
http:// www.jstage.jst.go.jp / browse / jpsa
doi:10.2141 / jpsa.0210104

Copyright Ⓒ 2022, Japan Poultry Science Association.

≪Review≫

Membrane-Mediated Regulation of Sperm Fertilization Potential in Poultry

Atsushi Asano1 and Chathura Priyadarshana2, 3

1 Faculty of Life and Environmental Sciences, University of Tsukuba,  
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan 

2 Graduate School of Life and Environmental Sciences, University of Tsukuba,  
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan 

3 Dr. Pet Hospital, Matara Road, Galle 80000, Sri Lanka

　　Fertilization requires successful completion of molecular events taking place at different spatiotemporal scales.  
Transcriptionally and translationally inactive sperm need to rely on pre-assembled pathways modulated by extracellular 
signals that traverse the plasma membranes.  However, species differences in how sperm respond to them delay the 
progress toward a comprehensive understanding of how activation of the signaling cascades is coordinated in poultry 
sperm.  In chickens, recent studies have found that membrane rafts are present on the sperm surface and play important 
roles in regulating multistage fertilization.  In this review, we focus on three steps in which membrane alteration plays 
a key role.  The first is post-testicular maturation, in which bird sperm acquire fertilization functions through biochemical 
changes.  The second part of this review concerns membrane regulation of sperm-egg binding and the acrosome 
reaction.  Finally, we extend our discussion to the translation of membrane raft theory into a technical principle for the 
commercial production and genetic preservation of poultry.
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Introduction

　The fertilization process is a net result of serial molecular 
events that enable ejaculated sperm to bind and penetrate the 
oocyte for gamete fusion.  To ensure the success of fer-
tilization, each step needs to proceed in a precise and ordered 
manner.  However, mechanisms underlying the sequence of 
steps can, in part, be species-specific or consistent between 
taxa.  One of the key and nearly universal steps in the animal 
kingdom is the acrosome reaction (AR), in which membrane 
fusion between the outer acrosomal and plasma membranes 
enables sperm to release proteolytic contents of the acrosome, 
fa cilitating penetration into oocyte investments, known as 
zona pellucida (ZP) in mammals (Hirohashi and Yanagimachi, 
2018).  After ejaculation, mammalian sperm must reside in 
the female reproductive tract for a prolonged period to 

undergo functional maturation, a process termed capacitation, 
before AR induction (Austin, 1951; Chang, 1951).  In contrast 
to mammals, the capacitation process is not recognized in 
avian sperm because AR occurs immediately after exposure 
to the inner perivitelline layer (IPVL), which is analogous to 
mammalian ZP; this enables the formation of a hole on the 
IPVL for penetrating sperm (Horrocks et al., 2000; Lemoine 
et al., 2008).  Another unique feature is that avian sperm 
sustain their fertilization ability for a much longer period than 
that in mammals (2 weeks in domestic fowl (Pierson et al., 
1988) and 15 weeks in turkeys (Christensen and Bagley, 
1989)) by remaining in sperm storage tubes (SSTs) of the 
female tract, in contrast to the rapid nature of AR.  Previous 
pharmacological studies on chicken sperm have shown that 
AR induction is regulated by several signaling molecules that 
are similar to those that participate in mammalian sperm 
capacitation (Ashizawa et al., 2004, 2006; Lemoine et al., 
2009).  The commonality of signaling path ways is also ob-
served in echinoderms, which can induce rapid AR soon after 
release from males (Neill and Vacquier, 2004).  These findings 
suggest an evolutionary conservation of sperm signaling 
cascades in a wide range of animals, together with raising the 
question of how poultry sperm can maintain their ability to 
induce AR for a prolonged period.
　Membrane rafts are specific membrane microdomains that 
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are enriched in sterols, ganglioside GM1, and functional pro-
teins relative to other regions (Simons and Toomre, 2000).  
Recently, these assemblies have received much attention from 
biologists because of their roles in the astonishing diversity of 
cellular processes (Jacobson et al., 2007).  In the early 2000s, 
the functional roles of cellular membranes in sperm were well 
studied in echinoderms, which demonstrated the involvement 
of membrane rafts in sperm-egg binding and signaling 
pathways supporting AR and flagellar motility (Ohta et al., 
1999; Maehashi et al., 2003).  On the other hand, studies in 
mammals demonstrated that, in addition to these events, 
membrane rafts also play a role in post-testicular sperm matu-
ration that occurs during transit in the male tract, a concept 
termed epididymal maturation (Girouard et al., 2008; Asano 
et al., 2010).  These findings suggest the functional univer-
sality of membrane rafts beyond the cell types.  Recently, 
research groups, including our laboratory, have investigated 
the regulatory mechanisms underlying avian sperm function 
by utilizing the concept of membrane rafts (Fig. 1).
　In this review, we will provide a comprehensive under-
standing of membrane alteration and its function in post-
testicular maturation, sperm-egg binding, and acrosome re-
action, and then provide a perspective on targeting membrane 
rafts as a strategy for poultry reproductive technologies.
Membrane Function in Post-testicular Maturation
　Epididymal maturation is a post-testicular sperm maturation 
that renders fertilization ability to specific subcellular com-

