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Abstract: Part I reviews persistent challenges obstructing progress in understanding complex fa-
tigue’s biology. Difficulties quantifying subjective symptoms, mapping multi-factorial mechanisms,
accounting for individual variation, enabling invasive sensing, overcoming research/funding insu-
larity, and more are discussed. Part II explores how emerging artificial intelligence and machine
and deep learning techniques can help address limitations through pattern recognition of complex
physiological signatures as more objective biomarkers, predictive modeling to capture individual dif-
ferences, consolidation of disjointed findings via data mining, and simulation to explore interventions.
Conversational agents like Claude and ChatGPT also have potential to accelerate human fatigue
research, but they currently lack capacities for robust autonomous contributions. Envisioned is an
innovation timeline where synergistic application of enhanced neuroimaging, biosensors, closed-loop
systems, and other advances combined with AI analytics could catalyze transformative progress in
elucidating fatigue neural circuitry and treating associated conditions over the coming decades.
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1. Challenges and Opportunities for Progress in Understanding Fatigue

Part I: Lost in Complexity: A Review of the Key Challenges and Barriers Obstruct-
ing Progress in Understanding Fatigue

Fatigue is an exceedingly common complaint that negatively impacts people’s health,
productivity, and quality of life [1–3]. An improved understanding of biological drivers
across chronic fatigue, cancer, and neurological, aging, and psychiatric conditions could
enable treatments targeting dysfunction [4–8]. Decoding fatigue enigmas through emerging
science is crucial for addressing this major source of disability burdening many patient
groups [4–8]. However, fatigue remains a poorly characterized phenomenon from a biolog-
ical standpoint despite its major personal and societal costs [1–3]. Progress in elucidating
fatigue mechanisms has been hindered by several key challenges.

1.1. Lost in Translation: How the Subjective Language of Fatigue Complicates
Mechanistic Understanding

Fatigue is a complex, subjective experience that manifests in myriad ways across
mental, physical, and emotional domains [9–14]. The sensations of fatigue rely heavily
on self-report and the description of subjective feelings of tiredness, exhaustion, lack of
motivation, or difficulties with concentration and completing tasks [10,12,13]. This makes
quantifying fatigue in precise, objective ways challenging [10,12,13]. Moreover, the termi-
nology used to describe fatigue symptoms remains inconsistent, with terms like tiredness,
exhaustion, weakness, and lack of energy or motivation often used interchangeably with-
out clear consensus on the boundaries or distinctions between each sensation [13]. This
linguistic variability in reporting subjective perceptions of fatigue creates barriers to clearly
defining specific dimensions for measurement [10,12,13]. It also obscures understanding of
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how language used to express fatigue maps onto underlying biological mechanisms [11–13].
The inherent subjectivity of sensations grouped under “fatigue”, combined with fuzzy
semantic delineations between associated terms, create difficulty in formulating consistent
fatigue constructs for biological study. Research efforts become siloed by the specific term
or phrasing used to describe sensations in a particular study rather than consolidating
underlying mechanisms that may generalize across how fatigue is verbally expressed. This
further hampers the aggregation of insights across the field. Addressing limitations in
dealing with subjective terminology will be key to deriving coherent explanatory models
of fatigue grounded in objective, generalizable metrics detectable across differences in
self-reported language.

1.2. Addressing Key Translational and Interconnectivity Challenges

The experience of fatigue likely stems from dysregulation across a number of intercon-
nected biological systems spanning different physiological levels, from cellular processes
like mitochondrial energy generation all the way up to activation patterns in cognitive and
sensory processing regions in the central nervous system [15–18]. The triggering of fatigue
could arise from a combination of bottom–up energetic deficiencies creating bioenergetic
stress on a cellular level, metabolic signaling irregularities, immune activation, and inflam-
mation, as well as top–down neural signaling cascades linked to the perception of effort
and motivation.

Disentangling the influence of these different systems with bidirectional associations
adds major complexity to identifying primary causal pathways that drive the emergence
of fatigue [15]. Interactions between cell energetics, cardiorespiratory factors, immune
function, endocrine signaling, and sense of exertion mediated by central neural circuits
create a dynamic network with many moving parts that can trigger fatigue. However,
determining which nodes in this network represent key propagator mechanisms versus
reactive components obscured by downstream effects presents challenges.

Isolating direct initiating factors in a complex, interconnected web has remained
difficult, especially given that some propagators may lie at junctures between systems at
different physiological scales [19]. Subtle energetic shortfalls at a cellular level triggering
neural signaling may be obscured by the time they manifest as perceived fatigue [6,20].
This complexity means generic models of fatigue based on a single moderator have limited
explanatory power. Instead, more sophisticated mapping of multifactorial influences,
compensatory mechanisms, and system transitions will be essential to identify the primary
drivers behind this complex phenomenon [21].

