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Abstract

In the Cancer Genome Atlas (TCGA) project, gene expression of the same set of samples is measured multiple times on
different microarray platforms. There are two main advantages to combining these measurements. First, we have the
opportunity to obtain a more precise and accurate estimate of expression levels than using the individual platforms alone.
Second, the combined measure simplifies downstream analysis by eliminating the need to work with three sets of
expression measures and to consolidate results from the three platforms. We propose to use factor analysis (FA) to obtain a
unified gene expression measure (UE) from multiple platforms. The UE is a weighted average of the three platforms, and is
shown to perform well in terms of accuracy and precision. In addition, the FA model produces parameter estimates that
allow the assessment of the model fit. The R code is provided in File S2. Gene-level FA measurements for the TCGA data sets
are available from http://tcga-data.nci.nih.gov/docs/publications/unified_expression/.
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Introduction

The Cancer Genome Atlas (TCGA) project [1,2] aims to

understand the molecular basis of cancer by characterizing

different aspects of the cancer genome, including copy number,

methylation, mutation and gene expression. In the first phase of

the project, three microarray platforms are used to measure gene

expression levels in glioblastoma multiforme (GBM), ovarian and

lung squamous tumor samples: Affymetrix Human Genome HTS

U133A Array (U133), Affymetrix GeneChip Human Exon 1.0 ST

Array (Exon), and Agilent custom 244K Array (Agilent), giving us

three sets of gene expression measures on all the samples.

This article addresses the problem of combining gene expression

measures for the same set of samples from multiple platforms. A

combined measure is desirable because 1) we get a more reliable

estimate by using more information, and 2) downstream analysis

can be carried out on a single set of expression measures rather

than multiple. As shown in [3], different microarray platforms

have different performances, therefore simply taking an average of

the measurements from different platforms would not necessarily

be the optimal solution.

Our method was used to generate the unified expression

measures for TCGA glioblastoma multiforme (GBM) data, which

was used in Verhaak et al [4]. Other than the limited description

of our method there, we are not aware of any other work that

addresses this particular problem. However, much work has been

done to address the problem of combining expression data from

different platforms, where different samples are measured by

different platforms. For example, Warnat et al [5] proposed to use

median rank scores and quantile discretization to integrate

expression data from different studies for the purpose of supervised

classification analysis. Scharpf et al [6] proposed a hierachical

Bayesian model to integrate data from different studies and to

identify differentially expressed genes between two conditions.

Here, we propose to use factor analysis to address this problem.

The main advantage of using factor analysis to combine

concomitant expression measures is that it gives each platform a

weight depending on how well its measurements correlate with the

rest of the platforms and therefore has the ability to down-weight a

problematic platform. The underlying gene expression level is

reflected in the measurements obtained from each of the platforms

and is thought of as the latent variable in the factor analysis model.

Factor analysis has previously been used in the single-platform

setting as a summarization method for Affymetrix U133 platforms

[7], and was shown to perform comparably with Robust Multichip

Average (RMA) [8], which is a widely used summarization method

in the single-platform setting.

Factor analysis can be applied in two ways. One is to first

summarize the expression measures within each platform and

apply factor analysis to the platform summaries. We call this gene-

level FA. This method requires the gene of interest to be measured

on at least three platforms simultaneously. The second method,

probe-level FA, applies factor analysis directly to probe-level

measurements across all platforms. This eliminates the require-
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ment of having at least three platforms measure a given gene and

can provide estimates for all genes that are measured on any of the

platforms. Factor analysis as we do it requires more samples than

platforms, and is best when the number of samples greatly exceeds

the number of platforms. Our approach will not apply in a setting

such as the MAQC project [9], where the number of samples and

the number of platforms are very similar.

We have applied both gene-level and probe-level FA to

integrate the expression measures from U133, Exon and Agilent

arrays for TCGA GBM and ovarian tumor samples. We use

expression levels measured from digital sequencing (DGE)

experiments on a subset of these samples as our gold standard to

evaluate the performance of our FA models, as digital sequencing

has been shown to be highly reproducible and accurate in

identifying differentially expressed genes [10,11]. A simulation

study has been carried out to further understand the performance

of gene-level FA.

We compare the performances of gene-level and probe-level

FAs to each of the three platforms alone, as well as gene-level and

probe-level averages in terms of precision and accuracy. We find

that gene-level FA and gene-level average are the top performers

when evaluated by several criteria across all genes, followed by

probe-level FA. Our simulation study further shows that gene-level

FA has a clear advantage over gene-level average when two

platforms are giving good expression measurements and the third

is mis-behaving. This result is confirmed when we look at the

subset of such genes in the TCGA ovarian data set.

