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Abstract: Lateral root development is a complex process regulated by numerous factors. An important
role for sugar in lateral root development has been known for a while, but the underlying molecular
basis still remains unclear. In this study, we first showed that WOX7, a sugar-inducible negative
regulator of lateral root development, acts downstream of the glucose sensor HXK1. Using a transgenic
line homozygous for a transgene expressing GFP under the control of the WOX7 promoter, we next
performed a genetic screen to identify additional genes in this development pathway. A number
of mutants with altered level of WOX7 expression were recovered, and two with increased WOX7
expression, named ewe-1 and ewe-2 (for Enhanced WOX7 Expression), were further characterized.
Both mutants manifest delayed lateral root development, and genetic analysis indicates that single
recessive mutations are responsible for the observed phenotypes. The mutations were then located to
similar regions on chromosome 2 by marker-assisted analyses, and candidate genes were identified
through whole genome sequencing. The significance and limitations of this work are discussed.
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1. Introduction

Root is essential to plant growth and development, because it is responsible for water and nutrient
uptake from the soil. As the plant grows, the root expands its surface by generating lateral roots as
well as by extending its length. Lateral roots are derived from a subset of cells in the stele through a
complex developmental process that is controlled by both internal and environmental factors, including
almost all hormones [1–4], nutrient and water availability [5–8]. Sugar also plays a role in lateral root
development and root growth, as both an energy source and signaling molecule [9]. Synthesized in
the shoot, sugar is transported to the root as well as other non-photosynthetic organs, mainly in the
form of sucrose, which is converted to glucose that can be directly utilized in energy metabolism [10].
In laboratory assays, sucrose or glucose is generally supplied in the growth medium to enhance
plant growth [11]. At lower concentrations (below 1%), sugar promotes root growth and lateral root
formation, but becomes inhibitory at higher concentrations [12–14].

There exist two signaling pathways for glucose sensing—an HXK1 (hexokinase 1)-dependent
pathway and an HXK1-independent pathway [15,16]. In Arabidopsis, there are five HXK1 homologs,
including two with catalytic activity, HXK2 and HXK3, and three enzymatically inactive, HKL1,
HKL2 and HKL3 [17]. A positive role for HXK1 in lateral root development has been reported previously,
as in hxk1/gin2 mutant, lateral root number is reduced [13]. HKL1 appears to plays a negative role in
glucose signaling probably by interfering with HXK1 [18]. To date, the HXK1-independent pathway is
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still poorly understood [19]. RGS1, a transmembrane protein involved in G-protein signaling, has been
shown to be the glucose sensor in the HXK1-independent pathway [20,21]. Although RGS1 seems to
interact with the HXK1-dependent pathway in root growth and lateral root development, mutations in
RGS1 and related components in the G-protein signaling pathway, such as GPA1 and THF1, do not
appear to affect lateral root formation [13].

Despite the well-documented role of sugar in lateral root development, very few genes are
presently known that modulate the effects of sugar on lateral root development. In a genetic screen for
mutants with altered lateral root numbers in high sugar medium, Deak and Malamy identified the
lrd2 mutant that has an elevated density of lateral roots [22]. The gene with the causal mutation was
subsequently cloned and found to be a long-chain fatty acid synthase (LACS2), an enzyme involved
in cutin biosynthesis [23]. LRD2 does not respond to sugar, but rather slows down sugar uptake
by forming a cuticle layer on leaves, thereby mitigating osmotic stress caused by high sugar [23].
Another mutant, lrd3, was also identified in the same genetic screen [24]. LRD3 was shown to be a
LIM-domain protein of unknown function expressed specifically in phloem companion cells, and its
mutation causes morphological abnormality in the phloem [24]. The lrd3 mutant phenotype is hence
attributed to lack of nutrients, rather than a defect in sugar signaling [24].

In a previous study we showed that WOX7, a WUSHEL-related transcription factor, negatively
regulates lateral root development in a sugar-dependent manner [25]. In wox7 mutant, lateral root number
increased primarily due to a higher number of lateral root primordia, whereas in WOX7 overexpressing
lines, lateral root number decreased [25]. WOX7 is expressed throughout all developmental stages of
lateral root development, but its expression level increases when sugar concentration increases in growth
medium [25]. As the first known example of transcription factors linking sugar response and lateral root
development, WOX7 provides an excellent model for dissecting the gene regulatory pathway from sugar
sensing to cell division.

