
Frontiers in Oncology | www.frontiersin.org

Edited by:
Tao Huang,

Shanghai Institute for Biological
Sciences (CAS), China

Reviewed by:
Teng Fei,

Northeastern University, China
Zhanlong Shen,

Peking University People's Hospital,
China

*Correspondence:
Qiyuan Li

qiyuan.li@xmu.edu.cn
Ying Zhou

yingzhou@xmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Genetics,
a section of the journal
Frontiers in Oncology

Received: 02 September 2020
Accepted: 28 September 2020

Published: 19 October 2020

Citation:
Li W, Xu C, Guo J, Liu K, Hu Y, Wu D,
Fang H, Zou Y, Wei Z, Wang Z, Zhou Y
and Li Q (2020) Cis- and Trans-Acting
Expression Quantitative Trait Loci of

Long Non-Coding RNA in 2,549
Cancers With Potential Clinical and

Therapeutic Implications.
Front. Oncol. 10:602104.

doi: 10.3389/fonc.2020.602104

ORIGINAL RESEARCH
published: 19 October 2020

doi: 10.3389/fonc.2020.602104
Cis- and Trans-Acting Expression
Quantitative Trait Loci of Long
Non-Coding RNA in 2,549 Cancers
With Potential Clinical and
Therapeutic Implications
Wenzhi Li1†, Chaoqun Xu2†, Jintao Guo2, Ke Liu2, Yudi Hu2, Dan Wu3, Hongkun Fang2,
Yun Zou1, Ziwei Wei1, Zhong Wang1, Ying Zhou2* and Qiyuan Li2*

1 Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University,
Shanghai, China, 2 School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University,
Xiamen, China, 3 Department of Oncology, Xiamen the Fifth Hospital, Xiamen, China

Many cancer risk loci act as expression quantitative trait loci (eQTLs) of transcripts
including non-coding RNA. Long non-coding RNAs (lncRNAs) are implicated in various
human cancers. However, the pathological and clinical impacts of the genetic
determinants of lncRNAs in cancers remain largely unknown. In this study, we
performed eQTL mapping of lncRNA expression (elncRNA) in 11 TCGA cancer types
and characterized the biological processes of elncRNAs in the setting of genomic location,
cancer treatment responses, and immune microenvironment. As a result, 10.86% of the
cis-eQTLs and 1.67% of the trans-eQTLs of lncRNA were related to known genome-wide
association studies (GWAS) cancer risk loci. The elncRNAs are significantly enriched for
those which are previously annotated as predictive of drug sensitivities in cancer cell lines.
We further revealed the downstream transcriptomic effectors of eQTL-elncRNA pairs. Our
data specifically suggested that the genes affected by eQTL-elncRNA associations are
enriched in the immune system processes and eQTL-elncRNA associations influence the
constitution of tumor infiltrating lymphocytes. In ovarian cancer, the “rs34631313-
AC092580.4” pair was associated with increased fraction of CD8+ T cells and M1
Macrophage; whereas in KIRC, the “rs9546285-LINC00426” pair was associated with
increased fraction of CD8+ T cells and a decreased fraction of M2 macrophages. Our
findings provide a systematic view of the transcriptomic impacts of the eQTL landscape of
lncRNA in human cancers and suggest its strong potential relevance to cancer immunity
and treatment.

Keywords: long non-coding RNA, tumor immune microenvironment, cancer, instrumental variable analysis, tumor
infiltrating lymphocytes, expression quantitative trait loci
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INTRODUCTION

Transcript abundance is an inheritable quantitative trait which
serves as a major intermediate variable to explain the functional
background of intergenic trait associated loci (TAL) (1). The
germline variants which are associated with the transcript levels
are known as “expression quantitative trait loci” (eQTL) (2). The
eQTL may act either in-cis or in-trans, depending on the relative
positioning between the loci and the target transcripts (1). The
biological mechanisms underlying the functions of cis- and
trans-acting eQTLs for mRNA have been addressed by a
plethora of studies in various cell lines and tissues (3, 4).
Mapping of eQTLs in tumor tissues provides fundamental
clues the functional implications of non-coding, risk-associated
variants (5–8). Quite a few cancer risk loci have been proven to
be genetic determinants of gene expression. For example, the
breast cancer risk loci 1p13.2 (rs11552449) acts in-cis to
influence the activity of DCLRE1B, an evolutionarily conserved
gene involved in DNA stability and the repair mechanism of
inter-strand cross-link (9–11). Recent studies have reported
associations between cancer risk loci and lncRNA expression
and empirically verified the functional phenotypical effects with
clinical significance (12).