Methods

Data
We have applied the proposed FA models to 246 GBM samples

and 175 ovarian samples available through TCGA. This paper

focuses on the ovarian data set where digital sequencing data is

available for 31 of the 175 samples, which we use as a gold

standard to evaluate our methods. Each sample is measured on

three microarray platforms: U133, Exon and Agilent. Probes from

the three platforms are mapped to a transcript database compiled

from RefSeq and GenBank as described in [2,4]. For the

Affymetrix platforms, a minimum of five perfect matching probes

is required to define a new, gene-centric probe set. A minimum of

three perfect matching probes is required for the sparser Agilent

array. The new gene-centric probe set definitions ensure

independence from the manufacturer annotation and allow direct

comparisons between the different platforms. Using the new

definitions, 11,864 genes are represented on all three platforms

and are included in our analysis. Gene summaries are obtained

through the TCGA data portal (cancergenome.nih.gov) and are

used for gene-level FA. Background-corrected and normalized

probe-level data, generated from the raw data files available

through the TCGA portal, are used for probe-level FA. Please

refer to the TCGA Data Primer [12] for a detailed description of

sample acquisition, processing and data generation.

Proposed model
A thorough presentation of the factor analysis model can be

found in [13]. Here we provide a brief description of the model

when applied to generate the unified expression measure. Let ygij

be the observed expression measure on the log scale for gene g
from sample i and platform j, standardized to have mean 0 and

variance 1 across all the samples within each platform. For the

probe-level model, j indexes probes both within and across all

platforms. Let xgi denote the unobserved underlying expression

level we would like to estimate for gene g and sample i. Since the

factor analysis model is always applied gene by gene, we simplify

notation by omitting the subscript g from now on. The factor

model can be written as the following:

yij~bjxiz ij , ð1Þ

where xi is called the common factor, and the error term ij is

called the specific or unique factor in factor analysis literature. If

we consider xi, yij and ij to be realizations of the random variable

X , k-dimensional random vector Y , and k-dimensional random

vector W respectively, where k is the number platforms in gene-

level FA, or the number of probes in probe-level FA, the model

can be written as

Y~bXzW ,

where b is a vector of length k, and the model is parameterized in

the following way:

X*N(0,1), W*N(0,Y), and Y*N(0,S),

where W is independent of X , Y is k|k and diagonal, and S is

k|k and has all 1’s on the diagonal. Here N(0,V ) means

multivariate normally distributed with mean 0 and variance-

covariance matrix V , with the appropriate specialization if the

dimension is 1. The following are readily derived:

Var(Y )~Var(bXzW )~bbTzY,

Cov(Y ,X )~E½(bXzW )(X )�~b,

and

E(X jy)~bT (bbTzY){1y: ð2Þ

It turns out that the right hand side of (2) is equal to

X �~(IzbTY{1b){1YsT y,

which is call the Thomson’s factor score, also known as the

regression factor score [14]. The Thomson’s factor score

inverts a matrix of smaller dimension than the conditional

expectation in (2), and is used here to estimate the common

factor score X .

In order to obtain unified expression measures for a given gene

using Thomson’s factor score, we need to estimate the parameters

b and Y. The log likelihood of Y is

l(b,YjY )~{
N

2
logjbbTzYj{ 1

2

X
i

yT
i (bbTzY){1yi

( )
,

and the maximum likelihood estimates of the parameters b and Y
are obtained using an EM algorithm. Note that the likelihood is

invariant to orthogonal transformations of b, which is simply sign

flipping in this case, since ({b)({b)T~bbT .

Thomson’s factor score says that the unified expression measure

is a weighted average of the observed expression measures from

the k platforms, the vector bT (bbTzY){1 being the weights

Unified Gene Expression Measures
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given to the platforms. Note that b is the correlation between

observed expression measure on different platforms and the

unified expression measure we estimate, and that the weight given

to a platform increases with the b for that platform. The weights

do not necessarily sum up to 1, and can be negative in some cases.

We obtain the same unified expression measure even if the y’s

are mean-centered but not standardized as the factor analysis

model is scale invariant [14].

The factor analysis model is implemented using the R package

factanal.

Results

We find that factor analysis gives unified expression measures

that are highly correlated with well-performing platforms when a

gene is expressed and has a reasonable dynamic range across

samples. When a gene is expressed at background levels or has

constant expression levels across samples, we cannot get a good

estimate of the covariance matrix for that gene, and the factor

analysis model will not produce helpful results. However, these are

genes that are not of interest in most cases. By combining multiple

platforms, discordant measures from one platform can be rescued

by concordant measurements from the other two platforms. In

these situations, the factor model gives a more reliable estimate

than simply averaging measurements from all the platforms.

This section is organized as follows. We first describe the model

fit for gene-level FA and probe-level FA by showing a few genes

that are representative of the different situations, followed by a

comparison of gene-level FA and probe-level FA. We then

systematically evaluate the performance of our FA models in terms

of precision (variance) and accuracy (bias) by first comparing them

to five other gene expression summaries across all genes: gene-level

averages of the three platforms, probe-level averages across all

probes from the three platforms, and the three expression

measures from the three platforms. The accuracy of gene-level

FA and gene-level averages is then further compared using a

simulation study, the results of which are then confirmed in the

TCGA ovarian data set.

