Tau interaction. Based on the NMR data, we proposed next
a structural model of the complex between BIN1 SH3 and a
Tau peptide, which provides the atomic detail of the interaction.
Lastly, we looked at whether Tau (210–240) phosphorylation
affects the dynamic equilibrium between open and closed
conformations of BIN1 isoform 1.

MATERIALS AND METHODS

Proteins and Peptides
The BIN1 isoform 1 and BIN1 SH3 domain were
expressed and purified as previously described (Malki
et al., 2017). cDNA encoding Tau (210–240) peptide
SRTPSLPTPPTREPKKVAVVRTPPKSPSSAK was cloned
into the pETNKI-HisSUMO3-LIC-Kan vector following a
ligation-independent cloning procedure (Luna-Vargas et al.,
2011). Uniformly labeled 15N and 13C or 15N protein/peptide
samples were produced in M9 medium supplemented with
0.1 mM CaCl2 and 2 mM MgSO4 and containing 0.1% 15NH4Cl
and 0.2% 13C-glucose (Sigma-Aldrich) or 0.4% glucose, with
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0.5 g/l of 15N- and 13C-enriched or 15N-enriched ISOGROW
(Sigma-Aldrich), depending of the labeling scheme. The
recombinant His6-SUMO Tau (210–240) was purified using a
nickel affinity chromatography column and then incubated 16 h
with SENP2 protease in the presence of 2 mM DTT, at 4◦C. The
protein sample was buffer-exchanged using a desalting column
(G25 resin, cutoff of 7 kDa; PD-10 GE Healthcare) against
50 mM sodium phosphate pH 7.3, 30 mM NaCl, 3 mM DTT, and
then loaded on a nickel affinity chromatography column. The
tag-cleaved peptide was then recovered in the flow-through.

NMR Spectroscopy
NMR experiments were recorded on Bruker 950-MHz, 900-
MHz, or 600-MHz spectrometers all equipped with a triple-
resonance cryogenic probe. NMR measurements were performed
in 50 mM sodium phosphate buffer, pH 7.3, 30 mM NaCl,
3 mM DTT and 10% D2O (NMR buffer). BIN1 SH3 domain
backbone assignment has been previously reported (Malki et al.,
2017). Tau (210–240) backbone assignment (0.5 mM sample)
was performed at 600 MHz by recording 3D HNCA, 3D
HN(CO)CA, 3D H(CA)NH, 3D HNCO, 3D HN(CA)CO 3D
CBCA(CO)NH, and 3D CBCANH. For side-chain assignment,
additional 3D15N NOESY-HSQC, 3D15N-edited TOCSY, 3D
(H)CCH TOCSY, and 3D H(C)CH TOCSY experiments were
recorded. A 3D 13C-edited NOESY was further used for side-
chain assignment validation. All assignment experiments were
recorded at 5◦C. Chemical shift values (Supplementary Table S1)
were directly transferred at 20◦C, because the differences of
chemical shift values were small between 5 and 20◦C. An
analogous set of experiments was recorded for phosphorylated
Tau (210–240) backbone assignment (Supplementary Table S2).
The HαCαN spectra (Wang et al., 1995) of Tau (210–240) peptide
at 0.5 mM were recorded at 20◦C with the standard Bruker
pulse sequence in the NMR buffer containing 100% D2O. BIN1
isoform 1 1H-15N HSQC spectra were recorded at 20◦C at
900 MHz (0.08 mM sample) with 3096 points (direct) and 280
points (indirect), for spectral width of 14 ppm and 26 ppm,
respectively, and 256 scans. A 3D F1 13C/15N-filtered and F3 15N-
edited NOESY-HSQC, with WATERGATE (WATER suppression
by GrAdient-Tailored Excitation) scheme (Piotto et al., 1992),
named noesyhsqcf3gpwgx13d, part of the Bruker pulse sequence
library, was recorded at 20◦C at 950 MHz for the detection of
intermolecular NOEs to amide groups. This data was used to
solve the structure of the complex between BIN1 SH3 domain and
Tau (210–240). Spectra were processed using TopSpin software
(Bruker) and analyzed by CcpNmr Analysis (Vranken et al.,
2005).