Non-coding RNA (ncRNA) comprises diverse RNA
transcripts including microRNA (miRNA), long non-coding
RNA (lncRNA), circular RNA (circRNA), and piwi-interacting
RNA (piRNA), many of which are known to function as
regulators of transcription (13). The altered abundance of
ncRNAs affects the cancer transcriptome and the consequent
processes of carcinogenesis and tumor development (14).
Among the ncRNA species, lncRNAs participate in diverse
regulatory activities in the cell, including chromatin structuring
and reprogramming cis-regulation of enhancers, competing
endogenous RNA (ceRNA) networks, immune response, and
post-transcriptional regulation of mRNA processing (15–19).
The regulatory activities of lncRNAs play a critical role in the
immune-related disease and the biological processes which
determine the pathological and clinical phenotypes of cancers
(20, 21). Growing evidence indicated that dysregulation of
lncRNAs involved in the regulation of immune system (22).
Yongsheng Li et al. demonstrated the immune-associated
lncRNAs (ImmLnc) show expression perturbation in cancers
and are significantly correlated with immune cell infiltration
(23), which suggested that lncRNA play an active role in
cancer immunity.

Studying the genetic determinants of lncRNAs is crucial for
understanding the etiology of carcinogenesis. For example,
recent evidence has suggested that risk-associated loci in
prostate cancer act in-cis on specific lncRNAs, thereby
predisposing cells towards malignancy (24). However, eQTL
mapping in cancer is more challenging than that in established
cell lines due to tissue heterogeneity. In addition, other somatic
changes in the genome, such as somatic copy number alterations
and CpG methylation might confound the effect of germline
determinants. To control for the confounders in the expression
data, several studies used multivariate methods to adjust the
eQTL mapping results for the effects of heterogeneity, sample
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purity, and somatic alterations on transcription activity (25).
These methods have yielded valuable associations between
germline variants and gene expression in cancer. Recent
studies have reported eQTLs for various non-coding
transcripts (lncRNA and miRNA) in human cancers (11, 26).
Moreover, study of Xia et al. demonstrated that lncRNAs
are active participants in immune regulation in 33 cancer
types (23). However, the extensive biological impacts of cancer
eQTLs of lncRNA on the whole cancer transcriptome and the
tumor microenvironment and the consequential therapeutic
implications have not been thoroughly investigated. In
addition, differences in the landscape of genetic determinants
of lncRNAs and mRNAs in human cancers have not yet been
fully addressed. Hence, we investigated the eQTL landscape of
lncRNAs in eleven cancer populations from TCGA and revealed
the potential pathological and clinical significance of elncRNAs
in cancer immunity and treatment responses using Instrumental
Variable Analysis (IV) or called Mendelian Randomization
(MR) (27).

Our findings suggest that the downstream targets of eQTL-
elncRNA pairs are enriched for immune system pathways and
are consistently associated with varied fractions of immune cell
types and patient clinical outcomes. In addition, we show that the
elncRNAs are significantly enriched for known predictors of the
treatment responses. Altogether, our data confirm that
elncRNAs are active intermediates between genetic variants
and the transcriptional activities in cancers, which further
influence the tumor immune microenvironment, treatment
responses and clinical outcomes.
MATERIALS AND METHODS

Genotype Data Collection, Imputation, and
Processing
To identify the eQTLs across eleven cancer types, we obtained
genotype data from the TCGA portal (https://portal.gdc.cancer.
gov/), which contains Affymetrix genome-wide human
SNP 6.0 array-based genotype data for 898,620 single
nucleotide polymorphisms (SNPs). To increase the power for
eQTL discovery, we imputed the variants on autosomal
chromosomes for all samples in each cancer type using
IMPUTE2 algorithm with 1000 Genomes Phase 3 (28) as the
reference panel. Then, a two-step procedure of IMPUTE2 were
performed, which consists of pre-phasing and imputation of the
phased data. After that, the following criteria were used to select
SNPs: (i) imputation confidence score, INFO ≥0.5, (ii) minor
allele frequency (MAF) ≥5%, (iii) SNP missing rate <5% for best-
guess genotypes at posterior probability ≥0.7, (iv) Hardy–
Weinberg Equilibrium P-value >1×10−6 estimated using the
Hardy–Weinberg R package (29).

