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This paper proposes an effective approach to distinguish whether samples include Human Papilloma
virus type-16 (HPV16) by Atomic force microscopy (AFM). AFM is an important instrument in nano-
biotechnology field. At first we identified the HPV16 by Polymerase chain reaction (PCR) analysis and
Western blotting from specimen of the HPV patient (E12) and the normal (C2), and then we used an AFM
to observe the surface ultrastructure by tapping mode and to measure the unbinding force between
HPV16 coupled to an AFM tip and anti-HPV16 L1 coated on the substrate surface by contact mode. The
experimental results by tapping mode show that the size of a single HPV viron was similar to its SEM
image from the previous literatures; moreover, based on the purposed methods and the analysis, two
obvious findings that we can determine whether or not the subject is a HPV patient can be derived from
the results; one is based on the distribution of unbinding forces, and the other is based on the dis-
tribution of the stiffness. Furthermore, the proposed method could be a useful technique for further
investigating the potential role among subtypes of HPVs in the oncogenesis of human cervical cancer.

& 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recent years have seen increased attention being given to
Human papilloma virus (HPV) in biomedicine field literature. Be-
cause a number of studies have shown that HPV infection is an
important risk factor for cervical cancer [1–3], breast cancer [4–6],
and even lung cancer [7]. Especially the relation between suffering
from cervical cancer and HPV16/18 has massive empirical support
in clinical observation respect [1,8]. Besides, HPV is one kind
deoxyribonucleic acid (DNA) virus. In general, HPV itself vanishes
after infecting the cervix about 7–8 months, but a small part still
survives and proceeds to make the cervix be infected with this
type pathogen. HPV is so a type of very tiny pathogen (nanometer
level) that finding a suitable observational instrument is a very
important task. Traditionally, methods for detecting HPV in cer-
vical samples include Southern blot and dot blot hybridization [9],
Hybrid Capture II (HCII) [10], etc. In addition to the above-de-
scribed methods, the way to detect HPV by atomic force micro-
scope (AFM) is perhaps more efficient, simple and convenient.

AFM, invented by Binning, Calvin Quate, and Gerber in 1986 as
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a tool with high-resolution, now has many applications in the
fields of molecular biology, semiconductor physics, etc [11–13].
Because AFM has so many applications, in the past 30 years the
science and technology for the creation and use of AFM has pro-
gressed tremendously. In the field of molecular biology, AFM has
proved to be applicable to structural studies of single biomolecules
[14–16] and to the measurement of molecular forces at the single-
molecule level by contact mode. AFM has the absolute pre-
dominance of nano-level spatial resolution for detecting molecular
interaction at high lateral resolution combined with immense
force sensitivity in an intricately physiologic environment as
compared with other biophysical approaches to direct measure-
ments of inter-molecular forces, such as the magnetic torsion, the
bio-membrane force probe (BFP), etc. Therefore, AFM has been
utilized well to gauge and estimate inter-molecular forces be-
tween various ligand and receptor pairs [17–19] and intra-mole-
cular unfolding forces of individual proteins [20].

AFM is perhaps the most versatile member among microscopes
known as scanning probe microscopes (SPMs). For example, to
achieve specific needs, we can change the characteristics of AFM
tips, such as chemical modification [21], and different chemical
modification of AFM tips may have different properties. Thus we
can acquire the information about specific force between modified
tips and local area of samples by contact mode. For measurements
of intermolecular binding strengths between antibody and antigen
C BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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binding, antibodies are attached to AFM tips and antigens are at-
tached to substrate surfaces, and vice versa. The modified AFM tip
is brought into contact with the substrate surface so as to form
antibody/antigen complexes. When the modified AFM tip is re-
tracted from the substrate surface, the force required for dis-
sociation (unbinding force), defined as the rupture force at the
moment of sample separation, can subsequently be measured and
recorded by pulling on the complexes until the interaction bond
breaks. Some studies provide methods for estimation of affinity,
rate constants, and bond width of the binding pocket [22–24], and
even provide a tool for mapping the energy landscape [25]. In
addition, these equipments provide insights into the molecular
dynamics of the receptor/ligand recognition process by varying the
loading rate of force application [22–25]. In this study, we propose
a method for the biosensor application of AFM to studies of the
molecular dynamics of the HPV16/anti-HPV16 recognition process
based on clinical cantilever mechanical theories.
2. Material and methods

2.1. Polymerase chain reaction (PCR)

PCR is one kind technique in the molecular biology field, and it
lets a specific DNA sequence to be copied. Such technique was
performed as previously described [26]. This study used PCR
technique to copy and produce a large number specific HPV16 E6
primer segments from the HPV16 patient, and then by the same
method to produce a large amount of HPV16 E6 gene segments.
Next we confirmed whether the specimen includes HPV16 by
comparing to above-mentioned two kinds segments electrophor-
esis patterns.