In this report, we first showed that WOX7 acts downstream of both the HXK1-dependent and
independent signaling pathways. We then described a genetic screen for mutants that affect WOX7
expression in lateral root primordium. Two mutants with elevated levels of WOX7 expression were
identified and further characterized. By genetic segregation analyses and allelism tests, we determined
that the lateral root mutant phenotypes in the two mutants are due to different single recessive
mutations. Both mutants manifest an increase in lateral root number and density. The causal mutations
were first located to a small region on chromosome 2 by marker-assisted crude mapping and then
narrowed down to a couple of candidate genes by next-generation whole genome sequencing.

2. Materials and Methods

2.1. Plant Growth Conditions

For most experiments, seedlings grown aseptically were used in this study. Seeds were cleaned
with 10% bleach, thoroughly washed with sterile H2O, and then were allowed to germinate in 1x MS
medium containing 1% sucrose in square petri dishes placed vertically in a Percival growth chamber
(model 41L). The growth condition is 16-h light (50 micromoles/m2/sec of light irradiance) and 8-h
darkness and a constant temperature of 22 ◦C. Bulking was done in a growth room with the same
setting. The transgenic line carrying the GFP reporter gene under the control of the WOX7 promoter
was described previously [25].

2.2. β-glucuronidase (GUS) Staining and Microscopy

GUS staining was performed essentially as described in the Arabidopsis book [26]. Seedlings were
incubated in GUS staining solution overnight at 37 ◦C. For light microscopy, the roots were first cleared in
a drop of chloral hydrate solution (7.5 g chloral hydrate dissolved in 3 mL 50% glycerol) on a glass slide
for 1–5 min. Images were captured using an Olympus BX61 compound microscope.
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2.3. EMS Mutagenesis and Mutant Screening

Mutagenesis was conducted according to the Arabidopsis handbook [26]. Briefly, approximately
20,000 seeds homozygous for the WOX7pro::GFP reporter gene in the Columbia background were
added to 10 mL 0.1% ethyl methanesulfonate (EMS, Sigma M0880, MO, USA) in a 15 mL conical tube,
and the tube was rotated on a rotator overnight at room temperature. After thorough washing with
sterile H2O, the seeds were suspended in 0.01% agarose and sowed in soil (three to five seeds per pot).
At maturity, the seeds from all plants in a pot were pooled.

For mutant screening, 100 seeds from each tube were germinated in Murashige and Skoog medium
(MS) medium. Seven days after germination, seedlings were transferred to a MS plate supplemented
with 5% glucose and allowed to grow for one more day. For microscopic examination, roots were cut
and loaded in H2O on a slide, and GFP fluorescence was checked on an Olympus BX61 compound
microscope. As a control, seedlings with the same promoter-GFP construct without EMS treatment
were grown in a similar manner.

2.4. Genetic Analyses

For allelism test, the mutants were crossed to each other, and GFP fluorescence in F1 seeds
was compared to that in the wildtype parent line, using an Olympus BX61 compound microscope.
To determine the genetic basis of the mutations, the mutants were crossed to wild type plants (Columbia).
In the F2 segregating population, the number of mutants and normal plants with GFP fluorescence were
counted, and the number of genes involved as well as dominance or recessiveness of the mutations
were determined by χ2 test.

2.5. DNA Extraction, Genotyping and Mapping

To examine WOX7 expression in the hxk1 mutant, the transgenic line WOX7pro::GFP was
crossed to the gin2-1/hxk1 mutant [15]. DNA was extracted from leaves of 1-month-old plants
using the CTAB method, and the HXK1 genotype was determined by PCR using primers: gin2-1_F
AGATACTACTAAAGACGAGGAGCTG and gin2-1_R AGGTAGAGAGAGTGAGAAGCAGCA.