Model fit
Gene-level model. We illustrate the model fit in different

situations using four genes, shown in Figure 1.

When pair-wise correlations between platforms are high

(correlationw0.9, gene FHL1, Figure 1A), gene-level FA results

in unified expression measures that are highly correlated with each

of the platforms. Of the 11,864 genes present on all three

platforms, 55% have all three pair-wise correlations w 0.6, and

61% have all three b̂b’s w 0.7. Recall that b̂b’s are the correlations

between each platform and the unified gene expression (Figures S1

and S2, Table S1).

When the three platforms do not correlate, e.g. due to low

expression values or small dynamic ranges (e.g. gene TACR3,

Figure 1B), the model is not very helpful. Although the unified

expression measure correlates moderately with U133, it has a

negative correlation of modest size with Agilent, which is an

indication of poor model fit, and the results should be disregarded.

A few hundred genes have small or even negative b̂b’s (Tables S2

and S3), which are usually associated with platforms with low

expression values or small dynamic ranges (Figure 2).

For 409 genes, two platforms correlate well with each other, but

not the third platform (one correlation w0:6 and two others

v0:4). In all of these cases, the two concordant platforms are

assigned high b̂b values and the platform not correlating with the

rest gets a low b̂b value (Figure S3). This may be related to mis-

annotation or novel gene structures. An example is the gene

SLC36A1 (Figure 1C), where the model gives unified expression

measures mostly based on U133 and Exon, which have good

correlation. A similar pattern is seen in the GBM data set for this

gene (Figure S4). DGE data also correlates better with U133 and

Exon than with Agilent (Figure S5). Upon further inspection, we

find the Agilent and U133 probes to target the 39 UTR region of

one of four possible transcripts of SLC36A1 with U133 probes on

the 39 side of Agilent probes, while Exon probes target all four

possible transcripts, according to Ensembl build hg19. It is possible

that the U133 probes target a novel transcribed region that is part

of the other three transcripts. There are 53 genes with one bad b̂b
value (v0:5) when the gene is expressed at levels generally

considered to be above background (w6 for U133 and Exon,

w{2 for Agilent) with a dynamic range of w0:5 (as measured by

the inter-quartile range, IQR) on all three platforms, which are

likely due to annotation errors. For all of these cases, the low b̂b
value is associated with the platform that is not concordant with

the other two (Figure S6).

In the last example (gene ZNF783, Figure 1D), the exon array is

at a reasonable expression level but with a relatively small dynamic

range of 0.6 and does not correlate with measurements from U133

or Agilent. In this case, unified expression measure is largely the

U133 measure. A situation such as this, where one of the b̂b is near

1 is called a ‘‘Heywood case’’ in the factor analysis literature. This

is due to the constraint of Y§0. Heywood cases arise when the

optimization procedure yields a solution with negative ŶY entries.

There are 2,159 genes in the ovarian data set where Heywood

cases occur. A large percentage of them are genes at low

expression levels and with small variation across samples, but quite

a few also occur when a gene is highly expressed or variable

(Figure S7). In all but 9 such genes, the platform with the negative

ŶY entry (and therefore a b̂b near 1) is one of the two platforms with

the best pair-wise correlations. Therefore although undesirable,

the estimates obtained in these cases are still likely to be

reasonable, i.e. with best performing platforms assigned highest

weights, but should be used with caution. There are 1,341
Heywood cases in the GBM data set, where there are 246 samples,

consistent with the observation that they are less likely to occur

with the increase of sample size [13].

We use the bootstrap [15] to estimate the standard errors of our

b̂b. For most genes, the SE of b̂b is less than 0:1 (Figure S8), meaning

that the unified gene expression estimates have reasonable

variances in most cases. Genes with large b̂b SE’s (w0:2) are

usually expressed at low levels or have small dynamic ranges

(Figure S9). Of the genes with large b̂b SE’s and IQR’s greater than

1 for exon and Agilent, only three have U133 median expression

levels greater than 4: RPS4Y1, COX6A2 and RPL23AP13, which all

have reasons to have unstable b̂b estimates: RPS4Y1 has one very

obvious outlier sample in U133; COX6A2 has two obvious outlier

samples in Agilent; RPL23AP13 does not have any obvious outlier

samples but its gene summaries on the three platforms do not have

much correlation.

Probe-level model. Probe-level FA is applied to the 175

ovarian samples run on the same three platforms: U133, Exon,

and Agilent for the 11,864 genes represented on all three

platforms. Instead of applying the FA model on gene summaries

from each of the platforms, we now apply the model directly to

background-corrected and normalized probe measurements from

all three platforms, i.e. k is now the sum of the number of probes

on the three platforms, whereas in the gene-level model, k is 3, the

number of platforms.