15N Relaxation NMR Experiments
15N-R1, 15N-R2, and {1H}-15N steady-state heteronuclear NOE
spectra were recorded at 293K on 15N-labeled samples (0.12 mM)
at 600 MHz for BIN1 SH3 and BIN1 SH3/Tau (210–240) complex
(1:8 molar ratio). For the R1 experiments (Supplementary
Figure S1), 11 data points were recorded, using relaxation
delays between 50 and 1300 ms and a recycle delay of 4 s.
For R2 experiments (Supplementary Figure S1), 13 data points

were recorded, using relaxation delays between 10 and 150 ms
(recycle delay was 4 s). The heteronuclear NOE experiment
(Supplementary Figure S1) was recorded by including, or not,
a 4 s period of 120◦ 1H saturation pulses, separated by 5 ms.
Recovery delay was 4 s. Uncertainties in peak intensities were
estimated from one triplicate data point.

HADDOCK Docking
The HADDOCK 2.2 (Dominguez et al., 2003; van Zundert et al.,
2016) program was used to calculate the structure of the BIN1
SH3/Tau peptide complex, based on experimental unambiguous
and ambiguous restraints. The NMR structure of BIN1 SH3
extracted from a BIN1 SH3 complex (PDB 5i22) (Tossavainen
et al., 2016) was used as a starting point for the docking.
In addition, a structural model of Tau (213–229) peptide was
built, using the Coot program (Emsley and Cowtan, 2004),
starting from the Chikungunya virus nsP3 peptide (1728–1744)
in interaction with BIN1 SH3 (PDB code 5i22). The docking
was next driven under defined intermolecular unambiguous
restraints from a NOESY spectrum and ambiguous restraints
chosen as the residues involved in intermolecular NOEs.
Intermolecular NOEs were identified between BIN1 SH3 residues
557, 558, 561, 587, and 588, and Tau (213–229) residues 228/229,
226, 223, 219, and 216, respectively (Supplementary Figure S2
and Supplementary Table S3). The docking algorithm includes
three consecutive steps: (i) rigid body energy minimization (1000
generated structures) (ii) semi-flexible simulated annealing of the
200 lowest energy structures from step (i) and (iii) flexible explicit
solvent refinement (200 structures, 8.0 -Å shell of TIP3P water
molecules). All calculations were run through the WeNMR Web
portal using the expert interface. A total of 196 final models
were grouped into two clusters based on their interface-ligand
RMSD, using a cutoff of 5 Å. The final overall score of each
cluster (Supplementary Table S4) is based on the four highest
HADDOCK scores of the models in that cluster. The best cluster,
cluster 1, contained 190 structures (Supplementary Table S4), z
score =−1.0). The molecular structure of the complex was viewed
and represented using CHIMERA.

Phosphorylation of Tau (210–240)
Phosphorylation of SUMO-Tau (210–240) was obtained by
incubation with recombinant CDK2/CycA3 kinase (Welburn
and Endicott, 2005) (molar ratio 1/100), for 3 h at 37◦C, in
the presence of 2 mM ATP, 2.5 mM MgCl2, 2 mM DTT, and
protease inhibitors in 50 mM HEPES, pH 8.0. The incubation
was repeated once after exchange into fresh buffer and upon
new addition of kinase. The His-SUMO tag was removed after
phosphorylation, as described here above for the unmodified
peptide. Completion of phosphorylation was assessed by NMR
2D 1H-15N HSQC of the 15N-Tau (210–240) peptide and
MALDI-TOF (Matrix Assisted Laser Desorption Ionization –
Time of Flight) mass spectrometry. Mass analysis was performed
in ion-positive reflector mode on an ABI Voyager DE-Pro
MALDI-TOF mass spectrometer (Applied Biosystems), using
as matrix a saturated solution of α-cyano-4-hydroxycinnamic
acid in CH3CN:H2O:CF3COOH (50:50:0.1). Phosphorylated Tau
(210–240) 1H-15N HSQC spectrum was recorded at 600 MHz,
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peptide concentration 0.5 mM, resolution 2048 points in the
direct dimension and 256 points in the indirect dimension,
spectral width 14 and 17 ppm, respectively, and 16 scans.
Based on the relative intensities of the NMR resonance signals
(Supplementary Figure S3), full modification was observed for
residues T212, T231, and S235 while residue T217 was half-
phosphorylated. Results from MS analysis were in agreement
(Supplementary Figure S4). All the purification steps were
performed at 4◦C in the presence of a protease inhibitor cocktail
(Sigma-Aldrich).