1.3. Bridging Individuality, Invasiveness, and Insularity Challenges

Individuality. There exists a large variability in how fatigue manifests between different
people, even among those with similar health conditions or exposures to fatigue-inducing
stressors. The triggers that induce fatigue, the time course of fatigue severity changes, the
longevity of fatigue sensations, and the degree of functional disability can differ drastically
across individuals [10–13]. For instance, some may experience more cognitive manifes-
tations, like mental fog, while others feel only physical fatigue. Fatigue from sleep loss
manifests more rapidly in some people [22]. Training loads provoking overtraining fatigue
vary by fitness level [9]. Chronic illnesses often co-occur with fatigue, but with little consis-
tency for predicting severity based on primary disease markers [10–13]. This substantial
person-to-person variability in fatigue susceptibility and symptom patterns means generic
models categorizing factors like duration of exposure to a stressor or activity level have
limited power to explain, predict, or modulate fatigue. Explanatory frameworks may
work reasonably well at population averages, but performance significantly degrades at
an individual level. Blanket thresholds for triggers more often over- or under-estimate
actual fatigue. There exists no “one size fits all” prescription for managing fatigue, unlike
more stable phenomena. Accounting for individual differences likely requires assessing
combinations of genetic predispositions, detailed sleep/circadian patterns, prior condition-
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ing history, and other intrinsic physiological and neural traits interacting with situational
demands. High-dimensional personalized profiles considering this web of modifiers op-
erating uniquely in each person will likely be needed to enhance explanatory power for
precise fatigue forecasting and effective interventions tailored to an individual.

Invasiveness. Obtaining objective measurements of fatigue is crucial for studying its bio-
logical basis [13]. Yet fatigue intrinsically complicates the implementation of gold-standard
assays of central nervous system activity. The most definitive approaches for mapping
neurophysiologic processes pertinent to feelings of tiredness, apathy, and reduced moti-
vation rely on invasive methods inaccessible in awake, fatigued humans [23]. Techniques
like extracellular single neuron recordings reveal detailed neural firing patterns but require
direct brain parenchyma access in animals or neurosurgical implants, which are impossible
in individuals experiencing natural fatigue [24–26].

Less invasive tools, like functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET), can capture whole human brain activity changes with fatigue
but at low temporal resolution. Quantitative electroencephalogram (EEG) provides richer
time-course data but limited spatial information. Small molecular biomarkers circulating
at low levels that may catalyze fatigue symptoms are often below detection thresholds for
standard assays [27]. Psychophysical measures of reduced muscular abilities, cognitive
lapses, and decreased motivation during fatigue are easy to implement but rely on subjec-
tive self-reporting without confirming underlying biological correlates. This invasiveness
limitation promotes heavier reliance on animal models to elucidate neurobiology [28–30].
Yet no single animal paradigm manages to recapitulate the full complexity of fatigue. Plus,
human heterogeneity and drivers like motivation loss have no clear analogue. Thus, eluci-
dating fatigue mechanisms through measurement remains seriously hindered by current
technological and practical constraints around studying relevant signals in states where
fatigue manifests.

Insularity. A significant barrier impeding progress in understanding fatigue is that as-
sociated research efforts have often occurred in silos segregated by disease area rather than
consolidated across specialties to identify overarching biological principles. Because fatigue
frequently co-presents across many illness contexts, like cancer, autoimmune disorders,
infectious diseases, neurological conditions, and mood disorders, insights tend to accumu-
late in isolated pockets within these research niches [11,14]. Findings from one domain are
often disconnected from complementary discoveries elsewhere. However, mechanistically
parsing a complex phenomenon like fatigue occurring in association with diverse patholo-
gies would greatly benefit from crosstalk across these specialties to recognize potential
commonalities. Whether core propagators rely more on inflammatory signaling, metabolic
irregularities, subtler mitochondrial dysfunction undetectable with standard assays, or
disruptions in neurotransmission can remain obscured without discourse across groups
studying these facets separately. Collaborative frameworks could powerfully catalyze
discovery by connecting clues about dysregulation from cellular signaling analyses in
one disorder to abnormal motor cortex activation patterns in another and blood markers
flagged in a third disease [31–33]. Only through active consolidation of insights derived
from compartmentalized investigations can researchers integrate fragments into unified
explanatory models with translational potential. But, historical divisions have suppressed
such vital cross-pollination.