The three platforms have different numbers of probes

interrogating a given gene. The exon array has the greatest

Unified Gene Expression Measures
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Figure 1. Four genes to illustrate gene-level FA: FHL1 (A), TACR3 (B), SLC36A1 (C) and ZNF783 (D). The top panels are pairs plots of the
gene-level summaries of the three platforms. The bottom panels are scatter plots of gene-level summaries from each platform versus the unified
expression values.
doi:10.1371/journal.pone.0017691.g001

Unified Gene Expression Measures
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number of probes, usually between 20 and 100. U133 has 11

probes per gene for the majority of the genes. Agilent has about 2

to 8 unique probes per gene, and each probe is usually replicated

two to three times. So for a given gene, there are usually a total of

60 to 200 probes from the three platforms (Figure S10).

Two genes used as examples in the gene-level FA discussion are

shown here to illustrate the performance of probe-level FA.

In the case of highly expressed gene FHL1 (Figure 3A), most

probes track each other very well with a lot of variation across

samples. Some probes on the U133 and exon arrays do not work

as well (Figure S11). The exon array has the lowest within-

platform probe correlations, possibly due to alternative splicing,

and results in lower b̂b estimates (Figure S12). Outlying probes on

U133 are also assigned lower b̂b estimates. With problematic

probes down-weighted, it is not surprising to see in Figure 3C that

all reasonable methods give highly correlated estimates.

Of course, not all genes perform as well as FHL1. In fact, if all

genes looked as perfect as FHL1, a simple average would suffice

and there would be no need for a method that down-weights bad

platforms or probes. For the SLC36A1 gene, the Agilent probes do

Figure 2. Medians and inter-quartile ranges (IQR’s) of gene expression values. Each dot in these plots is a gene. The x-axis is the median
expression value for a given gene over the 175 ovarian samples, and the y-axis is the IQR for that gene over the 175 samples. In the top row, 129
genes with all three b̂b’s v0:5 are highlighted in red. In the bottom row, 40 genes with one negative b̂b and two other b̂b’s w0:5 are highlighted in the
platform where the b̂b is negative.
doi:10.1371/journal.pone.0017691.g002

Unified Gene Expression Measures
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not respond the same way as the two Affymetrix platforms

(Figure 3B, Figure S13). U133 and Exon arrays have higher

pairwise correlations and get higher b̂b values (Figure S14),

resulting in the factor analysis model basing its estimates mostly

on the two Affymetrix platforms (Figure 3D). We can also see from

the same figure that the average of the platform gene-level

summaries is influenced by the under-performing Agilent probes,

which is what we would like to avoid with the FA model.

In the probe-level model, the unified gene expression measure is

a weighted average of the probe measurements, and each probe

has a b̂b value associated with it. The larger the b̂b, the larger the

contribution from that probe to the unified measure. Figure 4 is

the probe-level equivalent of Figure 2 in the gene-level model. For

each platform, we highlight genes with low median probe b̂b values,

and as in the gene-level model, they occur when the genes have

low expression values or small dynamic ranges. There are 69 genes

in which Heywood cases occur in the probe-level model fit, many

fewer than in the gene-level model fit.

Comparing gene-level and probe-level FA. Gene-level FA

and probe-level FA have their own advantages. Gene-level FA

Figure 3. Probe-level factor analysis. A, B: Log2 probe intensities of FHL1 and SLC36A1. Solid lines are U133 probes, dashed lines are Exon probes,
and dot-dashed lines are Agilent probes. The thicker solid black lines are gene summaries for U133, Exon and Agilent. For ease of visualization, a
constant of 10 and 22 are added to U133 and Agilent, respectively. Only the first 50 samples are used. C, D: Pairs plots of different gene summaries.
From top to bottom: U133, Exon, Agilent, gene-level FA, probe-level FA and gene-level average.
doi:10.1371/journal.pone.0017691.g003
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combines only three measurements into one, and takes minutes to

compute. Its disadvantage is that it can only work for genes that are

present on all three platforms. Probe-level FA eliminates the

requirement for a gene to be present on all three platforms, but takes

hours to compute, and for some genes, fails to converge (149 in the

GBM dataset and 396 in the Ovarian dataset). Despite these

differences, 75% of the genes have gene-level and probe-level FA

correlations greater than 0.8 (Figure S15). There are 846 genes

where the correlation between gene-level and probe-level FA

estimates is less than 0:5. The majority of these genes have either

low expression levels or small dynamic ranges (Figure S16). After

these are removed (genes with U133 median v4, U133 IQR v0:2,

Exon median v5, Exon IQR v0:4, Agilent median v{1:2, and

Agilent IQR v0:4), there are 76 genes left with probe-level and

gene-level FA correlations less than 0:5. Among these, gene-level FA

for 46 genes are Heywood cases, and therefore are not useful. For

the remaining 30 genes, all but four are such that U133 and Agilent

gene-level summaries correlate but not exon gene-level summaries.