Dissociation Constant Determination
Titration of 70 µM 15N-BIN1 SH3 with increasing amount of
unlabeled Tau (210–240) (from 35 to 840 µM) peptides was
performed, monitoring the complex formation by the gradual
1H and15N chemical shift change of the resonances in 1H,15N
HSQC, at pH 7.3 (50 mM phosphate buffer) and 20◦C. The
weighted average chemical shift differences were calculated as
described by Garrett et al. (1997) - i.e., (1H2

+ (1N×0.2)2)1/2,
with 1H and 1N the chemical shift changes for 1H and 15N,
respectively. Dissociation constants were obtained by fitting
the chemical shift perturbation data to the following equation
1δobs = 1δmax(a + b + Kd−((a + b + Kd)2

−4ab)1/2)/2a
where 1δobs is the weighted average of the chemical shifts in the
free and bound states and 1δmax is the maximal signal change
upon saturation. Kd is the dissociation constant, a and b are
the total peptide and BIN1 SH3 concentrations, respectively. Kd
were averaged based on chemical shift perturbations of 7 distinct
resonances.

RESULTS

Proline Assignment in Tau (210–240)
Peptide
We have previously shown direct interaction of the BIN1
SH3 (BIN1 SH3) with the PRD of Tau [PRD, Tau (165–245)]
(Sottejeau et al., 2015). The interaction motif within Tau PRD
was narrowed-down to a sequence located between amino acid
residues 210–240. In this previous work, 1H-15N HSQC spectra
were used for chemical shift perturbation analysis. As 1H-15N
HSQC experiment correlates the resonances of directly bound 1H
and 15N nuclei, the majority of the amino acid residues in the
peptide was represented in this analysis, except proline residues,
due to the lack of the backbone amide proton. However, Tau
(210–240) has eight proline residues organized in two different
canonical SH3 binding sites (Feng et al., 1994; Lim et al.,
1994). One of class I, PPII.1, between residues 230 to 236, and
another one of class II, PPII.2, between amino acid residues 216
and 221 (Figure 1A). To investigate the role of these proline
residues in Tau (210–240)/BIN1 SH3 interaction, a specific
NMR strategy was used, based on Hα-15N correlation, allowing
sequential assignment of molecules rich in prolines (Kanelis
et al., 2000; Ahuja et al., 2016). All the proline residues in Tau
(210–240) were assigned, including their minor cis conformers
(Figure 1B).

Tau (210–240) Fragment Interacts With
BIN1 SH3 Domain Using PPII.2 Motif
After assignment of all the proline residues in Tau (210–240)
fragment, we next looked at whether the two proline rich motifs
of Tau (210–240) were involved in the interaction with BIN1
SH3 domain. Comparison of the 2D HA(CA)N spectra of Tau
(210–240) in the absence and presence of an excess of BIN1
SH3 domain showed that all resonances corresponding to proline
residues in the proline-rich motif PPII.2 disappeared in the
presence of the BIN1 SH3 domain (Figure 2). Similarly, peaks
corresponding to P223 at the C-terminal end of the PPII.2
were broadened beyond detection, whereas those of P213, in the
N-terminal of PPII.2, were less affected and only showed minor
chemical shift modifications. Resonances of proline residues in
the proline-rich motif PPII.1 were barely affected, neither by
broadening nor by chemical shift modification. This result clearly
indicated that Tau (210–240) interacts with BIN1 SH3 domain
using the PPII.2 proline-rich motif within its sequence.