Transcript Expression Data Collection and
Processing
The lncRNA expression profiles of eleven TCGA cancer types
were directly obtained from ‘The Atlas of Noncoding RNAs in
October 2020 | Volume 10 | Article 602104
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Cancer’ (TANRIC) database (2018/06/11 – Version 1.3) (30).
The expression levels of 12,727 lncRNAs were quantified as reads
per kilobase per million mapped reads (RPKM). To ensure the
detection power and reduce the noise, we applied a three-step
filtering according to a previous study (31): (1) The lncRNAs
with the 10th-percentile RPKM value is equal to 0 were excluded,
and those with the 90th-percentile RPKM value is greater than
0.1 were retained for further analysis. (2) Quantile-normalization
of the lncRNA expression matrix ensured that the underlying
gene expression distribution was similar for all samples. (3)
Finally, we applied an inverse normal transformation to the
gene expression matrix, such that the expression levels of each
lncRNA across samples was matched to the quantiles of standard
normal distribution. The expression value of each lncRNA was
also transformed based on log2(RPKM + 1).

Correction for Technical Confounders
The tumor microenvironment is the non-cancerous cells present
in and around a tumor. These non-cancerous components of the
tumor may play an important role in cancer biology. Therefore,
we removed samples whose tumor purity less than 0.6 based on
the criteria of prior study (32). In order to account for the
possible latent confounding effects on transcript levels, we used
the probabilistic estimation of expression residuals (PEER)
method to estimate a set of latent covariates for the gene
expression levels in each cancer type (25).

Covariates of Expression
Previous studies have shown that various factors affecting global
gene expression confound eQTL-mapping (33). To exclude the
effect of population structure on gene expression, we performed
principal component analysis (PCA) for each cancer type and
selected the CEU (Northern Europeans from Utah) population
for further analysis. To regulate the other potential confounders,
age, gender, gene-level somatic copy number alterations (SCNA),
and CpG methylation levels were included as additional
covariates. The copy number changes of a given lncRNA were
determined by the segmented copy number scores of the tumor
sample and paired-normal tissues obtained from the UCSC Xena
database (https://xena.ucsc.edu/). Then, the CpG methylation
status of the promoter area of each lncRNA (TSS 200/ TSS 1500)
was determined by the respective discretized values obtained
using Agilent HumanMethylation450K, with cutoff values 0.2
and 0.6.

Identification of eQTLs
For each cancer type, the genotype data, expression data, and
covariates were processed to three N (genotype, expression, or
covariates) × S (samples) matrices with matched sample
identifiers. The lncRNA annotation file (hg19) was obtained
from the GENCODE database (https://www.gencodegenes.org/).
The SNP location (hg19) was downloaded from dbSNP148
(https://www.ncbi.nlm.nih.gov/projects/SNP/) (v148). eQTL
analysis was performed according to the Genotype-Tissue
Expression (GTEx) eQTL workflow (34) using the R package
of “MatrixEQTL” in the linear regression model (35). The
cis/trans-eQTL analysis was based on MatrixEQTL with PEER
Frontiers in Oncology | www.frontiersin.org 3
factors and other covariates:

lncRNA expressioni

= b0 + b1 � Gi + b2 � Ai + b3 � Si + PEER factors + ϵi (1)

where ϵi ∼ N(0,s2) is a Gaussian error term; Gi is the genotype
of the ith sample; Ai is the age of the i

th sample; Si is the sex of the
ith sample. In the cis-eQTL analysis, we evaluated the associations
between lncRNA expression levels and the genotype at a given
SNP locus located within 1 Mb upstream and 1 Mb downstream
of lncRNA. trans-eQTLs are defined as associations beyond the
2-Mbp interval. The PEER factors were computed using the R
package PEER to exclude the effects of confounding variables
(such as the “batch” effects) from the gene expression matrix.