To generate the F2 segregating population for mapping, the mutants were crossed to Ler. Mutants
and normal plants were then selected based on GFP fluorescence (plants with no GFP fluorescence
were excluded), and DNA was extracted from individual plants using the CTAB method. For crude
mapping, SSLP markers were amplified by PCR, and the PCR products were resolved in 4% agarose gel.

For mapping with whole genome sequencing, four types of plants were compared: the parent line
homologous for the WOX7pro::GFP reporter gene, the mutants from the genetic screen, normal and mutant
plants selected from the F2 segregating population, and genome sequencing was done using the Illumina
paired-end next generation sequencing method. To increase the resolution, we chose to sequence the
mutants and normal plants at 50X coverage, whereas the parent line and the mutants were sequenced at
20X. After cleaning, the reads were aligned to the TAIR10 Arabidopsis genome with Burrows–Wheeler
Aligner (S2) [27]. After genome assembly using a commercial service (Wuhan SeqHealth Technology
Company, China), SNPs in the mutants were first identified. Variants calling was performed with
GATK [28], SNP or InDel was annotated with ANNOVAR [29]. Finally, after SNP/InDel index and delta
SNP/InDel index were calculated, SNPs with a SNP-index >0.5 in Ler pool and those with a SNP-index
>0.5 in F2 normal pool were removed, and only those with a SNP-index >1 in F2 mutant pool were
retained. The raw next generation sequencing data have been deposited at NCBI and can be accessed
publicly from https://www.ncbi.nlm.nih.gov/bioproject/PRJNA669402 [30].

3. Results

3.1. WOX7 Acts Downstream of HXK1 and RGS1

To determine whether WOX7 is involved in the HXK1-dependent or independent pathway,
its expression level and pattern in the gin2-1/hxk1 and rgs1-2 mutant were examined using the
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WOX7pro::GUS reporter that we generated previously [25], which was introduced into the two mutants
by genetic crossing. As shown in Figure 1, GUS staining was enhanced in both mutants, suggesting
that WOX7 acts downstream of HXK1 and RGS1. This result is intriguing, as HXK1, but not RGS1,
was shown to affect lateral root development [13]. Nevertheless, this result indicates that WOX7 is
involved in the HXK1-dependent sugar signaling pathway.
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Figure 1. WOX7 expression increased in the hxk1 and rgs1 mutants, as indicated by the blue stain
from the WOX7pro::GUS reporter gene. CK. WOX7pro::GUS in wild type Columbia background.
Bars = 50 µm. CK, wild type with the WOX7pro::GUS reporter gene. CK and mutants are all in
Columbia background. The MS medium contains 1% sucrose, no glucose.

3.2. A Genetic Screen for Mutants with Altered WOX7 Expression

To identify factors that are involved in the WOX7 developmental pathway, we next performed a genetic
screen for mutants that display an altered expression pattern or level of WOX7. Approximately 20,000 seeds
homogeneous for a transgene that expresses an endoreticulum localized GFP under the control of the
WOX7 promoter [25] were treated with ethyl methanesulfonate (EMS). To increase WOX7 expression
level, thus facilitating GFP fluorescence observation, 5-day-old M2 seedlings germinated in normal MS
medium were transferred to MS medium supplemented with 5% glucose and maintained in high sugar
medium for 1 day before microscopic examination. Totally, approximately 10,000 M2 seedlings from
1820 pools of seeds were screened.

Two types of mutants were anticipated from the screen: those with decreased or elevated GFP
fluorescence, because WOX7 can be regulated positively and negatively. Many putative mutants with
increased GFP fluorescence were obtained, but much fewer mutants with lower GFP signals were
identified (150 vs. 6). We selected two mutants with an elevated level of WOX7, named Enhanced
WOX7 Expression (ewe), in further characterization (Figure 2).
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3.3. Characteristics of the ewe1 and ewe2 Mutants

To determine the relationship between the two mutants, we performed allelism test. As seen in
Table 1, the results indicate that the causal mutations occur in different genes. Genetic analyses further
showed that the two mutated genes are recessive single loci (Table 1). We next examined the effects of
these mutants on lateral root development. Compared to the wild type, ewe1 had a greater number of
visible lateral roots, particularly when the seedlings become older (Figure 3A,B), whereas ewe2 had
fewer (Figure 4A,B). Because the primary root length was slightly affected in both mutants (Figure 3A,B
and Figure 4A,B), we also calculated lateral root density, which is defined as the number of lateral
roots per unit length of primary root. The same trend was observed (Figures 3C and 4C). Interestingly,
both mutants showed significantly more lateral root primordia, in terms of either the total number per
seedling or per unit of primary root length (Figures 3C and 4C).