2.2. Western blot analysis

Western blot analysis is widely used method to confirm specific
proteins in a sample, and the detailed analysis procedure was
performed as previously described [27]. This study used western
blot analysis and the results of electrophoresis to confirm whether
HPV16 existed in the specimen.

2.3. AFM contact mode and tapping mode

AFM contact mode is often used to measure the force interac-
tion between the AFM tips and samples [22–25]. But AFM contact
mode is easy to destroy the surface appearances of samples. To
overcome the problem, we can use AFM tapping mode as a solu-
tion to obtain original AFM images [28].

2.4. AFM images of HPV16 acquired by tapping mode

The images of HPV16 were obtained by using an Atomic force
microscopy (SPA 300HV, Seiko Instruments Inc., Japan). Commer-
cial silicon cantilevers (SuperSharpSilicon™ SSS-SEIH, NANO-
SENSORS, Switzerland) were used in tapping mode in air, and then
topographic images were acquired by using a resonant frequency
of 140 kHz for the probe oscillation.

2.5. Functionalization of AFM tips and the substrate surface

The mica substrate surface coated with HPV16 from the spe-
cimen that had checked by PCR and western blot analysis and AFM
tips (PointProbePlus, Nanosensors, Switzerland) were coupled
with anti-HPV16 L1, and moreover, the functionalization proce-
dure is described as follows. AFM tips and the substrates were
immersed in 65% solution of nitric acid for 10 min and then were
taken out. These AFM tips and the substrates were then immersed
in 5% ethanol solution for 10 min at room temperature, followed
by several rinses with solution of 5% ethanol/95% distilled water,
and then these AFM tips and the substrates were immersed in 5%
3-APTES solution in phosphate-buffered saline (PBS, pH 7.2) for
45 min and then extensively rinsed with PBS solution. Next, these
AFM tips and the substrates were immersed in a 2.5% Glutar-
aldehyde solution for 75 min In the last step, the anti-HPV16 L1
solution (200 μg/ml in PBS, pH 7.2) bound covalently to the AFM
tips for overnight incubation at 4 °C. On the other hand, before
AFM force measurements, the mica substrates were covalently
bond with HPV16 sample (E12) solution in PBS (pH 7.2) for 2 h.

2.6. AFM force measurement acquired by contact mode

A scanning probe microscope (SPM) system measuring head
(SMENA liquid head, NTMDT, Moscow, Russia) was used to mea-
sure the interaction force between HPV16 and anti-HPV16 L1 in
liquid environment. All AFM force measurements were executed at
the same loading rate 333.3 nm/s in PBS buffer (pH 7.2). Besides,
the interaction force between HPV16 and anti-HPV16 probe was
measured by approaching the AFM tip towards the HPV16 sample
perpendicularly.
3. Results and discussion

3.1. AFM images of HPV16

The detailed surface topographies of HPV16 samples on the
substrate were observed by use of AFM tapping mode (Fig. 1);
moreover, Fig. 1A-F shows the AFM images of the HPV particles on
the mica substrate. Fig. 1A shows the AFM image (scanning area
2000 nm�2000 nm) of the HPV samples, and the HPV particles
appear to be mainly spherical and uniformly distributed on the
mica substrate. By zooming into the square area which displayed
in Fig. 1A and B respectively, this higher resolution images (Fig. 1B
and C) were obtained. This higher resolution images (Fig. 1 B and
C) clearly display many separate spherical viral particles which
exist on the surface. Besides, Fig. 1A', B', and C' are three-dimen-
sional images of Fig. 1A, B, and C, respectively. To research the
dimension of a single in Fig. 1C, three viral particles which were
marked by squares in Fig. 1C were zoomed in Fig. 1D-F (topo-
graphic images). More than 50 single HPV16 particles were then
examined and analyzed by AFM imaging software, and their
average diameter from the AFM images was 51.6 ±1.8 nm
(mean ±SD, n¼51), in agreement with the size estimated from
electron microscopy apparently [29].