To reveal the complete landscape of eQTLs in cancer, we also
performed trans-analysis for the lncRNAs. A false discovery rate
(FDR) cutoff of 0.1 was applied for the significant cis-eQTL-
elncRNA pairs, and, due to the vast number of tests performed in
the trans-analysis, we set a threshold for the test P-values as 1 ×
10−7 for trans-eSNP-elncRNA pairs. In addition, Plink’s clump
function was used to shorten the list of cis/trans-eQTLs. Then,
only the most significant cis/trans-eSNPs per haplotype block
(r2=0.2, clump distance =500 kb) was selected to perform the
second round of validation based on multivariate regression,
wherein DNA methylation and SCNA were adjusted.

lncRNA expressioni

= b0 + b1 � cis ‐Gi + b2 � trans ‐Gi + b3 � Ai + b4 � Si

+ PEER factors + b5 � SCNAi + b6 �Mi + ϵi (2)

where ϵi ∼ N(0,s 2) is a Gaussian error term; cis ‐Gi is the
genotype of the most significant cis-eQTL per LD block of the
ith sample; trans ‐Gi is the genotype of the most significant trans-
eQTL per LD block of the ith sample; Ai is the age of the ith

sample; Si is the sex of the i
th sample; SCNAi is the somatic copy

number alteration of the ith sample;Mi is the median of TSS200/
1500 DNA methylation status of the nearest gene in the ith

sample. A complete eQTL analysis results are available at https://
xcqxcq.github.io/lncRNA/LncRNA.html.

GWAS-Related eQTLs
Risk SNPs identified in GWAS studies were downloaded from
the GWAS catalog (http://www.ebi.ac.uk/gwas/) (36). The
GWAS linkage disequilibrium (LD) blocks were extracted from
the rAggr database (raggr.usc.edu) based on the following
parameters (SNP dataset: 1000 Genomes; r2 threshold =0.5;
population panel: CEU (Utah Residents with Northern and
Western European Ancestry; distance limit: 500 kb). eQTLs
that overlap with GWAS cancer-related tagSNPs and LD SNPs
(r2≥0.5) were identified as GWAS cancer-related eQTLs.

Functional Annotation of eQTLs
The eQTLs implicated in the analysis were functionally
annotated by FUMA, a web-based bioinformatics tool that uses
a combination of positional, eQTL and chromatin interaction
mapping to prioritize likely causal variants and genes. The
October 2020 | Volume 10 | Article 602104
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functional annotations included ANNOVAR categories and
RegulomeDB scores. Moreover, the ANNOVAR categories
identified the genomic positions of the SNPs (for example,
intron, exon, intergenic) and the associated function. The
RegulomeDB is a categorical score based on the information
from normal tissue eQTLs and chromatin markers; 1a–7 with
low scores indicate a decreased regulatory function. The scores
are stated in (Supplementary Table S1).

Meta-Analysis of Epigenetic Markers
We used chromatin-immunoprecipitation sequencing (ChIP-
seq) peak data from the ENCODE database. For cis-eQTL
overlapped with epigenetics modifications, Bedtools was
applied (https://bedtools.readthedocs.io/en/latest/content/tools/
fisher.html) to calculate the enrichment of the cis-eQTLs for
epigenetic markers. Then, meta-analysis was performed using
the R package (meta) to integrate the fold-enrichment of each
epigenetic marker.

Instrumental Variable Analysis
Instrumental variable (IV) analysis was employed to identify the
cis-regulated lncRNAs that affect the transcription of protein-
coding genes in-cis/trans according to the study performed by
McDowell et al. (37). The genotype of an SNP as the genetic
instrument across n individuals (eQTLs) directly affects the
independent variable elncRNA in-cis, which in turn, affects the
dependent variable mRNA in-cis/trans. Thus, the IV analysis was
performed using the most significant eQTL-lncRNA pairs from the
cis-analyses on the “AER” package in R-3.5.0, wherein the eQTLs
are the genetic instrument, cis-lncRNA expression is the
“mediator,” and the cis/trans-mRNA expression is the “outcome”
(38). We obtained the mRNA expression data of the corresponding
TCGA samples from UCSC Xena (https://xena.ucsc.edu). To
reduce the burden of multiple statistical tests, we filtered the
mRNA in each cancer type by the following criteria: (1)
Coefficient of variation (CV) >0.5, the 30th percentile log2
(count + 1) value >0 and the 90th percentile log2 (count + 1) >5.
(2). The absolute value of Spearman’s correlation between lncRNA
and mRNA >0.3.