1.4. Funding Prioritization Challenges

The lack of progress in understanding fatigue represents more than just conceptual
scientific challenges. It is further perpetuated by consistent funding neglect from major
governmental and nongovernmental sources allocating scientific research dollars [34,35].
Major initiatives have prioritized diseases to which fatigue is often secondary or ancillary
despite fatigue’s independent debilitating effects. Its common co-occurrence relegates it to
the status of an afterthought.
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However, the immense detrimental quality-of-life impacts imposed by persistent sen-
sations of draining exhaustion, mental fog, and depleted motivation regardless of root
pathology warrant dedicated funding commensurate with its prevalence across society.
With over a third reporting high fatigue levels at any given time across occupations and
lifestyles, research focused explicitly on illuminating basic science around fatigue is dispro-
portionately underfunded and attracts less interest in high-impact journals, limiting career
appeal [34,35].

Without earmarked, large-scale funding initiatives targeting fundamental energetics,
metabolomics, inflammatory profiling, and high-resolution neural mapping and model-
ing studies focused directly on fatigue itself rather than just a side effect of other syn-
dromes, critical insights around pathogenesis and predictive markers are delayed. Priori-
tizing commensurate funding would accelerate knowledge development to match societal
fatigue burdens.

1.5. Future Trends in Fatigue Research

As the understanding of fatigue as a complex, multi-system issue grows, research
approaches are evolving to match this complexity. Key trends include utilizing big data
and machine learning to find patterns across biological and behavioral data points [36], in-
creased focus on the gut–brain axis and related mechanisms, like the impact of microbiome
composition on fatigue [37], precision medicine initiatives to subtype different fatigue en-
dophenotypes based on genetic, immune, and other biomarkers [38], and further research
into lifestyle interventions like exercise, nutrition, and stress reduction that can potentially
rebalance dysregulated systems underlying fatigue [39]. Technological advances in multi-
domain biological data gathering, computer modeling, and data integration will likely
accelerate these trends towards a big-picture, systems-based understanding of fatigue. This
more holistic paradigm brings hopes of better diagnostics, subtyping of fatigue disorders,
and potentially individualized or multi-modal therapies that can address root causes.

2. Domains of Application for Artificial Intelligence (AI) to Study Fatigue

Part II: Forging New Frontiers: Opportunities for Artificial Intelligence and Neuro-
technologies to Illuminate Fatigue Mechanisms

Subjective fatigue spanning normal to pathological states presents a complex pheno-
type implicated across nearly all medical, psychological, and behavioral domains [4–6].
Any realm with multidimensional datasets capturing diverse aspects of fatigue experi-
ences, biomarkers, and functional impacts holds promise as an application domain for
AI techniques.

Chronic conditions like multiple sclerosis, cancer, Parkinson’s disease, and autoim-
mune disorders that frequently involve problematic fatigue provide relevant physiological
data resources to employ machine learning algorithms. By modeling patterns across re-
ported symptoms, blood panels, genetics, neuroimaging, and task performance metrics,
predictive subtypes not constrained by clinical criteria could emerge [40]. Electronic health
records data also offer a training field for neural networks to classify who will develop
disabling exhaustion.

Wellness technology and wearable biosensors that track individual variability in
fatigue experiences over time may enable personalized phenotyping through deep learning
timeseries analysis [37]. Multimodal data fusion could illuminate circadian, metabolic, and
lifestyle contributors. Reinforcement learning agents that suggest activity pacing and other
interventions through virtual trials may also improve quality of life.

Broad research infrastructure development and participatory partnerships are imper-
ative to compiling shareable corpora spanning the extensive heterogeneity within each
domain’s fatigue manifestations [41]. Scientific working groups helping coordinate scope
and quality standards for training sets will unlock fuller benefits across the spectrum until
subjective exhaustion becomes objectively characterized through AI tools [42].
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2.1. Illuminating the Complex Phenotype of Fatigue with Integrative AI

The subjective experience of fatigue involves an intricate web of physiological, molec-
ular, neural, psychological, and environmental factors that vary significantly across indi-
viduals and circumstances [6,24]. This complexity and this heterogeneity have profoundly
hindered progress in elucidating mechanisms, biomarkers, and interventions related to fa-
tigue [43]. Research progress has also been limited by overspecialization and the challenges
involved in systematically consolidating multimodal biomedical data to derive integrated
explanations. Emerging techniques in AI, including machine learning and deep learning
applied to aggregating complex datasets, offer promising analytic advances to overcome
these obstacles [30,44]. Machine learning and deep learning are very much considered core
parts of the field of artificial intelligence. Advances in these areas are driving much of the
current excitement and breakthroughs in AI [45–48].