Structural Model of the BIN1 SH3/Tau
(210–240) Peptide Complex
We next used these data as a starting point to obtain a structural
model of BIN1 SH3 in complex with Tau (210–240) peptide.
First, NMR dynamics experiments provided insights into the
complex formation. 15N-relaxation measurements of 15N BIN1
SH3 showed homogenous R1 and R2 values, compatible with
a compact structure (Supplementary Figure S1). A correlation
time τc of 6.3± 0.3 ns was calculated, based on the average R1 and
R2 values, as expected for a monomeric BIN1 SH3 domain in the
NMR samples (Supplementary Figure S1). In the presence of the
peptide, average R1 values were increased while average R2 values
were decreased, corresponding to an increase in the molecular
weight of the system. A correlation time τc of 9.7+/−0.4 ns
was calculated for BIN1 SH3/Tau (210–240) complex, based on
the average R1 and R2 values, compatible with a monomeric
state of a 1:1 complex. NMR data were next used to build a
model of the complex, using HADDOCK program. The docking
was started from an NMR structure of BIN SH3 (Tossavainen
et al., 2016) and a model of Tau (213–229) peptide. Starting
from these two initial individual structures, the docking was
conducted under restraints derived from the NMR experimental
data (Supplementary Figure S2 and Supplementary Table S3).
The four best structures resulting from the docking calculation, in
the cluster of conformations showing the best statistics (cluster 1
in Supplementary Table S4), were chosen as being representative
of BIN1 SH3/Tau (213–229) complex (Figures 3, 4). BIN1 SH3
accommodated the P216xxP219 consensus motif of Tau peptide
(Figures 1, 2) into the canonical hydrophobic xP binding pocket
of the SH3 domain (Figure 3). Specific hydrophobic interactions
were observed between the side-chains of F588 on the BIN1 SH3
side and P216 on the Tau peptide, and between the side-chains
of W562 and P219 (Figure 3A). In contrast, P218 side-chain
pointed to the opposite direction with respect to P219 and was
not interacting with BIN1 SH3 domain. Moreover, residues E556
and E557 in the n-Src loop of the specificity zone of BIN1 SH3
provided an additional anchoring point. Both E556 and E557
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FIGURE 1 | Assignment of Tau (210–240) proline residues. (A) Domain composition of the largest isoform of the neuronal Tau protein. P1 and P2 are the proline-rich
regions. Tau (210–240) sequence is shown as part of the PRD. The proline residues are indicated in bold characters. The canonical SH3 class I and II binding motifs
are underlined and the consensus motifs are given below. PPII.1 and PPII.2 are PPII helix motif class I and II, respectively. (B) Assigned 2D HA(CA)N spectrum of the
prolines in Tau (210–240) peptide at 20◦C.

side-chains were oriented toward the Tau (213–229) peptide, in
close proximity to K224 side-chain (Figure 3B). Mutation of
K224 and K225 into alanines in Tau (210–240) peptide indeed
resulted in a reduced binding affinity to the BIN1-SH3 domain,
with a dissociation constant Kd of 44 ± 3 µM for Tau (210–240)
peptide increasing by a factor of ten to 429 ± 94 µM for the
mutated peptide (Supplementary Figure S3). Finally, at the
C-terminus of the docked Tau (213–229) peptide, V228/V229
Hα protons were also in close contact with E557 backbone H-N,
as observed by intermolecular NOEs (Supplementary Table S3).
The position of Tau peptide on the surface of BIN1 SH3 showed
a good match with the major chemical shift perturbations of
BIN1 SH3 1H, 15N resonances on addition of Tau (210–240)
peptide (Figures 4A,B), highlighting the β5 strand, the n-Src
loop and in addition the RT loop (Figure 4B). Reporting the

electrostatic potential on the BIN1 SH3 surface additionally
showed positioning of the R221 and K224 side-chain on a
negatively charged region (Figure 4C). The structure of the BIN1
SH3/Tau (213–229) peptide complex showed involvement in the
binding of both the xP pocket and the specificity region of BIN1
SH3 (n-Src loop), mediated on the Tau side mainly by P216/P219
and R221/K224, respectively (Figure 4).