IV analysis of tumor infiltrating immune cells was conducted
for the significant eQTL-elncRNA associations identified above.
The immune cell fraction measures in TCGA cancer samples are
based on published data from CIBERSORT (39). We picked the
significant eQTL-elncRNA pairs (FDR<0.1, adjusted R2>0.1).
Again, eQTL is considered as a genetic instrument and
elncRNA as an independent variable. Since the dependent
variable immune cell fraction is not normally distributed, it
was log2 (immune cell fraction + 1) transformed.

Enrichment Test of elncRNAs for lncRNA
Predictors of Anticancer Drug Sensitivity
We obtained drug sensitivity data for lncRNAs from Nath et al.’s
(21) study from https://osf.io/m2qja/. We analyzed the following
datasets: Effects_CTRP.csv, Pval_CTRP.csv, Effects_GDSC.csv,
and Pval_GDSC.csv. We performed Fisher-exact test to assess
the enrichment of cis-elncRNAs/trans-elncRNAs for annotated
Frontiers in Oncology | www.frontiersin.org 4
lncRNA predictors of anti-cancer drug sensitivity. The
magnitude of enrichment using odds ratios.
RESULTS

eQTL Mapping for 11 TCGA Cancer Types
We performed pan-cancer eQTL mapping for lncRNAs (30) in
eleven TCGA cancer types, including ER-pos-BRCA (N=459),
ER-neg-BRCA (N=96), COAD (N=146), LUAD (N=249),
THCA (N=345), UCEC (N=234), KIRC (N=251), PRAD
(N=283), OV (N=331), STAD (N=42), and LIHC (N=113)
(Supplementary Table S2). The cis/trans-eQTL analyses were
performed using a two-step regression model. In the first step, we
used the MatrixEQTL software (35) to screen for significant
expression SNPs (eSNP) (FDR<0.1). Next, to account for linkage
disequilibrium (LD), we collapsed the significant eSNPs by the
linkage disequilibrium into independent eQTL (r2=0.2, clump
distance =500 kb). Each eQTL was represented by a tag-eSNP
with maximal significance of association. Finally, we verified the
significant cis/trans-eQTLs using multivariate model adjusting
for somatic copy number alteration (SCNA) and DNA
methylation in poise cis-regulatory regions (TSS-200/TSS-1500,
Figure 1A).

eQTL of lncRNAs Expression in Human
Cancers
In the cis-eQTL analysis, we identified 74,804 significant cis-
eQTL-lncRNA association pairs from 11 cancer types (FDR<0.1,
data is available at https://xcqxcq.github.io/lncRNA/LncRNA.
html), which were mapped to 59,542 unique cis-eQTLs
and 4,742 unique elncRNAs (Figure 1B and Table 1). In the
case of each cancer type, the number of significant cis-acting
eQTLs varied from 461 (STAD) to 28,085 (THCA) (Table 1). The
number of the lncRNAs in association with cis-eQTL (cis-elncRNA)
ranged from 98 (STAD) to 2,970 (THCA). As eQTLs are widely
reported for mRNA in cancers, we compared the cis-eQTLs of
lncRNA to those of the mRNA reported previously (40). As a result,
the eQTLs of lncRNA and mRNA differ substantially in
cancers, with less than 1% (0.01–0.72%) of the mRNA eQTLs are
associated with lncRNAs (Supplementary Table S3 and
Supplementary Figure S1). Among the 11 cancer types
investigated, 226 (KIRC) to 10,087 (THCA) mRNAs were
influenced by eQTL as compared to 98 (2.69%, STAD) to 2,970
(83.33%, THCA) lncRNA. For each transcript, the mRNA was
affected by 1 to 2 eQTLs, whereas each lncRNA was affected by 5 to
10 eQTLs (Supplementary Table S3).

A majority of the cis-eQTLs (65.86%) were cancer type
specific. However, a set of cis-eQTLs were noted in multiple
cancer types. For example, 2.4% cis-eQTLs were present in more
than eight cancer types, which are termed as “pan-cancer” cis-
eQTLs hereafter (Figure 1D). As for the elncRNAs in-cis, 1,150
(24.25%) were cancer-specific, and 237 (5.0%) occurred in more
than eight cancer types (Figure 1D).