partments where they need to be fertilized (Cornwall and 
Hann, 1995).  This process involves changes in the lipid and 
protein compositions of plasma membranes (Jones, 1998), 
and the development of flagellar motility (Morton et al., 
1978) in mammals.  However, there is controversy regarding 
the role of post-testicular maturation in avian sperm due to 
retrogression of the epididymis.  In this context, numerous 
studies have shown that gradual elevation in sperm motility is 
coincident with the transit of the male genital tract (Howarth, 
1983; Ahammad et al., 2011a ; Nixon et al., 2014 ), providing 
a concept that the avian male tract also contributes to the 
acquisition of sperm function.
　Sperm are transcriptionally and translationally inactive and 
require the acquisition of functional proteins and lipids from 
the epididymal luminal fluid, which is compositionally con-
trolled by epididymal secretion and absorption (Rankin et al., 
1992; Sullivan, 2015).  A similar phenomenon has been re-
ported in chicken sperm, whereby a subset of secreted proteins 
in the male tract binds to the sperm surface and remains 
adherent even after prolonged preservation in the female tract 
(Esponda and Bedford, 1985; Morris et al., 1987).  In addi-
tion, it has been shown that biochemical alteration of the 
plasma membrane during passage through the male genital 
tract also plays an important role in sperm binding capacity to 
the apical surface of epithelium in SSTs and in membrane 
toughness, leading to enhanced viability (Ahammad et al., 
2011a, b).  Taking together with the fact that a subset of epi-
didymal luminal proteins is derived from the epithelial layer 
(Fujihara et al., 1983; Nixon et al., 2014), it is conceivable 
that the incorporation of male tract secretes to the sperm 
surface is required for avian sperm to ensure full fertilization 
ability in the female genital tract for a prolonged period.
　Epididymosomes are small membrane vesicles released by 
the epididymal epithelium into the lumen, and are proposed to 
be the major pathway for transferring proteins and lipids to 
the sperm plasma membrane in mammals (Saez et al., 2003).  
Accumulated results from studies characterizing the functions 
of these exosomes suggest that selective transfer of these 
molecules occurs by biochemical interactions between mem-
brane rafts present in epididymosomes and sperm (Girouard 
et al., 2008, 2009).  Despite the lack of mechanistic studies on 
avian post-testicular maturation, these facts combined with 
the commonalities in sperm maturation be tween mammals 
and birds are suggestive of further studies on the involvement 
of membrane lipid regulation in functional changes during 
transit along the male tract in birds.
Membrane Regulation of Sperm-egg Binding and Acrosome 
Reaction
　Sperm-egg binding is an initial step toward subsequent 
events such as AR, penetration into the egg extracellular 
envelope, and fusion with the egg plasma membrane.  It is a 
shared feature between mammals and birds that ZP and IPVL 
components contain the receptor for respective sperm (Bleil 
and Wassarman, 1980;  Han et al., 2010; Ichikawa et al., 
2017).  Sperm surfaces possess numerous molecules with a 
high binding affinity to ZP in mammals.  Studies using knock-
out mouse models have suggested the involvement of multiple 