Interaction of BIN1 Isoform 1 With Tau
(210–240) Is Weakened by
Phosphorylation
We previously showed that BIN1 SH3 domain was engaged
in an intramolecular interaction with BIN1 isoform 1 own
CLAP domain (Malki et al., 2017). Tau (210–240) peptide was
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FIGURE 2 | Critical proline residues involved in Tau binding to BIN1. The 2D HA(CA)N spectrum of Tau (210–240) peptide free or in the presence of BIN1 SH3
domain molar ratio 1:4 is shown in blue and green, respectively. The proline residues affected by the presence of BIN1 SH3 domain are indicated by red circles. In
addition, the position of each affected proline residue within Tau (210–240) sequence is numbered in the sequence below the spectrum.

FIGURE 3 | Representative structural models of BIN1 SH3/Tau (213–229) complex corresponding to the four best structures of HADDOCK calculation from cluster 1
(A). Ribbon representation of BIN1 SH3 (in gold)/Tau (213–229) (in violet). Side-chains of the main residues involved in the interaction are represented as sticks (B).
Enlarged views of the complexes corresponding to the encircled regions in (A).

able to compete with this interaction, shifting the dynamic
equilibrium from a closed to an open conformation. As NMR is
sensitive to mobility, this equilibrium translated into detection
of BIN1 SH3 domain signals only upon its release from the
intramolecular interaction (Malki et al., 2017). We further
addressed whether such equilibrium between open and closed
states of BIN1 isoform 1 might be affected by phosphorylation
of Tau (210–240). A 1H-15N HSQC spectrum of BIN1 isoform1

was thus acquired in the absence or presence of an excess of
Tau (210–240) phosphorylated at residues T212, T217, T231,
and S235 (Supplementary Figures S4), all proline-directed
sites within this peptide. Addition of phosphorylated Tau
(210–240) peptide to BIN1 isoform1 sample did not result in
the same changes in the spectrum (Figure 5, compare A with
B), although some weak signals from BIN1 SH3 were still
visible. This indicated that Tau (210–240) phosphorylated at
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FIGURE 4 | BIN1 SH3 interaction with Tau (213–229) (A). The solvent accessible molecular surface of BIN1 SH3 (in green) is highlighted with the major 1H,15N
combined chemical shift perturbations observed upon addition of Tau (210–240) peptide to BIN1 SH3, dark orange > 0.3 ppm, light orange > 0.2 ppm (as in Malki
et al., 2017, see Figure 6). (B) Same as A., in ribbon representation. (C) The electrostatic potential is colored on the molecular surface of BIN1 SH3 from negative
values in red (−8 keV) to positive values in blue (+5 keV). Tau (213–229) is represented as ribbon on the surface (in violet), with the side-chains of Tau peptide
residues shown as sticks.

multiple sites was not able to compete with the intra-molecular
interaction of BIN1 SH3 with the CLAP domain as efficiently
as its unphosphorylated counterpart. Indeed, comparison of the
affinity of the isolated BIN1 SH3 domain for the Tau peptide
(210–240), unphosphorylated or not, showed an increase of the
dissociation constant Kd, from 44 ± 3 µM to 256 ± 12 µM
for the phosphorylated peptide (Figure 6 and Supplementary
Figure S5). Consequently, in the presence of the phosphorylated
Tau peptide (210–240), BIN1 SH3 domain remained immobilized
by the intramolecular interaction with BIN1 isoform1 CLAP
domain, mainly adopting the closed conformation.