In the trans-eQTL analysis, we report 10,721 significant
trans-eQTL-elncRNA association pairs with genome-wide
October 2020 | Volume 10 | Article 602104
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P-values < 1 × 10−7; these pairs were mapped to 9,996 unique
trans-acting eQTLs and 3,284 unique elncRNAs (Figure 1C and
Table 1). Among the trans-eQTLs, 91.26% were cancer-specific,
only 0.5% of the trans-eQTLs were observed in seven cancer
types, suggesting that the trans-eQTLs of lncRNA are more
cancer-specific (Figure 1D). As for the elncRNAs in-trans,
1,730 (52.67%) of elncRNAs in-trans were cancer-specific
(Figure 1D), and only 1 (0.03%) elncRNA in-trans (RP11-
667M19.2) were observed in eight cancer types. Together, these
results suggested that that the overall eQTL landscape of
elncRNAs are highly specific to the cancer types. However,
trans-eQTL and their elncRNAs were more cancer-specific
than their counterparts in-cis.

The eQTL-elncRNA association in cancers features a many-
to-many relationship, where one lncRNA can associate with
Frontiers in Oncology | www.frontiersin.org 5
different eQTLs or one eQTL can associate with different
elncRNAs. For example, a total of 3,107 elncRNAs were
associated with both cis- and trans-eQTLs in the same cancer
type (Supplementary Table S4). Moreover, a total of 1,039
eQTLs act both in-cis and in-trans on different lncRNAs in the
same type of cancer (Supplementary Table S5). These results
suggested that a complex network is involved in the genetic
determinants of lncRNA transcription.

Consistent with previous eQTL studies for mRNA (40), the
number of significant cis-eQTLs for lncRNA identified in the
current study was strongly associated with the size of the cohort
(Spearman’s correlation coefficient, rho=0.87, P=0.00095, Figure
1E). A similar tendency was observed in trans-eQTLs for
lncRNA (rho=0.79, P=0.0061, Spearman’s correlation,
Figure 1E).
TABLE 1 | Cancer type and summary statistics of the eQTL analyses.

Cancer type Sample size lncRNA cis- pair cis-eQTL cis- elncRNA trans- pair trans-eQTL trans- elncRNA

ER-neg-BRCA 96 3,434 2,810 2765 553 789 754 490
ER-pos-BRCA 459 3,530 24,866 20,379 2,713 6,408 1,844 677
COAD 146 974 1,487 1,458 313 301 325 190
KIRC 251 3,940 18,055 15,486 2,613 4,918 1,465 725
LIHC 113 2,522 39,53 3,877 817 1,088 634 423
LUAD 249 3,465 9,453 8,761 1,672 1,806 1,114 605
OV 331 3,698 13,575 11,976 2,125 2,965 1,292 607
PRAD 283 3,600 25,906 21,547 2,779 6,459 1,606 671
STAD 42 3,638 464 461 98 496 617 451
THCA 345 3,564 35,637 28,085 2,970 8,380 2,183 666
UCEC 234 1,113 3,074 2,976 527 1,001 292 203
total unique 2549 74,804 59,542 4,742 10,721 9,996 3,284
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FIGURE 1 | Expression of QTLs in TCGA cancer types. (A) Schematic plot showing the eQTL mapping workflow to identify the associations between germline
genotype and tumor lncRNA expression in 11 cancer types. (B) Manhattan plot of cis-eQTLs in 11 cancer types showing -log10 P-values of cis-eQTLs in
autosomes. Each dot represents a significant eQTL. (C) Manhattan plot of trans-eQTLs in 11 cancer types showing -log10 P-values of trans-eQTLs across the
autosome. Each dot represents a significant eQTL. (D) Ring diagram showing the common cis/trans-eQTLs and cis/trans-elncRNAs across cancer types. “1”
represents eQTLs occurring in one cancer type while “11” represents eQTLs occurring in 11 cancer types. (E) Log counts of cis/trans-eQTLs in each cancer type are
positively correlated with sample size.
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Effect Size of the Determinants of lncRNA
Transcript Levels
The fractions of variation attributed to the major factors of
lncRNA expression, including age, sex, PEER factors, gene-level
somatic copy number, DNA methylation and cis-/trans-eQTLs
are calculated (Figure 2A). A total of five PEER factors were
selected to remove the latent confounding effects and maximize
the cis-elncRNA discovery (Supplementary Figure S2). In the 11
cancer types analyzed, cis-eQTLs accounted for 7.52% (OV) to
20.15% (STAD) of the total variance in the lncRNA transcript
levels, whereas trans-eQTLs accounted for 2.16% (LUAD) to
27.76% (STAD) (Supplementary Figure S3). The other factors,
such as SCNA, explain 1.09% to 11.82% of the total variance,
which is much larger than the effect size of CpG methylation
(0.01–0.42%) (Supplementary Figure S3). However, 9.05% to
26.20% of the variation in lncRNA expression was attributed to
non-specific, random effects represented by the PEER factors
(Supplementary Figure S3). Finally, the effects of age and sex
were much smaller than the other factors (Figure 2A). Overall,
the fractions of variation in lncRNA expression explained by the
major factors in cancers are highly similar to that of mRNA, as
shown by prior studies (40).