Gene-level FA for these genes are mostly based on Agilent and

U133 gene-level summaries, as expected. However, probe-level FA

Figure 4. Medians and inter-quartile ranges (IQR’s) of gene expression values. Each dot in these plots is a gene. The x-axis is the median
expression value for a given gene over the 175 ovarian samples, and the y-axis is the IQR for that gene over the 175 samples. For a given gene, a
median b̂b is calculated for each platform. In the top row, 114 genes with all three median b̂b’s v0:2 are highlighted in red. In the bottom row, 14
genes with one negative median b̂b and two other median b̂b’s w0:5 are highlighted in the platform where the median b̂b is negative.
doi:10.1371/journal.pone.0017691.g004
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estimates correlate better with Exon gene summaries instead, which

is the result of the many more probes present on the Exon array

than the other two platforms. When measurements from the

majority of these probes do not agree with the other two platforms,

the gene summaries do not agree with the other two platforms either

and get down-weighted in the gene-level FA. But in probe-level FA,

these probes become the majority and are the driving forces of the

probe-level FA estimates, which then do not agree with gene

summaries of the other two platforms. An example is the CCDC85B

gene (Figure S17), where gene-level FA is more accurate than

probe-level FA according to DGE data. For the aforementioned 30

genes, the majority have better correlations between gene-level FA

and DGE than between probe-level FA and DGE (Figure S18).

Based on these observations, gene-level FA seems to be a more

reliable method than the probe-level FA when the number of Exon

array probes is large.

Evaluation
To combine gene expression measures from several platforms,

the naive method would be to take the mean of the standardized

gene-level summaries of each platform. An alternative would be to

take the mean of the probe-level data from all platforms, or use

gene-level summaries from one of the platforms. Therefore we

have seven gene expression summaries: gene-level averages,

probe-level averages, RMA summaries of U133 arrays, RMA

summaries of Exon arrays, gene summaries of Agilent arrays,

gene-level FA and probe-level FA. We now evaluate these seven

gene expression summaries in terms of precision (variance) and

accuracy (bias). For precision, we use the nine sets of replicate

samples in our data and compare the variability of the seven gene

expression summaries. For accuracy, we use digital sequencing

data on 31 of the ovarian tumor samples as our gold standard.

Note that notations used in this section is independent of those in

the methods section.

Comparison of precision. There are 9 sets of replicate

samples: 06-0137 (2), 06-0138 (2), 06-0145 (4), 06-0154 (2), 06-

0156 (3), 06-0168 (2), 06-0176 (2), 06-0208 (2) and 06-0211 (2). For

a given gene, let yij denote the standardized gene expression

summary of the j th replicate of sample i. The pooled variance for

each gene expression summary is

Varpooled~
S9

i~1S
ni
j~1(yij{yi:)

2

S9
i~1(ni{1)

,

where ni is the number of replicates for sample i. We standardize

each gene expression summary to have mean 0 and standard

deviation 1 for each gene across samples so that they are

comparable. Figure 5A shows that gene-level FA and gene-level

averages have the smallest pooled standard deviations, and that

they give estimates that are the least variable.

Figure 5. Comparisons of precision and accuracy. A: Pooled standard deviations of standardized gene expression measures. The medians are
0.44, 0.44, 0.39, 0.31, 0.35, 0.33, 0.32 from left to right. B: Sum of squared differences between array summaries and tag profiling. The medians are
27.0, 26.1, 22.5, 21.4, 22.9, 23.9 and 21.3 from left to right. C: Sum of squared differences between gene-level averages and tag profiling, and between
gene-level factor analysis and DGE, for genes with exactly two b’s w 0.8.
doi:10.1371/journal.pone.0017691.g005

Unified Gene Expression Measures
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Comparison of accuracy. Next-generation sequencing is

emerging as an attractive alternative to microarrays for measuring

gene expression levels. Instead of relying on hybridization of

predetermined probes to target transcripts, the new sequencing

technologies count the number of reads mapped to genes of

interest, and thus eliminate issues with cross hybridization and

background signals. Studies find that gene expression measured

from next- generation sequencing is highly replicable and that its

performance in identifying differentially expressed genes is highly

concordant with qRT-PCR [10,11]. Gene expression of 31 of the

TCGA ovarian samples is measured using Illumina Tag Profiling,

also known as Digital Gene Expression Tag Profiling (DGE) [16],

a next generation sequencing technology based on serial analysis

of gene expression (SAGE) [17,18]. DGE has been shown to have

major improvements in robustness, resolution and inter-lab

reproducibility over microarray platforms ([19]). Therefore we

use DGE data as a reference and compare the performance of the

unified expression measures to that of the three platforms alone

and simple averages.

We use median-normalized Illumina DGE gene count data for

31 of the ovarian tumor samples as our reference for expression

levels. Processing of the DGE data is described in File S1.