Machine Learning Approaches. Supervised machine learning involves computational
algorithms trained to recognize multivariate patterns that differentiate classes and predict
outcomes within multidimensional datasets [49]. By applying predictive modeling to
diverse physiological datasets integrating molecular profiles, neural signals, reported
symptoms, and task metrics from individuals exhibiting both shared and distinct aspects
of fatigue, machine learning provides the potential to elucidate patterns of similarities and
differences linked to mechanisms [44]. Studying fatigue via endocrine, immunological,
genetic, self-reported, and neuroimaging data concurrently within individuals is crucial
considering the evidence that fatigue comorbidities have interconnected influences [43].
Diverse neural network architectures, boosting methods, support vector machines, and
clustering algorithms have all shown utility for handling heterogeneous, high-dimensional
data and high-order feature interactions characteristic of fatigue phenotypes [40,44].

Deep Learning Techniques. As an evolution of multilayer neural networks, deep
learning uses multiple processing layers to transform input data into hierarchical, abstract
representations [49]. Applied directly to raw neuroimaging data, such as functional MRI,
EEG, and PET scans related to fatigue, deep learning offers opportunities to extract pat-
terns that allow for the classification of fatigue levels or phenomenological subtypes [44].
Generative deep models also facilitate imputing missing data modalities, which is valu-
able for integrating disjointed findings across incomplete historical studies. Translation
techniques allow model interpretation to generate data-driven, functional hypotheses re-
garding neural dynamics and connectivity linked to fatigue experiences, mechanisms, and
interventions [40].

Research Infrastructure and Priorities. Realizing the potential synergies afforded by
applying artificial intelligence techniques to illuminate mechanisms underlying fatigue
relies upon constructing collaborative research infrastructures for integrated phenotypic
assessment, open science data sharing, enhanced funding, and improved regulatory align-
ment [50]. Multidisciplinary consortiums focused on deep patient phenotyping for pre-
cision medicine have provided frameworks encompassing virtual datasets integrating
genomics, multiomic analysis, personal health record data, wearable readings, and eco-
logical phone assessments that could be adapted to produce data resources for training
integrative fatigue algorithms at scale [51]. Scientific working groups and federal har-
monization initiatives also provide approaches that could incentivize and structure the
formation of much-needed collaborative repositories optimized for applying multifaceted
AI capabilities to transform understandings of fatigue’s complex biology.

2.2. Utilizing AI to Decode Fatigue’s Multifaceted Complexity

Fatigue poses a massive challenge for biomedicine as it is implicated across nearly
all disease states yet still enigmatic in its phenomenology and biological origins [10–13].
Both the subjective multidimensionality of fatigue experiences and the interconnectivity of
influencing factors defy reductionist explanatory models. Advanced AI presents versatile
analytic approaches well-suited to mapping complex systems [52]. Techniques like deep
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neural networks, reinforcement learning, and generative adversarial networks applied to
heterogeneous fatigue data can derive new biomarkers, phenotypes, and treatment targets.

Multilayer feedforward neural networks and convolution networks can pinpoint
patterns in diverse biomarker data that connect to fatigue. By training on combined
physiological datasets encompassing gene expression, clinical lab tests, cytokine panels,
EEG readings, and patient reports, high-dimensional fatigue “fingerprints” can emerge
that classify severity and subtype [44]. Preprocessing via principal component analysis
and upset plotting informs key feature contributions. Recurrent models analyze sequential
biomarker data as well, better capturing dynamic aspects.

Unsupervised approaches like k-means clustering applied to consolidated fatigue
datasets discover potential phenotypes beyond patient-reported case definitions [40]. Re-
inforcement learning agents iteratively simulate treatment responses, rapidly screening
hypothetical targets. Generative adversarial networks synthesize artificial yet realistic
fatigue-related data to power deep neural network training [53].

Multimodal fatigue recordings parsed via signal processing and sensor fusion chron-
icle fluctuating real-world experiences [54]. Probabilistic graphical models characterize
conditional dependencies among variables, inferring likely upstream and downstream
mechanisms. Hybrid models should integrate bottom–up signal analytics with top–down
systemic modeling to fully decode fatigue complexity as attempts narrow knowledge gaps.

2.3. Machine Learning for Pattern Discovery in the Fatigue Phenotype

Subjective fatigue spanning healthy to pathophysiological states involves dynamic
interactions between physiological systems, genetics, lifestyle factors, and psychological
processes—a complex phenotype still poorly characterized [43]. Machine learning offers
versatile analytic approaches to illuminate multivariate patterns and inherent structures
in such heterogeneous high-dimensional data that evade human examination [55]. Both
supervised and unsupervised techniques applied to diverse fatigue-related datasets can
derive novel insights.

Multilayer neural networks and ensembles of decision trees capture nonlinear rela-
tionships and high-order interactions between variables predictive of fatigue level and
trajectory based on biochemical, immunologic, imaging, genomic, and patient-reported
data [44]. Support vector machines efficiently find optimal boundaries that separate distinct
fatigue subtypes or stages. Recursive feature elimination and principal component analysis
preprocess unwieldy data.