3.2. AFM force measurements acquired by contact mode and
analysis

3.2.1. The specificity of HPV16/anti-HPV16
To understand the dynamic response relation between HPV16

and anti-HPV16 L1, we used AFM contact mode to measure the
unbinding force required to separate complementary HPV16/anti-
HPV16 L1 pairs. Besides, all AFM force measurements were im-
plemented at the same loading rate of 333.3 nm per second in PBS
buffer (pH 7.2). The interaction force between HPV16 and anti-
HPV16 L1 probe was measured by approaching the tip towards the
sample perpendicularly. Before executing the force vs. distance
measurements of the antigen-antibody interaction, we must de-
sign and carry out experiments of control group and experimental
group of unbinding events. The detailed all kinds of unbinding
events results are described as follows.

Fig. 2A-C show typical examples of the force-distance curves



Fig. 1. AFM topographic images of the HPV on mica substrate acquired by tapping mode. (A) A two-dimensional topographic images (scanning area: 2000 nm�2000 nm);
(B) (scanning area: 1000 nm�1000 nm) and (C) (scanning area: 500 nm�500 nm) are two-dimensional topographic images which obtained by zooming into the square
area in (A) and (B) respectively; (A'- C') are three-dimensional images of (A), (B) and (C) respectively; (D-F) are two-dimensional images (scanning area: 200 nm�200 nm)
which acquired by zooming into the three squares in (C).
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obtained with these systems. In Fig. 2A, we acquire the result that
no obvious pull-off event was observed in the tip-glass system. In
the HPV16-anti-HPV16 L1 system (see Fig. 2B), an apparent force
discontinuity was present as a result of the adhesion force be-
tween the HPV16-anti-HPV16 L1 pair. This reveals that the force
measured in the HPV16-anti-HPV16 L1 system can belong to the
specific HPV16-anti-HPV16 L1 unbinding event. Besides, in order
to verify that HPV16-anti-HPV16 L1 binding brought about the
observed the phenomenon of force discontinuity, the substrate
was coating with proteins from the normal instead of HPV16 as a
control experiment. We can find that the recorded force curves
displayed no adhesion pull-off event (see Fig. 2C), that is to say, an
unbinding force phenomenon was not observed. The two control
experiments (see Fig. 2A and C) show that the lack of discrete
adhesion points in the force-distance curves. In other words, these
two control experiments highlights the specificity of the interac-
tion between the anti-HPV16 L1 coupled to the AFM tip and the
HPV16 coated to the substrate (as shown in Fig. 2B).
3.2.2. The HPV16 L1-anti-HPV16 L1 with mono-, di-, and multi-un-
binding events

A series experimental and control experiments (as shown in
Fig. 2A-C) show that the specific interaction forces between HPV16
and anti-HPV16 L1 exist. Besides, this paper reveals that the force
curves with specific single, double, and multiple unbinding events
were observed in this study. Fig. 3 shows the force-distance of the
HPV16-anti-HPV16 L1 systemwith mono-(as shown in Fig. 3A), di-
(as shown in Fig. 3B), and multi-(as shown in Fig. 3C) unbinding
events recorded for a pH 7.2 solution, which may be attributed to a
single, sequential, and multiple breaking of interacting bond
(s) between HPV16 and anti-HPV16 L1 respectively. Schematic
diagrams of the A, B, and C binding events are shown in a, b, and c,
respectively. Besides, the force curve with one adhesion point (as
shown in Fig. 3A) reveals that the single pair interaction was
broken during the retraction process of the force measurement.
This force curve (Fig. 3A) could be ascribed to the real situation
that the HPV16 particle randomly immobilized on the substrate
could be oriented (a1) or lying on the substrate (a2) with one
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Fig. 2. Typical measurements of unbinding forces acquired by AFM contact mode.
Force-distance curves of no adhesive force appeared during the retraction process,
which were acquired by use of (A) AFM tip/glass and (C) HPV16 L1 antibody/protein
from normal systems as two control experiments. (B) A representative force-dis-
tance curve of the HPV16-anti- HPV16 L1 system with a specific unbinding event
which appeared during the retracting process.
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Fig. 3. Force-distance curves of the HPV16-anti-HPV16 L1 system with (A) mono-,
(B) di, and (C) multi-unbinding events, which may be attributed to (A) a single,
(B) sequential, and (C) multiple breaking of bond(s) between the substrate and the
AFM tip. Schematic representations of the A, B, and C binding events are shown in a, b,
and c, respectively. The HPV16 particles randomly immobilized on the substrate could
be oriented (a1) or lying on the substrate (a2) with one binding site oriented to bind a
single anti-HPV16 L1 on the AFM tip. Two separate anti-HPV16 L1 on the AFM tip can
bind to two identical combining sites on one HPV16 (b1) or to separate combining
sites on two HPV16 particles (b2). Several separate anti-HPV16 L1 molecules on the
AFM tip can bind to three (c1) separate combining sites on HPV16 particles.
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binding site oriented in order to bind a single anti-HPV16 on the
AFM tip. Next, the force curve with two adhesion points (as shown
in Fig. 3B) shows a sequential breaking of interacting bond(s) from
the complementary HPV16/anti-HPV16 L1 pairs. In Fig. 3B, we can
find that the HPV16 particle on the substrate might bind to two
identical binding sites on one anti-HPV16 L1 (b1), or bind to
separate binding sites on two anti-HPV16 L1 (b2). Besides, there
were multiple pull-off steps during the retraction process in some
force curves that could be ascribed to multiple breaking of inter-
acting bonds between the anti-HPV16 L1 molecules on the AFM tip
and the HPV16 particles on the substrate (see c1 and c2 in Fig. 3C).
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3.3. Experimental results and the statistical analysis