Similarities between array summaries and DGE

data. As a first step to assess how well array gene expression

summaries resemble that of DGE data, we compute the sum of

squared differences between standardized array summaries and

Figure 6. Pairs plot of estimated log2 fold changes computed from different gene expression value estimates: U133 gene-level
summaries, Exon array gene-level summaries, Agilent gene-level summaries, gene-level averages across the three platforms,
probe-level averages across the three platforms, probe-level factor analysis estimates, gene-level factor analysis estimates, and
digital sequencing gene-level summaries. Spearman correlations are shown.
doi:10.1371/journal.pone.0017691.g006
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standardized log2 DGE data for each gene. For a given array platform,

let yij denote the standardized log2 expression measure for gene j from

sample i, and let zij denote the standardized log2 counts for gene j from

sample i of the median-normalized counts. The sum of squared

differences between an array platform and DGE for gene j is

SSj~
Xk

i~1

(yij{zij)
2,

where k~31 is the number of samples. Figure 5B shows the SS

for the seven array summaries and we see that gene-level FA has

the smallest median SS and gives expression measures that are

closest to DGE.

Comparison of estimated fold changes. Instead of

quantifying absolute gene expression levels, we often use

microarrays to compare the expression levels of two groups by

estimating a fold change for each gene. Here we obtain two

distinct groups of sizes 7 and 24 from the 31 samples by consensus

clustering [20], denoted by L and G respectively (Figure S19),

representing possible subclasses of ovarian cancer. The log2 fold

change from DGE for gene j is estimated to be

FCseq,j~
1

24

X
i[G

zij{
1

7

X
i[L

zij ,

where zij is the log2 counts for gene j from sample i of the median-

normalized counts. The log2 fold changes for array summaries are

computed in the same way by replacing zij with log2 gene

expression measurements yij for each of the seven gene

summaries obtained from array data. DGE produces fold

changes that do not correlate as well as correlations among the

array summaries (Figure 6), which is not very surprising as the

two technologies are fundamentally different. The different gene

summaries give fold change estimates that have similar

correlations with DGE.

Identifying differentially expressed genes. Poisson

regression models have been shown to work well across

technical strata for digital sequencing data [10,11]. However,

we find significant departures from the Poisson distribution

when examining qq-plots of x2 goodness-of-fit statistics

(Figure S20), possibly due to biological variation among the

samples.

Figure 7. ROC curves constructed for the seven gene summaries. Genes with adjusted p-values v0:05 for DGE are considered true positives
and genes with adjusted p-values w0:2 are considered true negatives. The area under the curves are indicated next to the gene summary methods in
the legend.
doi:10.1371/journal.pone.0017691.g007

Table 1. Configurations of b’s used in simulations.

b1 min b1 max b2 min b2 max b3 min b3 max

1 0.90 0.98 0.90 0.98 0.00 0.30

2 0.80 0.90 0.80 0.90 0.00 0.30

3 0.70 0.80 0.70 0.80 0.00 0.30

4 0.60 0.70 0.60 0.70 0.00 0.30

5 0.80 0.98 0.80 0.98 0.30 0.50

6 0.70 0.80 0.70 0.80 0.30 0.50

7 0.60 0.70 0.60 0.70 0.30 0.50

8 0.70 0.98 0.70 0.98 0.70 0.98

9 0.50 0.70 0.50 0.70 0.50 0.70

10 0.30 0.50 0.30 0.50 0.30 0.50

11 0.00 0.30 0.00 0.30 0.00 0.30

12 0.80 0.98 0.50 0.70 0.00 0.30

Two hundred genes are simulated for each configuration of b. For a given
range, b’s are simulated from the uniform distribution with that range.
doi:10.1371/journal.pone.0017691.t001
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We would like to test whether the log fold change between the

two groups specified in section is significantly different from 0.

Rather than relying on methods based on the Poisson distribution,

we use limma [21,22] to perform a two-sample comparison on the

log2 count data from DGE, and adjust for multiple testing using

Benjamini and Hochberg [23]. We find 132 genes with adjusted p-

values v0:05 between the two groups from DGE data and regard

them as true positives. There are 10,057 genes with adjusted p-

values w0:2, and are thought of as true negatives that do not

display differential expression between the two groups. ROC

curves constructed from these genes show that gene-level FA,

probe-level FA, and gene-level averages perform the best in

identifying differentially expressed gene, and that they are the most

sensitive at specificities between 0.75 and 0.94 (Figure 7).

Summary of accuracy of gene expression measures. We

use DGE data on 31 of the ovarian tumor samples to assess the

accuracy of gene expression measurements from three microarray

platforms, their simple averages, and the proposed unified

expression measures. We find that the gene-level FA is the

closest to the expression measures generated from DGE when

Figure 8. Simulation study. Solid line: density of sum of squared differences (x-axis) between the true expression level and gene-FA estimates.
Dashed line: density of sum of squared differences between the true expression level and averages of the three platforms. Two hundred data sets are
simulated from each b configuration. The ranges of the three b values are indicated at the top of each subplot.
doi:10.1371/journal.pone.0017691.g008
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evaluated by the sum of squared differences between standardized

array summaries and standardized log2 median-normalized count

data from DGE, although gene-level averages of the three

platforms perform almost as well. The seven gene summaries

generate fold change estimates that have similar correlations with

those generated by DGE. Gene-level FA, probe-level FAs and

gene-level averages perform the best in identifying differentially

expressed genes when genes with adjusted p-values v0:05 and

w0:20 from DGE are used as true positives and negatives,

respectively. With these findings, we feel confident that the unified

expression measures produced from gene-level and probe-level

FAs perform better than probe-level averages, and at least as well

as simple gene-level averages in terms of accuracy.