Unsupervised learning is crucial for discovering natural fatigue phenotypes from
bottom–up data without imposing existing classification constraints [40]. Algorithms like
non-negative matrix and tensor factorization help identify parts-based biomarker subsets
and co-occurrence patterns. Gaussian mixture models estimate the number of distinct
biological processes models encompass.

Top–down hybrid approaches then integrate data-driven machine learning compo-
nents with expert knowledge in causal probabilistic graphs and process-based simulations
to further disentangle mechanisms [56]. Machine learning offers empirical fuel for decoding
fatigue’s complexity; optimizing its potential relies on multidisciplinary data integration.

2.4. Deep Learning for Data-Driven Fatigue Phenotyping

The subjective, multifaceted nature of fatigue poses barriers to quantification that have
hindered research progress for this critical quality-of-life factor across disease states [10–13].
Deep learning methods offer advantages in analyzing complex patterns within multidi-
mensional data to empirically derive fatigue phenotypes and neural representations.

Deep neural networks compose layered transformations that uncover hierarchical
non-linear feature representations within raw data, like neuroimaging scans [50]. Convo-
lutional architectures analyze spatiotemporal patterns in functional MRI, EEG, and MEG
signals that classify fatigue level and subtype without relying on predefined regions of
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interest [40]. Recurrent networks capture temporal dynamics in sequential biomarker data
that characterize fatigue fluctuations.

Unsupervised techniques are crucial for discovering intrinsic patterns. Autoencoders
compress then reconstruct high-dimensional omics data to capture key fatigue-related
genetic and molecular factors in compact representations [44]. Generative adversarial net-
works can mitigate limited dataset sizes by synthesizing diverse, realistic fatigue biomarker
distributions [53]. Self-supervised pretraining predicts masked aspects, extracting useful
features before fine-tuning on labeled data.

Integrating deep learning components with multimodal data aggregation and expert-
derived constraints within explanative modeling frameworks capitalizes on respective
strengths [52]. The versatility of deep learning offers tangible progress towards data-driven
fatigue phenotyping.

2.5. Towards Valid AI Models of Fatigue: The Importance of Multifaceted Evaluations for Reliable
Scientific Progress

A rigorous framework for evaluating proposed AI methods is crucial for reliable
progress in leveraging techniques like machine learning (ML) for gaining insights into
complex health and behavioral phenotypes like fatigue [43]. Quantitative cross-validation
approaches that assess the model’s skill at making predictions out of sample on new data
promote generalizability [40]. However, due to the challenges of sufficiently enrolling
cohorts spanning the heterogeneity of fatigue experiences, evaluations of ML algorithms
aimed at classifying or stratifying fatigue should report metrics of predictive performance
across datasets that represent realistic inter-study variability [57].

Additionally, testing across subsets of input data modalities (e.g., symptoms, wearable
sensor streams, neuroimaging, multiomic, etc.) via sensitivity analysis is important for
characterizing robustness [58]. Qualitative inspection of models’ results by domain experts,
explanation of the biological plausibility of predictive patterns, and error analysis can
mitigate risks of ML models simply learning statistical rather than more valid relationships
from complex fatigue data [59]. Simulations that help assess concordance between emerging
databased AI models and current theory-based knowledge about crash, post-exertional,
and chronic fatigue mechanisms also remain crucial for synergistic scientific progress [60].
Future evaluations should utilize nuanced, multifaceted approaches to establish valid,
complex AI methods that enhance understanding of fatigue across conditions.

2.6. Barriers to Illuminating Fatigue Mechanisms with AI

While AI methods like ML and DL offer advantages in analyzing multidimensional
data to empirically phenotype fatigue states, substantial barriers constrain current capa-
bilities. Fundamentally, the subjective and temporally dynamic nature of fatigue impedes
assembling optimally large, heterogeneous, high-quality training datasets encompassing
the diversity of influential biological and experiential factors [10–13]. Small sample sizes
prone to sampling bias propagate risks of AI models achieving apparently strong predictive
performance by capitalizing upon spurious correlations that fail to generalize or accurately
reflect complex multisystem fatigue mechanisms [61].

Even with attempts to integrate multimodal data, ML algorithms exploring patterns
spanning self-reports, wearable biosensor streams, genetics, lab tests, and neuroimaging
may simply inherit and perpetuate the limitations of the underlying datasets and theories
they draw upon. Their black box complexity also constrains model transparency and
biological interpretability compared to explainable theory-driven models [46]. While DL
techniques offer promise in processing raw physiological signals, validating their fidelity
becomes challenging without established characterizations of fatigue pathophysiology to
reference [52].