DISCUSSION

BIN1 gene was found as a genetic determinant of AD, allowing
to address new patho-physiological hypothesis (Lambert et al.,
2009; Seshadri et al., 2010). A first step in deciphering the role of

BIN1 in AD dysfunctions was taken by the discovery of its direct
interaction with Tau protein (Chapuis et al., 2013), a well-known
actor of the disease. The specific function of the interaction of
BIN1 with Tau, however, remained to date to be uncovered,
and in this context emphasized the need to grasp its molecular
detail. Here we first sought the atomic detail of the interaction
of BIN1 SH3 with Tau. The BIN1 interaction motif within Tau
PRD is a sequence located between amino acid residues 210–240,
containing two potential SH3-binding motifs (Sottejeau et al.,
2015; Malki et al., 2017). The binding site for the BIN1 SH3
within this sequence was found here to be specific for a canonical
SH3 class II binding motif PXXPX+ (Feng et al., 1994; Lim
et al., 1994) corresponding to P216TPPTR221. The identification
was based on HA(CA)N spectra allowing for the detection
of the resonances specific for the proline residues, which are
absent in a classical 2D 1H,15N HSQC spectrum. Assignment
of the Pro residues matched previous assignment of Pro residue
resonances in peptides and fragments of Tau encompassing
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FIGURE 5 | Interaction of BIN1 isoform 1 with Tau (210–240) and impact of multiple Tau phosphorylation on the interaction. (A) 1H-15N HSQC spectrum of BIN1
isoform 1 (112 KDa, homodimer). Because of the large molecular weight of BIN1, which lead to severe line broadening, its spectrum displayed, mostly in its central
part, signal of low spectral dispersion, typical of disordered regions of the protein. (B) 1H-15N HSQC spectra of BIN1 isoform 1 in the presence of phospho-Tau
(210–240), molar ratio 1:8. The signals corresponding to the isolated BIN1 SH3 domain were barely detected. Phospho-Tau (210–240) cannot compete with the
intramolecular interaction of BIN1 SH3 with the CLAP domain.
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FIGURE 6 | Affinity of BIN1 SH3 for Tau (210–240), phosphorylated, or not. (A) Superimposed 2D 1H-15N HSQC spectra of 70 µM 15N BIN1 SH3, free in solution (in
blue) and with 8 molar amount of Tau (210–240) (overlaid in red) or phosphorylated Tau (210–240) (overlaid in green). Labeled resonances correspond to the major
chemical shift perturbations, color coded as in Figure 4A. Enlarged regions of the superimposed spectra show 3 resonances involved in the interaction. (B) Gradual
chemical shift perturbation of residue D537 1H, 15N resonance of BIN1 SH3 (70 µM) versus increasing amount of Tau (210–240) (red) or phosphorylated Tau
(210–240) (green).
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Tau (210–240) (Smet et al., 2004, 2005; Ahuja et al., 2016).
Our analysis also confirmed that the proline residues mainly
adopt the trans conformation (Smet et al., 2004, 2005; Ahuja
et al., 2016). The BIN1 SH3/Tau (213-229) peptide complex
structure further showed that the consensus motif is bound to
the hydrophobic xP binding pocket of BIN1 SH3, in which P216
and P219 are in direct contact with the aromatic F588 and W562
residues on the domain side. The contact surface is increased
through electrostatic interactions between the positively charged
residues on the Tau peptide side, namely R221 and K224, and
those negatively charged on the protein side within the n-Src
loop, corresponding to E556 and E557. These negatively charged
residues, located in the so-called specificity region of BIN SH3
(Pineda-Lucena et al., 2005), explain the importance of basic
residues in the binding affinity. Further interactions involved
residues V228 and V229 of Tau peptide, which appeared to be
oriented toward the protein.