Further comparison of gene-level FA and gene-level
averages

When looking across all the genes common to all three

platforms, it appears that gene-level FA and gene-level average

perform comparably. We perform a simulation study to evaluate

their behaviors more systematically. Based on the results of this

simulation study, we identify a subset of genes for which gene-level

FA shows an advantage over gene-level average in TCGA ovarian

data set.

The simulation procedure. We simulate gene expression

data for 200 samples according to the FA model described in

equation (1) as follows:

1. The true gene expression levels x1, x2, .., x200 for a given gene

of samples i~1,2,::,200 are simulated from N(0,1);

2. For a given configuration of b’s, generate b1, b2 and b3 from

uniform distributions of corresponding ranges. Then Y is

determined since bbTzY has all 1’s on the diagonal;

3. Generate i1, i2 and i3 for i~1,2,::,200 from N(0,Y);

4. Determine yi1, yi2 and yi3 from yij~bjxiz ij for i~1,2,::,200;

5. Get estimates of x1, x2, .., x200 from yi1, yi2 and yi3,

i~1,2,:::,200, using gene-level FA and gene-level averages.

6. Repeat 200 times for each configuration of b.

Table 1 contains the different b values we chose to simulate

different situations that can arise in real data.

Simulation results. Figure 8 shows the difference between

estimated gene expression levels and true gene expression levels.

Gene expression levels are estimated using gene-level FA and

gene-level averages. The difference is represented by the sum of

squared differences across the 200 simulated datasets for each b
configuration.

Figure 9. Sum of squared differences between array summaries and digital sequencing measures for the 892 genes that have two
array platforms with 0.5 and above correlations with digital sequencing and the third array platform having a 0.4 and lower
correlation with digital sequencing. The medians from left to right: 30.1, 29.4, 22.5, 22.4, 24.8, 24.9 and 21.1.
doi:10.1371/journal.pone.0017691.g009
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We see that gene-level FA has a clear advantage over the

average when two of the b’s are above 0.8 and the third b is below

0.5 (subplots 1, 2, 5). If the two best b’s are between 0.6 and 0.8

while the third b is below 0.3 (subplots 3 and 4), gene-level FA is

sometimes better and sometimes worse than the average. If the

third b improves to between 0.3 and 0.5 (subplots 6 and 7), gene-

level FA and the average become more similar to each other. The

two estimates are comparable when all three b’s are high (subplot

8 and 9). When one b is high, one is low and the third is in

between (subplot 12), gene-level FA does better most of the time,

but worse than the average on occasions. Gene-level FA does

worse when all three b’s are below 0.5 (subplots 10 and 11).

In general, the average is less sensitive than FA. The FA takes

advantage of the two good platforms when it is clear that the third

platform should be down-weighted, but can also produce worse

estimates than the average when the situation is less clear.

Ovarian data. With more insight from our simulation study,

we now look at a subset of genes where two of the array platforms

have better than 0.5 correlations with DGE and the third platform

has a correlation of 0.4 or less with DGE. There are 892 genes that

fall into this category. We find that the gene-level FA has an

advantage over the average in terms of distances to the expression

level measured by DGE for this subset of genes, while they remain

comparable in precision, fold-change and identification of DE

genes (data not shown).

Figure 9 shows the sum of squared differences between different

summaries and DGE. Gene-level FA performs the best with a

median of 21.1, followed by gene-level average, with a median of

22.4. The difference between the two widens if we restrict to genes

with two array and DGE correlations greater than 0.6 or the third

array platform having a correlation of 0.3 or worse with DGE.

Discussion

We propose to use the factor analysis model to produce a

unified gene expression measure from three different microarray

platforms (U133, Exon and Agilent) when the same set of samples

is measured on each. Factor analysis is a natural method to use

since it takes the covariance structure of the three platforms into

account and estimates the unobserved variable as a weighted

average of the three observed variables. This estimate is linear in

the observed variables, albeit one with estimated coefficients.

The main advantage of the proposed factor analysis model is that it

down-weights problematic platforms and therefore gives better

estimates than a simple average. This is shown clearly in simulations

(subplots 1 to 6). With real data, we do not expect the factor analysis

model to show a drastic improvement over the simple average simply

because the fraction of genes where one platform is misbehaving is

small. However, when this does happen, the gene-level FA produces

estimates that are more accurate than the simple average (Figures 5C).

The other advantage of our method is that it produces parameter

estimates (b and Y) that can be used to evaluate the model fit and to

filter out genes whose measurements are deemed unreliable, which was

done for Verhaak et al [4].

The unified expression measures generated from the FA model

was successfully used in a recent analysis of TCGA GBM

expression profiles [4]. In this analysis, four robust unsupervised

clusters were identified, which were associated with distinct

genomic abnormalities in IDH1, EGFR, PDGFRA and NF1.