Progress requires sharing analytical techniques with an expansive, coordinated re-
search agenda encompassing foundational science, continued ontology development, and
a high-quality phenotypic data infrastructure. Multidisciplinary teams should guide the
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appropriate implementation of AI tools, the contextual interpretation of the findings, and
bidirectional exchanges with basic researchers to overcome current barriers impeding
AI-augmented illumination of fatigue’s origins and impacts [62].

3. How to Develop an AI Chatbot for Research

Advances in conversational AI offer researchers opportunities to create optimized dig-
ital interfaces for nearly all aspects of the scientific process. A major potential application of
these systems involves natural language virtual agents or “chatbots” designed to interact
directly with human subjects and study participants via flexible dialogue, replacing or
augmenting traditional hand-coded online survey tools [63]. For example, a chatbot could
be leveraged to enhance the recruitment of representative subject samples, the fine-tuning
of eligibility screening for specialized protocols, the administration of standardized ques-
tionnaires [64], or even intervention delivery and progress tracking. However, successfully
implementing chatbots in research requires methodical development and evidence-based
optimization.

The chatbot design process should be initiated by explicitly defining the intended pur-
pose and target population [65]. If aiming to act as an intelligent screener for a clinical trial
on depression treatments, as one illustration, the system must encompass domain-specific
vocabulary and appropriate tone given mental health considerations, and it must include
validated instruments for assessing current symptoms and prior diagnoses. Output from
all system dialogues must store variables in formats optimized for analysis as well. With a
clear understanding of how chatbot capabilities will map to research goals, conversational
frameworks can be outlined that logically guide users from open-ended welcome greetings
to specific prompts gathering required data elements. Extensive usability testing, ideally in
the ultimate target cohort, is critical before progressing [63].

Natural language processing methods, like bidirectional encoder representations from
transformers (BERT), enable training the AI to reliably interpret diverse free-text responses
from users rather than relying solely on restrictive multiple choice options [51]. These
techniques require curating extensive repositories of raw language examples that the
system may encounter associated with labels describing the intended meaning to “learn”
contextual intent recognition.

The tuned language comprehension model can then be embedded within a modular
conversational architecture encompassing dynamic response generation components [65].
Analytics should track all system interactions, and the entire pipeline must operate on
secure platforms to safeguard confidentiality. Launch constitutes only the beginning—
chatbot intelligence further evolves continuously in research through participant feedback,
empirical performance benchmarking, and iterative improvements towards optimally
addressing study aims.

3.1. From a Literature Review to Lab Work: Claude and ChatGPT as Collaborators in
Fatigue Research

Advancing understandings of fatigue mechanisms and treatments represents an im-
portant scientific challenge requiring innovative approaches. AI tools offer promising
capabilities to help review existing findings, generate fresh theoretical insights, plan rig-
orous studies, and formulate ideas for high-impact research projects [66,67]. Specifically,
conversational agents like Anthropic’s Claude [68] and OpenAI’s ChatGPT (version 3.5) [69]
permit direct querying and dialoguing with sophisticated language models. These sys-
tems have been trained on immense textual datasets, allowing them to interpret questions,
synthesize information into well-structured responses, and maintain coherent multi-turn
conversations. By enabling fluid interaction with expansive models of knowledge and
discourse, Claude and ChatGPT empower researchers to leverage these AI systems as
collaborative partners in pushing fatigue science forward.

The following explores productive applications of these conversational tools for lit-
erature reviews, hypothesis development, study design, perspective drafting, and grant



Brain Sci. 2024, 14, 186 9 of 14

proposal ideation to unravel the multifaceted phenomenon of fatigue through emerging
techniques. The key premise is that thoughtfully guiding AI conversations can accelerate
human discovery efforts. Scientists who leverage Claude and ChatGPT as part of their pro-
cess will amplify true knowledge advances about fatigue’s mechanisms and treatments [70].

3.2. Literature Knowledge Synthesis

Conducting exhaustive literature reviews is fundamental but time-consuming for
scientists. Claude and ChatGPT can serve as research assistants in compiling relevant
publications on fatigue by rapidly reviewing key details in multiple papers, highlighting
open questions around biomarkers and mechanisms, identifying seminal studies, and
synthesizing core discoveries across various models and experimental approaches. Their
ability to connect findings across disciplinary silos could allow them to suggest novel
perspectives. Researchers can supply queries, areas of focus, and clarification questions to
efficiently extract current knowledge status on issues of interest from these AI tools [70,71].

3.3. Hypothesis Generation

True scientific advances require creative leaps to formulate testable explanatory hy-
potheses [72]. Claude and ChatGPT facilitate such conceptual ideation by allowing for the
rapid iteration of theories based on probing their expansive knowledge of potential fatigue
contributors. For example, asking them to speculate on ways nutritional factors, micro-
biome changes, or subclinical infections might trigger fatigue could yield promising new
angles. Researchers can integrate the most intriguing concepts from these conversations
into draft models fleshing out putative causal chains, influences, and interactions driv-
ing fatigue’s onset and progression [73]. Such AI-assisted theory building can crystallize
high-potential hypotheses to prioritize for empirical examination.