Table 1. Genetic analyses of two mutants obtained in the genetic screen.

Cross Generation Total Seedlings Analyzed Mutant Phenotype Wild Type X2 (3:1)

ewe 1 × Col F2 78 18 60 0.155 a

ewe2 × Col F2 64 16 48 0.004 a

ewe1 × ewe2 F1 10 — 10
a Not significant at p = 0.05.
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Figure 3. Characteristics of the ewe1 mutant. (A) The ewe1 mutant and its parental line, 12 days after
germination. CK, the parent line containing the pWOX7pro::GFP reporter gene in wild type background
(Columbia). (B) Lateral root number per seedling 9–14 days after germination. n = 14. (C) Primary root
length (PR), lateral root number (LR), lateral root density (D-LR), number of lateral root primordia
(LRP), and lateral root primordia density (D-LRP) 14 days after germination. n = 14. (D) Density of
lateral root primordia at various developmental stages in 12-day-old seedlings. n = 14. The asterisks
indicate degree of significance in the comparison, t-test, two-tailed. * p < 0.05, ** p < 0.01.
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To identify the genes with the causal mutations, we adopted a mapping by whole-genome 
sequencing method [31,32], using the Illumina paired-end sequencing protocol. The mutant plants 
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Figure 4. Characterization of the ewe2 mutant. (A) ewe2 mutant and wild type seedlings, 12 days after
germination. CK, the parent line containing the pWOX7pro::GFP reporter gene in wild type background
(Columbia). (B) Lateral root (LR) per seedling from day 9–12 after germination. n = 13. (C) Primary root
length (PR), lateral root numbers (LR), lateral root density (D-LR), lateral root primordia number (LRP),
and lateral root primordia density (D-LRP) 14 days after germination. n = 13. (D) Number of lateral root
primordial per seedling at various developmental stages in 12 day-old seedlings. n = 12. The asterisks
indicate degree of significance in the comparison, t-test, two-tailed. * p < 0.05, ** p < 0.01.

Lateral root development undergoes several morphologically discernable stages [6]. Stage I is the
initiation stage whose hallmark is a longitudinal asymmetric cell division in the founder cells; Stage II
has two cell layers resulting from periclinal divisions from the initial cell layer; Stage III and IV have
three or four cell layers, respectively; Stage V is a multi-cell layer stage; Stage VI is pre-emergence;
and VII is post emergence. To determine at which stage lateral root development was affected in the
two mutants, we counted the number of lateral root primordia at various stages in the mutant and
wild type seedlings. Compared to the wild type, the ewe1 mutant had more lateral root primordia at
all stages (Figure 3D), but the ewe2 mutant appears to affect stage IV only (Figure 4D). These results
together suggest that lateral root development was affected in both mutants, during both lateral root
primordial development and post-emergence growth, albeit to different degrees.

3.4. Mapping the Causal Mutations in the ewe1 and ewe2 Mutants

For initial mapping, we used the marker-assisted mapping method, where Simple Sequence
Length Polymorphism (SSLP) was amplified by PCR. The F2 segregation population was generated by
crossing the mutants to wild type in the Ler background, followed by selfing, and mutants were selected
based on enhanced GFP fluorescence from the WOX7pro::GFP reporter gene. Using 14 SSLP markers
evenly distributed on all five chromosomes and 21 mutant plants, we mapped the ewe1 mutation to a
region near the CIW2 marker on chromosome 2 (Table 2, Figure S1). With more markers around CIW2
and 36 additional mutant plants, we further narrowed the mutant locus to an approximately 3 Mbp
region spanning the SSLP markers F13J11 to F7E22 (Table 3, Figure S2). For the ewe2 mutant, 16 SSLP
markers and 31 mutants were used in the initial mapping, which mapped the mutation to a region
around SSLP markers F504A and CIW2 (Table 4, Figure S3). Further analysis using SSLP markers near
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F504A and CIW2 and a larger number of mutants (48) showed that the ewe2 mutation was within a
2Mbp region spanning SSLP markers T4E5 and F10C8 (Table 5, Figure S4).