Fig. 1.　Organization of membrane rafts in chicken sperm.  
GM1 and sterols were labeled with Alexa 488-conjugated 
cholera toxin B subunit (CTB) and filipin (A and B).  The 
plasma membrane overlying sperm head has specific mem-
brane domains.  Bright field (C).  Bars＝10 µm.
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binding events with a variety of receptor molecules in sperm 
(Ikawa et al., 2010).  The mechanistic nature of sperm-egg 
binding is largely categorized into protein–protein and lipid–
protein interactions, but the detailed mechanisms of these 
interactions remain unknown (Clark and Dell, 2006).  Mem-
brane rafts have been viewed as an integrative mechanistic 
module of ZP binding (Kondoh et al., 2005; van Gestel et al., 
2007).  Proteomic characterization of human and murine 
sperm rafts has revealed the relative abundance of proteins 
with a high binding affinity to ZP (Nixon et al., 2009; Asano 
et al., 2010; Nixon et al., 2011).  In addition to proteinous 
molecules, sulfogalactosylglycerolipids (male gamete-specific 
glycolipids) are enriched in membrane microdomains and 
participate in ZP binding in porcine sperm (Khalil et al., 
2006).  In line with this, raft-enriched glycolipids contribute 
to binding the egg envelope in sea urchins (Maehashi et al., 
2003) and rainbow trout sperm (Yu et al., 2002).  Because our 
group found that the plasma membrane overlying the sperm 
head contains membrane rafts in chickens (Asano et al., 
2016), we characterized the proteome associated with sperm 
rafts and successfully identified 82 proteins exclusively or 
relatively more enriched in the membrane rafts compared to 
non-rafts (Ushiyama et al., 2017a).  Furthermore, an in vitro 
overlay assay showed a high binding affinity for membrane 
raft proteins with an abundance of a 60 kDa molecule.  This is 
in agreement with a previous study showing the high affinity 
of ~ 60 kDa chicken sperm protein to recombinant IPVL 
protein responsible for sperm-binding (Bausek et al., 2004).  
Interestingly, our study found that the 45 kDa acrosin respon-
sible for sperm binding to the IPVL in quails (Sasanami et al., 
2011), is only so in non-rafts.  Although the accumulation of 
further evidence is needed, our results suggest the roles of 
membrane rafts in sperm-egg interaction, providing a foun-
dation for understanding redundancy, ensuring successful 
gamete recognition and adhesion in poultry.
　AR is a regulated exocytosis that occurs only once in the 
life of sperm.  In mammals, AR does not occur until ca paci-
tation occurs.  Several mechanistic studies demonstrated that 
the initial trigger of this process is sterol efflux from the 
sperm plasma membranes (Travis and Kopf, 2002).  This 
leads either directly or indirectly to several downstream 
events, such as cAMP-dependent PKA activation and protein 
tyrosine phosphorylation (Visconti et al., 1995a, b), increase 
in [Ca2+]i and hyperactivated motility (Ho and Suarez, 2001), 
and membrane hyperpolarization (Arnoult et al., 1999), 
which ultimately enhances acrosomal responsiveness.  How-
ever, prolonged excitation towards completion of the capaci-
tation process results in exceeding the threshold for exocytosis, 
and thereby the sperm undergoes a spontaneous AR with a 
premature loss of its fertilization ability (Kim and Gerton, 
2003).  Considering these factors, in conjunction with the 
functional heterogeneity of sperm, capacitation can be viewed 
as a process that simultaneously controls functions in the 
sperm population to increase fertilization success.  On the 
other hand, capacitation is not a precondition for poultry 
sperm because of the nature of rapid AR (Fig. 2) (Howarth, 
1970; Horrocks et al., 2000; Nixon et al., 2014).  It remains 

unclear how AR is prohibited for such a long period until 
fertilization occurs.  Recently, we found that Src family kinase 
(SFK) activation plays a role in inhibiting spontaneous AR by 
modulating membrane polarization potential in chickens 
(Priyadarshana et al., 2020), which is suggestive of the 
protective mechanisms of sperm undergoing spontaneous AR 
in poultry.
　Several signaling pathways have been reported to play a 
role in the regulation of acrosomal responsiveness in chickens.  
Ashizawa et al. (2006) found that protein kinase C (PKC) is 
involved in this process which is in agreement with the role of 
either Ca2+ supplementation or a calcium-dependent protein 
phosphatase inhibitor for in vitro AR (Ashizawa et al., 2004; 
Lemoine et al., 2008).  Similarly, the cAMP/protein kinase A 
(PKA) pathway was also found to support AR ability and 
phosphorylation of effector molecules involved in separate 
signaling pathways (Lemoine et al., 2009).  However, neither 
bicarbonate (soluble adenyl cyclase (AC) activator) or 
forskolin (transmembrane AC activator) potentiated AR in 
response to physiological stimulation (Lemoine et al., 2009; 
Priyadarshana et al., 2018), suggesting a specific mechanism 
behind the maintenance of AR in poultry.  Our recent studies 
found that chicken sperm possess membrane rafts with the 
enrichment of several signaling molecules (Asano et al., 
2016; Ushiyama et al., 2017a).  Therefore, we performed the 
functional characterization of membrane rafts in chicken 