3.4. Study Design

Carefully constructed studies are necessary to evaluate speculative hypotheses, but
designing research with sufficient power for conclusive inferences poses challenges [71].
Dialoguing with Claude and ChatGPT on study considerations can provide constructive
input [57–59,74]. Researchers can describe nascent study ideas and have conversations
examining issues like useful comparison groups, the feasibility of recruiting certain clini-
cal populations, biomarker and endpoint selection to increase sensitivity for hypothesis
tests, and modeling approaches to extract maximal insights from the collected data. The
systems’ broad knowledge informs estimates of how adjusting factors like sample size,
methods, and measurement strategies may strengthen the experimental foundation for
testing mechanistic hypotheses about fatigue’s etiology [74,75].

3.5. Perspective Commentary Ideation

In addition to driving novel fatigue research, AI tools can assist scientists in consol-
idating current knowledge into perspective summaries for the research community. For
instance, Claude can rapidly generate initial drafts of sections reviewing how techniques
like predictive analytics, closed-loop stimulation systems, or pattern recognition on mul-
timodal biomarker data might clarify understanding or lead to interventions for fatigue
syndromes. Researchers can provide the framework and direction for such sections during
the drafting process. The commentaries can outline promises and challenges around emerg-
ing approaches while synthesizing existing evidence and unknowns regarding mechanisms
targetable for advanced analytics. This output helps update the broader scientific field on
the frontier of progress.

3.6. Grant Proposal Planning

Research projects aimed at cracking open new dimensions to unravel fatigue’s etiology
will require funding support. Claude and ChatGPT allow for collecting promising seed
ideas for grant proposals during conversational sessions focused on how applying cutting-
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edge data science capabilities could accelerate knowledge growth [66,67,69]. Researchers
can query the systems on goal setting for projects to uncover fatigue propagators, high-
priority research gaps limiting treatment advances, and how new analytical methods
offer opportunities. Gathering these idea fragments can help organize critical pieces of an
impactful grant application, including laying out important questions, grounding technique
selections in the literature, communicating significance for projected gains, and painting a
vision for innovation in fatigue elucidation using AI capabilities.

In summary, progress in elucidating fatigue represents a challenging but crucial area
of biomedical research requiring marshaling emerging technologies like AI. Conversational
agents provide powerful tools to aid human researchers throughout conceptualization,
planning, and theorizing around high-impact science directions. Effectively leveraging
Claude and ChatGPT as collaborative thought partners via guided dialogue can expand
progress in disentangling the complex web of mechanisms driving fatigue [66]. Scientists
who productively harness these AI systems as part of their discovery process will amplify
true knowledge advances.

3.7. Limitations of AI Chatbots in Science

AI chatbots, such as Claude and ChatGPT, have seen rapid advances in recent years,
demonstrating impressive conversational abilities. However, their application within
scientific domains remains limited due to a number of key challenges and limitations.

A fundamental limitation of chatbots is their lack of true semantic understanding
behind conversations [70]. While advancements have been made in language modeling to
generate coherent responses, chatbots still mostly rely on surface-level pattern matching
rather than comprehending linguistic meaning and context. This restricts their applicability
for science fields reliant on conceptual knowledge and reasoning. Simple information
retrieval cannot replace the deep mastery and critical analysis expected from scientific
experts [70,71].

Relatedly, chatbots currently lack human-level reasoning abilities for logical inference,
abstraction, and critical evaluation [71,72]. Without capacities for logical deduction, scien-
tific scrutiny, and identification of false claims or questionable conclusions, chatbots cannot
robustly assist scientists or produce novel insights [71,72]. Attempts to mimic scientific
hypothesis testing and analysis often resort to fabricated responses lacking substantive
meaning [70–72].

While chatbots can display surface-level domain knowledge for constrained topics,
their scientific understanding remains exceptionally narrow and brittle compared to hu-
man experts [71,72]. Restricted knowledge is prone to fast deterioration outside strict
parameters, unlike the robust conceptual mastery of scientists. Additionally, language
model deficiencies cause inconsistent, contradictory, and factually incorrect outputs when
chatbots lack familiarity with queried topics. This unreliable performance presently renders
autonomous chatbot participation in advanced research infeasible [71,72].

In summary, currently, deficiencies in comprehension, reasoning, and critical thinking
and unstable mastery of scientific principles severely curb chatbots’ capabilities for reliably
contributing to impactful science. With ongoing progress in AI, some constraints may relax,
but human guidance and judgment will remain essential for responsible application in
sensitive scientific domains for the foreseeable future.