We have previously showed that BIN1 interaction with Tau is
decreased by phosphorylation of Tau, of at least T231 (Sottejeau
et al., 2015). In addition, a competition for BIN1 SH3 domain
binding to Tau was shown by BIN1 Isoform 1 own CLAP domain,
in an intramolecular mechanism of regulation (Malki et al.,
2017). Addition of an excess of Tau to BIN1 is able to displace
the intramolecular interaction, in profit of an intermolecular
interaction with Tau proline-rich motif (Malki et al., 2017). These
results demonstrated the complex regulation of the BIN1/Tau
interaction and the need to understand all the key elements of
this regulation mechanism. Here, we looked at both aspects of
the regulation of this interaction: how phosphorylation of Tau
(210–240) peptide on sites surrounding the proline-rich SH3-
binding consensus motif (pT212, pT231, and pS235) or within
this motif (pT217) would impact the competition for BIN1 SH3
domain binding. This phosphorylation corresponded to specific
epitopes of Tau antibodies used to detect the pathological Tau
protein, namely the AT180 epitope (pT231/pS235) (Goedert
et al., 1994) and the AT100 epitope (pT212/pS214) (Zheng-
Fischhofer et al., 1998).

pT231/pS235 residues affect the interaction by themselves,
because full-length Tau phosphorylated on T231–S235, but not
on T217, has a decreased affinity for BIN1 SH3 (Sottejeau et al.,
2015). However, according to the structural model of BIN1
SH3/Tau (213–229) peptide (Figures 3, 4), T231-S235 residues
did not make direct contact with BIN1 SH3 surface. Additional
effects might thus be involved, and may be associated with the
conformational modification of Tau induced by phosphorylation
of T231 and S235 (Luna-Munoz et al., 2005; Sibille et al.,
2012; Schwalbe et al., 2015). Alternatively, phosphorylation
of T231 and S235 might act by a global electrostatic effect,
partially neutralizing the K224-K225 basic motif that contacts
the acidic BIN1 SH3 specificity region (Figure 4C). Substitution
of K224 and K225 basic residues with neutral alanines indeed
reduced the binding affinity by a factor of 10, confirming
that K224 and/or K225 contribute significantly to the binding
(Supplementary Figure S3). In addition, the structural model of
BIN1 SH3/Tau (213–229) showed that T217 is accommodated
by the proline-binding pocket of BIN1 SH3 (Figure 4). T217
phosphorylation in Tau (210–240) peptide may thus additionally

weaken the interaction because of an unfavorable steric effect of
the phosphate group.

Our results showed that conversely to Tau (210–240) peptide,
phosphorylated Tau (210–240) peptide was not able to displace
the intramolecular interaction of BIN1 SH3 with BIN1 CLAP
domain, as its affinity for BIN1 SH3 was decreased compared
to the unphosphorylated peptide. This confirmed our previous
results that pT231 (together with other residues) weakens the
BIN1/Tau interaction both in vitro and in primary neuronal
cultures (Sottejeau et al., 2015). Here, a structure of the complex,
based on NMR measurements, highlighted that T212, T231,
and S235 did not make direct contact with BIN1 SH3 domain.
T217, on the other hand, located in the bound proline-rich
motif, but had however, its side-chain oriented in the opposite
direction with respect to the domain surface (Figure 4). However,
these combined phosphorylations decreased the affinity of BIN1
SH3 for the Tau peptide, either from their global electrostatic
contribution, or by their impact on the peptide structure (Luna-
Munoz et al., 2005; Sibille et al., 2012; Schwalbe et al., 2015).

Addition of Tau excess to BIN1 isoform 1 disfavors the
intramolecular interaction whereas it favors an intermolecular
interaction with a Tau proline-rich motif (Malki et al., 2017).
Conversely, phosphorylation of Tau decreased the BIN1-SH3
domain’s affinity for Tau and pushed the dynamic equilibrium
toward the intramolecular interaction, and might thus indirectly
influence the availability of BIN1-CLAP domain. The proline-
directed sites within Tau (210–240) might thus be the target of
a transduction pathway; the activation of Pro-directed kinases
would result in a decrease of BIN1’s affinity for Tau and (for BIN1
isoform 1) modify the availability of the CLAP domain.
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