Fig. 2.　Detection of acrosome-reacted sperm.  Acrosome 
reaction in chicken sperm was visualized by labelling with 
FITC-conjugated peanut aggulutinin (A).  White arrows in-
dicate AR.  Merged image (B).  Bars＝10 µm.
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sperm with a particular focus on a mechanism for AR, which 
indicated that these membrane domains are involved in the 
upstream mechanism of the cAMP/PKA pathway by regu-
lating both AC activities (Priyadarshana et al., 2018).  Nota-
bly, the depletion of membrane rafts by sterol removal stimu-
lated spontaneous AR.  Taken together with our recent finding 
that SFK is spatially and functionally regulated by membrane 
rafts (Priyadarshana et al., 2020), this suggests membrane 
regulation of AR ability in poultry sperm.  More recently, it 
was reported that a PKA-dependent AR mechanism is medi-
ated by AMP-activated protein kinase (AMPK) (Nguyen et 
al., 2019), a main intracellular energy sensor that has been 
known to stimulate AR and flagellar motility (Nguyen et al., 
2014).  This is in agreement with our result that the depletion 
of membrane rafts decreases AMPK activity and AR in 
chickens. (Ushiyama et al., 2019).  Therefore, it is conceivable 
that membrane rafts act as critical platforms that are func-
tionally and biochemically associated with PKA cascades.
Potential Translation of the Membrane Rafts Concept 
　During cryopreservation, avian sperm are subjected to 
cryodamage, which leads to a decline in fertilization ability, 
which is a persistent problem limiting the potential of utili-
zation for commercial production or the preservation of 
genetic resources in cryobanks.  Most attempts to improve the 
fertility rates of cryopreserved poultry semen have focused on 
empirical approaches, such as the types of cryoprotectants 
and extenders used, freezing rate, and cryopreservation 
methods (i.e., pellets and straws) (Donoghuea and Wishart, 
2000).
　Numerous studies have attempted to determine the primary 
cause of cryodamage, resulting in the hypothesis that mem-

brane properties, such as phospholipid composition and sterol 
content, affect the freezing tolerance of both mammalian  
and poultry sperm (Giraud et al., 2000; Moore et al., 2005; 
Blesbois et al., 2008; Moce et al., 2010).  Sterol is the pre-
dominant lipid in membranes, and it plays a role in stabilizing 
membrane permeability, regulating membrane fluidity, and 
preparing a suitable microenvironment for membrane-asso-
ciated molecules (Elizabeth, 1998).  However, studies on the 
evaluation of post-thaw semen quality in poultry have shown 
that cryodamage often appears in functions ensuring fertili-
zation potential, while the sperm are viable and motile 
(Wishart, 1985; Tajima et al., 1989; Donoghuea and Wishart, 
2000).  This indicates complexity in the molecular and cellular 
cascades culminating in an impaired fertilization potential.  In 
several mammalian species, it has been reported that sperm 
undergo sterol removal from plasma membranes during cryo-
preservation (Cerolini et al., 2001; Moore et al., 2005).  Re-
cently, we characterized biochemical changes in cryopreserved 
chicken sperm, demonstrating that sterol loss occurs following 
cryopreservation and causes an early apoptotic response via 
the depletion of membrane raft organization (Ushiyama et al., 
2016).  In fact, sterol loss from the membranes is known to 
activate apoptotic cascades in mammalian and fish sperm 
(Muller et al., 2008; Aitken, 2011).  Furthermore, it was dem-
onstrated that the redistribution of membrane rafts in pig 
sperm in response to capacitating stimuli was altered dra-
matically following cryopreservation, resulting in impaired 
functional ability (Vadnais and Althouse, 2011).  This suggests 
that the compositional alteration of membrane rafts via the 
loss of sterol is a major factor that leads to the deterioration of 
fertilization ability.  This view was corroborated by recent 

Fig. 3.　The distribution of sterols in chicken sperm.  Fresh and cryopreserved (Cryo) 
sperm were labelled with filipin (A and B).  22-(N(-7-nitrobenz-2-oxa-1,3-diazol-4-yl)
amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol) was loaded into the plasma mem-
brane of fresh chicken sperm (C).  Bright field (D).  Bars＝10 µm.
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results from our and other laboratories, where loading syn-
thetic sterol into the sperm plasma membranes prior to cryo-
preservation enhanced post-thaw semen quality in several 
species, including chicken (Fig. 3) (Tomas et al., 2011; Blanch 
et al., 2012; Lee et al., 2015; Ushiyama et al., 2017a).  Fur-
thermore, excessive sterol loading to sperm has an adverse 
effect on cryosurvivability and AR induction (Oliveira et al., 
2010; Spizziri et al., 2010; Ushiyama et al., 2017a), although 
the detailed mechanism remains unclear.  Taken together, 
these results suggest that targeting membrane rafts is useful 
for improving the cryotolerance of poultry sperm and adding 
to our knowledge of membrane functionality responsible for 
fertilization potential in sperm.
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