Table 2. Marker-assisted mapping of ewe1 (1).

Chromosome SSLP Marker Distance to Mutation (cM)

1 YUP8H12 64.3
1 T17H3 54.8
1 NGA128 42.9
2 CIW2 19
2 NGA168 31
3 CIW11 52.4
3 T32N15A 50
3 NGA6 38.1
4 CIW5 42.9
4 FCA8 33.3
4 F17I5A 38.1
4 NGA1107 40.5
5 NGA151 40.5
5 CIW9 40.5

cM, centiMorgan.

Table 3. Marker-assisted mapping of ewe1 (2).

Chromosome SSLP Marker Distance to Mutation (cM)

2 T18E12 16.67
2 F15L11 11.11
2 F7E22 6.94
2 T4E5 6.94
2 F13J11 6.94
2 F26C24 9.72
2 NGA168 34.72

cM, centiMorgan.

Table 4. Marker-assisted mapping of ewe2 (1).

Chromosome SSLP Marker Distance to Mutation (cM)

1 YUP8H12 40
1 T17H3 54.8
1 NGA128 54.8
2 F504A 25.8
2 CIW2 25.8
2 CIW3 29
2 NGA1126 45.1
2 NGA168 40.3
3 F14P3 45.1
3 NGA162 54.8
3 CIW11 48.3
3 NGA6 58
4 CIW5 40.9
4 T32N4A 50
4 CIW6 54.8
4 FCA8A 59.6
5 NGA151 50
5 CIW9 53.2

cM, centiMorgan.
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Table 5. Marker-assisted mapping of ewe2 (2).

Chromosome SSLP Marker Distance to Mutation (cM)

2 F15L11 5.21
2 T12H3 4.17
2 F7E22 4.17
2 T4E5 3.13
2 F10C8 3.13
2 T17A11 4.17

cM, centiMorgan.

To identify the genes with the causal mutations, we adopted a mapping by whole-genome
sequencing method [31,32], using the Illumina paired-end sequencing protocol. The mutant plants as
described above for the marker-assisted analysis were used for this purpose, as well as three additional
groups of plants: normal plants from the F2 segregating populations, the original mutants, and the
parent line homologous for the WOX7pro::GFP marker line, plus the Ler and Col reference genome.
For all samples, more than 92% of reads are of high quality and can be aligned to the Arabidopsis
genome (Table S1).

To determine whether a particular SNP is associated with the mutant phenotype, we first used
the Manhattan plot that compares the SNP index in F2 normal plants and F2 mutants. As shown in
Figure S5, in both mutants a prominent peak was easily visible on chromosome 2 and in a region
corresponding to that as determined by the marker-assisted crude mapping. Because the mutations in
both mutants fall in a similar region, this raises the possibility that the WOX7pro::GFP marker gene
may have been mutated. To rule out this possibility, we searched the mutant genome sequence for the
presence of this chimeric construct, which located the reporter gene at 3963972 bp on chromosome
3. Next, through comparative analyses (details described in the methods), we narrowed down the
causal mutations to a region that contains a small number of gene and transposable elements (Table S2).
In both the ewe1 and ewe2 mutants, however, only two genes were found to contain G to A transition
mutation in their coding region, which is characteristic of the EMS mutagen. In the ewe1 mutant, this
point mutation is located in AT2G02930 and AT2G18750, and causes change in amino acids (P113L
and E522K respectively). In the ewe2 mutant, the mutated genes are AT2G04040 and AT2G14260,
which both have a Valine substituted by Alanine in both proteins (V147A and V215A, respectively).