Interestingly, the classifier cross-validation errors were reduced

when gene-level FA expression levels were used, compared to

training the classifier models on data from any of the three

separate platforms. Reduction in cross-validation error has been

shown to be a property of less noisy data [24].

TCGA is expected to produce expression profiles on three

platforms on a total of 1,500 tumor samples of GBM, ovarian

serous adenocarcinoma and lung squamous carcinoma, to which

FA will be applied to produce unified expression estimates and

will be made available at http://tcga-data.nci.nih.gov/docs/

publications/unified_expression/. The factor analysis model may

be further improved to produce good estimates when the

correlation matrix is poorly estimated, which usually occurs for

genes with a small dynamic range. An approach that allows us to

borrow information from genes with well-estimated correlation

matrices could improve the estimates for such genes.

Supporting Information

Figure S1 Correlation of gene-level summaries among the three

platforms per gene.

(TIF)

Figure S2 Estimated b̂b values of the three platforms per gene.

(TIF)

Figure S3 Estimated b̂b values for genes where one of the platforms

does not correlate with the other two. These are genes where one

pairwise correlation between two platforms is w0:6 and two others are

v0:4. Gene counts are given in parenthesis in panel titles.

(TIF)

Figure S4 GBM data. Gene SLC36A1: Gene-level summaries.

(TIF)

Figure S5 Gene SLC36A1: Gene-level summaries.

(TIF)

Figure S6 Correlations for 53 genes with one bad b̂b value

(v0:5) when the gene is expressed at a reasonable level (w6 for

U133 and Exon, w{2 for Agilent) with a reasonable dynamic

range (IQR w0:5) on all three platforms, which are likely due to

annotation errors. The low b̂b value is associated with the platform

that is not concordant with the other two.

(TIF)

Figure S7 Heywood cases. Red dots are genes in which

Heywood cases occur.

(TIF)

Figure S8 Bootstrap SE of b̂b.

(TIF)

Figure S9 Genes with large bootstrap SE of b̂b. Red dots are

genes with bootstrap SE of b̂bw0:2.

(TIF)

Figure S10 Number of probes per gene on each platform.

Figures reflect the number of unique probes on the Agilent array,

each usually duplicated 2 to 3 times.

(TIF)

Figure S11 Pairwise probe correlations for gene FHL1 stratified

into three within-platform groups and three between-platform groups.

FHL1 has 55 U133 probes, 52 exon probes, and 3 Agilent probes.

Therefore there are 55|54=2 correlations within U133, 52|51=2
correlations within exon, 3|2=2 correlations within Agilent, 55|52
correlations between U133 and exon, 55|3 correlations between

U133 and Agilent, and 52|3 correlations between exon and Agilent.

(TIF)

Figure S12 Gene FHL1: probe-level b̂b values stratified by

platform.

(TIF)
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Figure S13 Pairwise probe correlations for gene SLC36A1 stratified

into three within-platform groups and three between-platform groups.

SLC36A1 has 11 U133 probes, 49 exon probes, and 2 Agilent probes.

Therefore there are 11|10=2 correlations within U133, 49|48=2
correlations within exon, 1 correlation within Agilent, 11|49
correlations between U133 and exon, 11|2 correlations between

U133 and Agilent, and 49|2 correlations between exon and Agilent.

(TIF)

Figure S14 Gene SLC36A1: probe-level b̂b values stratified by

platform.

(TIF)

Figure S15 Histogram of 11,864 correlations between matching

gene-level and probe-level gene expression estimates.

(TIF)

Figure S16 Genes with low correlation between probe-level FA

and gene-level FA. Red dots are genes whose correlation between

probe-level FA and gene-level FA estimates are below 0:5.

(TIF)

Figure S17 Gene CCD85B. Probe-level FA strongly influenced

by Exon array because of its large number of probes.

(TIF)

Figure S18 Correlations between gene-level FA and DGE, and

correlations between probe-level FA and DGE for 30 genes with

low probe-level and gene-level FA correlations. These genes have

reasonable expression levels and dynamic ranges, and are not

Heywood cases.

(TIF)

Figure S19 Consensus clustering of the 31 ovarian samples.

Samples 1 to 7 form cluster 1 (C1) and samples 8 to 31 form cluster

2 (C2).

(TIF)

Figure S20 QQ-plot of x2 goodness-of-fit statistics for 24

samples from patients in cluster 2. Under the assumption of

homogeneous Poisson rate for the gene counts, the goodness-of-fit

statistics is x2 with 23 degrees of freedom. We see significant

deviations from homogeneous Poisson distribution.

(TIF)

Table S1 Number of genes with varying b cutoffs for all three

platforms.

(PDF)

Table S2 Percentage of small b’s.

(PDF)

Table S3 Number of genes with varying b cutoffs for all three

platforms.

(PDF)

File S1 File describing the processing of DGE data.

(PDF)

File S2 R code.

(TXT)
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