4. Illuminating Fatigue’s Neural Circuitry: An Emerging Technologies Time Travel

Fatigue remains a perplexing phenomenon with unclear neurobiological underpin-
nings and mechanisms operating across interconnected physiological systems. Advancing
diagnostics and treatments for fatigue conditions requires decrypting its complex neural
signaling cascades and decoding dynamic signatures manifesting in neuroimaging data.
Emerging techniques like mobile brain imaging, high-density EEG, multimodal neural
fusion models, closed-loop stimulation systems, and brain–computer interfaces integrated
with AI promise capabilities that could revolutionize understandings of fatigue’s neural
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circuitry. By interweaving neurotechnologies and advanced analytics, scientists may unlock
fatigue’s mysteries. Here, we will explore an envisioned time travel of innovations that
could transport fatigue science across the frontiers of progress over the coming century.

4.1. The Near Future: Tracking and Predicting Neural Fatigue Signals

Within the next decade, wearable mobile EEG–fMRI fusion modeling will enable the
tracking of real-time neural correlates and connectivity changes associated with fatigue
emergence and recovery at an individual level. Meanwhile, high-density EEG neural
networks leveraging multivariate pattern analysis will achieve accurate personalized fa-
tigue level predictions and risk forecasting. Such AI-powered brain mapping will deliver
biomarker feedback to guide timely interventions.

4.2. Mid-Century: Multimodal Neural Signatures for Subtyping and Modulating Fatigue

By 2050, integrated diagnostics combining genomic, proteomic, and metabolic neural
imaging will facilitate data-driven subtyping of chronic fatigue conditions. This will permit
matching subtype-specific treatments to disease endotypes based on their underlying biol-
ogy. In parallel, closed-loop stimulation systems harnessing real-time fMRI integrating EEG
inputs will have demonstrated efficacy for AI-optimized modulation of fatigue circuitry.

4.3. The 22nd Century: Pre-Empting and Permanently Remediating Fatigue

As the 2100s approach, nanoscale sensor networks with wireless data integration will
enable multi-organ snapshots of bioenergetic processes predicting incipient fatigue hours
before symptoms manifest. Brain–computer interface symbionts with neural feedback and
reinforcement learning will continuously optimize cognitive/physical energy levels for
enhanced performance. Genetic anti-fatigue therapies will permanently recalibrate the
molecular pathways underlying fatigue based on an individual’s neural imaging profile.

4.4. Convergence Driving Breakthroughs

By strategically coordinating the rollout of enhanced neuroimaging, analytic modeling,
and simulation innovations in the coming decades, researchers can catalyze synergistic
advances, equipping them to finally decipher fatigue’s neural code. The future integration
of high-fidelity fatigue brain mapping with analytics and interventions looks very exciting.

5. Summary

Part I reviews persistent challenges obstructing progress in understanding complex
fatigue’s biology. Despite fatigue’s immense personal and societal burdens, fundamental
mechanisms driving the development and persistence of sensations like exhaustion, mental
fog, and motivation loss have remained enigmatic. By consolidating an updated per-
spective on obstacles spanning the subjective multidimensionality of fatigue experiences,
molecular-to-neural interconnectivity, individual variability, limitations of physiological
sensing techniques, research/funding insularity, and communication barriers, this review
freshly reveals the breadth of impediments obstructing impactful scientific advances and
underscores both a novel urgency and a timely opportunity. Difficulties quantifying subjec-
tive symptoms, mapping multifaceted mechanisms, accounting for individual variation,
enabling invasive sensing, overcoming insularity, and funding neglect are discussed.

Part II explores how emerging techniques like mobile brain imaging, biosensor analyt-
ics, advanced modeling approaches, and translational partnerships offer new opportunities
to synergistically accelerate progress—either incrementally via status quo pathways or
rapidly through strategic coordination with collaborative digitized data infrastructure.

Exciting opportunities exist for employing artificial intelligence, especially machine
and deep learning, to integrate personalized multi-omics profiles with behavioral and
neural features. Creative modeling strategies are highlighted for optimally utilizing these
advances to overcome long-standing individual variability, invasiveness, and communi-
cation challenges surrounding fatigue investigation. Potential applications, like pattern
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recognition of complex physiological signatures as more objective biomarkers, predictive
modeling capturing personal nuances, consolidating disjointed findings via data mining,
and simulation to explore interventions, are discussed. Envisioned is an innovation timeline
where the application of enhanced technologies combined with AI analytics could catalyze
transformative progress in elucidating fatigue’s neural circuitry and treating associated
conditions over the coming decades. Researchers strategically leveraging modern tools and
shared data approaches will drive this new era of understanding.
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