To determine which candidate gene is responsible for the lateral root phenotype in each mutant,
we next checked the expression of the four candidate genes in Arabidopsis root using the BAR tool
(bar.utoronto.ca) [33]. As shown in Figure S6, all candidate genes are expressed in the differentiation
zone, where lateral roots form, albeit at different levels and in different cell types. Strikingly, AT2G18750
and AT2G14260 show a preferential expression pattern in lateral root primordium and pericycle,
from which lateral roots are derived in Arabidopsis thaliana [6]. In contrast, AT2G02930 and AT2G04040
are both expressed in the phloem. It is thus reasoned that AT2G18750 and AT2G14260 are more likely
to be the genes that carry the causal mutations in the ewe1 and ewe2 mutants respectively.

4. Discussion

Sugar is essential to lateral root growth and development, as well as other aspects of plant growth and
development, both as an energy source and as a signaling molecule. Although the glucose sensor HXK1
has been shown to be an important regulator of lateral root development, how lateral root development is
regulated by sugar is still unclear. In the present study, we first showed that WOX7, a sugar-inducible
transcription factor with a negative role in lateral root development [25], acts downstream of HXK1,
thus providing a critical piece to this sugar-mediated lateral root development pathway.

Using a transgenic line harboring the GFP reporter gene under the control of the WOX7 promoter,
we next performed a genetic screen seeking other components in the above-mentioned sugar-mediated
lateral root development pathway. Two major groups of mutants were expected: one in activators
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of WOX7, which is expected to have reduced GFP fluorescence, and the other in WOX7 repressors,
which would have a higher level of GFP fluorescence. Both groups of mutants were obtained, but most
mutants had an elevated level of WOX7 expression. Two mutants with increased WOX7 expression,
namely ewe1 and ewe2, were selected for further characterization in this study due to their robust
changes in GFP fluorescence. Surprisingly, we found that the two mutants displayed opposite
phenotypes in terms of lateral root number and density, although both had an elevated level of WOX7.
One explanation for this difference is that, in addition to affecting WOX7 expression, the two genes
may have other roles in lateral root development. Identification of the genes with the causal mutations
will allow us to address this question. Alternatively, the genetic analyses indicate that the mutant
phenotypes in ewe1 and ewe2 are caused by single recessive mutations, which are located at similar
regions on chromosome 2 by marker-assisted mapping. Whole genome sequencing narrowed down
the causal mutations to two genes in each mutant, AT2G02930 and AT2G18750 in ewe1, and AT2G04040
and AT2G14260 in ewe2. Further analyses of their spatial expression in the root allow us to pin down
the candidate genes to AT2G18750 and AT2G14260, although we could not rule out the possibility that
the other genes are the actual lateral root determinants. Among these genes, AT2G18750 has the highest
probability of being a regulator of sugar signaling and regulator of WOX7, because it encodes a putative
calmodulin-binding protein involved in calcium signaling. In contrast, none of the other candidate
genes have an apparent role in signaling or transcriptional regulation. AT2G04040 is a detoxifying
efflux carrier for plant-derived antibiotics and other toxic compounds [34], whereas AT2G14260 is a
proline iminopeptidase involved in proteolysis and AT2G02930 encodes a glutathione S-transferase
(GST16). Whether and how these genes regulate WOX7 expression awaits further experimental testing.

5. Conclusions

In this study we found that WOX7, a sugar responsive gene, is involved in the HXK1 sugar
signaling pathway. Via EMS mutagenesis, we identified two mutants that have enhanced expression
of WOX7 and altered number of lateral roots, which were further characterized. For each mutant,
we finally narrowed down the causal mutations to two candidate genes through marker assisted and
whole genome sequencing mapping methods. These mutants are instrumental in deciphering a yet
uncharacterized developmental pathway that links sugar sensing to lateral root development.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/11/1257/s1,
Figure S1: Initial mapping of the causal mutation in ewe1. Figure S2: Refined mapping of the causal mutation
in ewe1. Figure S3: Initial mapping of the causal mutation in ewe2. Figure S4: Refined mapping of the causal
mutation in ewe2. Figure S5: Manhattan plots showing the approximate locations (arrows) of the causal SNPs
in ewe1 and ewe2 mutants. Figure S6: Digital spatial expression pattern of candidate genes in root. Table S1:
Summary of whole genome sequencing for mapping. Table S2: Candidate genes and mutation types in the ewe1
and ewe2 mutants.
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