To summarize the salient features of the experimental statis-
tical analysis, two findings of the obviously statistical difference
between the HPV patient and the normal are worthy of attention;
one is the unbinding force (as shown in Fig. 4A), and the other is
the stiffness (as shown in Fig. 4B). Fig. 4A shows the histograms of
the unbinding force distribution between the HPV16 L1 and the
anti-HPV16 L1 of the HPV patient and the normal, and the un-
binding force was calculated from 600 force-distance curves; the
amount of the HPV patient is 300, and the other is also 300. Fig. 4A
shows the results of unbinding forces (mean±SD) of the HPV pa-
tient samples (312.7 ±99.9 nN) and of the normal samples
(53.7±24.6 nN), respectively. These data were examined by using
one-way ANOVA, and the statistical analyses show significant
differences among measurements in the two groups (po0.05).
These results reveal that the unbinding forces for these two groups
were strikingly different. Besides, these data were reasonable
because the specificity relation between the HPV16 L1 and the
anti-HPV16 L1, so the unbinding forces of the HPV patient samples
are usually larger than the unbinding forces of the normal sam-
ples. Next, Fig. 4B shows that the stiffness distributions of the HPV
patient (34.2±1.3 pN/nm) and the normal (26.1±0.9 pN/nm) are
completely separate, and the statistical analyses still reveal sig-
nificant difference among measurements in these two groups
(po0.05), and the stiffness of the HPV patient is obviously larger
than the stiffness of the normal. Such results (as shown in Fig. 4B)
are reasonable because the shell of the HPV16 L1 consists of cap-
someres and these capsomeres form a symmetrical icosahedral
granule, and moreover, the shell structure of the HPV16 L1 (E12) is
more stable and harder than the samples from the normal (C2)
only include proteins.
4. Conclusions

This paper shows the advantage of using AFM, which is a
sensitive force probe instrument and provides the high-resolution
imaging of the HPV16 by AFM tapping mode to avoid destroying
the samples surfaces. Besides, this paper proposes a label-free way
to check whether or not the HPV16 molecules exist from the force
specificity relation between HPV16 and anti-HPV16 L1 by using
AFM contact mode. For example, Fig. 2A and B show the typical
force-distance curves for non-specific unbinding event and spe-
cific unbinding event, respectively. According to the phenomenon
displayed on the force-distance curve which the non-specific un-
binding event or specific unbinding event produces, we can ac-
quire the results to analyze whether or not the sample includes
HPV16.

In summary, we can identify much more effectively by AFM
whether the subject is HPV16 patient from the proposed identi-
fication method and experimental results (as shown in Figs. 2, 3,
and 4) in this paper.
Appendix A. Transparency document

Transparency document associated with this article can be
found in the online version at http://dx.doi.org/10.1016/j.bbrep.
2016.04.008.
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