As for the transcript-wise effect sizes, on average, 10.93% of
the variance of the elncRNAs expression was attributed to cis-
eQTLs, compared to 4.32% attributed to trans-eQTLs (Figure
2B). Notably, the average effect size of cis-eQTLs of lncRNA is
twice as much as that of the mRNA (5.3%, based on prior eQTL
data) (40). For the majority of the elncRNAs, 85.50% cis- and
98.16% trans-eQTLs accounted for less than 20% of the total
variance. However, for a small fraction of the elncRNAs, the
effect of genetic determinants mounts to 69.72% (cis) and 75.34%
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(trans) (Figure 2B). Furthermore, the average allelic effect size of
cis-eQTLs of lncRNA (fold-change of elncRNA with every unit
increase of the effect allele) was 0.54 (Figure 2C), which is larger
than that of mRNA based on prior study (0.37, Supplementary
Table S6) (40). For all elncRNA in cancers, the allelic effect sizes
of the cis-eQTLs ranged from 0.002 to 2.71, compared to
3.0×10−6 to 3.04 for the trans-eQTLs (Figure 2C). Taken
together, these results suggest that the effect size of genetic
determinants on the expression of lncRNA is larger than that
of mRNA.

Functional Characteristics of eQTLs of
lncRNAs in Cancers
The majority of genetic determinants of transcripts are localized
in intergenic or intronic regions. Thus, we sought to reveal
functional characteristics of the eQTLs of lncRNA from three
different aspects: the genomic location, the epigenetic landscape
and the association with cancer risk-associated loci.

The genomic locations of the cis-eQTLs and trans-eQTLs
were annotated by Functional Mapping and Annotation of
Genome-Wide Association Studies (FUMA) (41). The results
demonstrated that the majority of cis-eQTLs of lncRNA are
located in the intergenic regions (45.25%) and intronic regions
(25.91%) (Figure 3A). Only a small fraction of cis-eQTLs was
localized in the exonic (0.74%) or ncRNA exonic (3.66%)
regions. The genomic distribution of cis-eQTLs of mRNA was
similar to that of the cis-eQTLs of lncRNA (Supplementary
Figure S4A). On the other hand, 62.42% of the trans-eQTLs of
lncRNA were localized in the intergenic regions and 23.27% in
the intronic regions (Figure 3A); while some were located in the
exonic (0.44%) or ncRNA exonic (1.01%) regions. Overall, the
A B

C

FIGURE 2 | Effect size of eQTLs and other determinants of transcription. (A) Cumulative fraction of variance of elncRNA expression was calculated based on
sequential addition of the following factors: age, sex, 5 PEER factors, cis-eQTL, trans-eQTL, somatic copy number alteration and DNA CpG methylation. The bars
represent the average fraction of variance for all elncRNAs across 11 TCGA cancer types. Definitions of cancer types are provided in Table 1. (B) Histograms
showing the distribution of the fraction of variance in gene expression explained by the cis/trans-eQTLs for elncRNAs aggregated across all cancer types.
(C) Histogram showing the distribution of the absolute effect size (b) of cis/trans-eQTLs for all cancer types.
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genomic distribution of the eQTLs is highly comparable between
lncRNA and mRNA.

A number of non-coding QTLs interfered with the regulatory
elements of the genome (42). The present study showed that
38.99% of the non-coding cis-eQTLs of lncRNAs were co-
localized in the transcription factor (TF) binding sites and/or
DNase I hypersensitive sites (RegulomeDB score <6) Figures 3B,
C and Supplementary Table S1. Whereas 48.63% of the non-
coding cis-eQTLs of mRNA were co-localized in the TF binding
sites and/or DNase I hypersensitive sites, and 4.95% had a
putative regulatory function (Supplementary Figure S4B).

Since chromatin structures are tightly associated with the cis-
regulatory activities, we further evaluated the histone modification
landscape of the eQTLs of lncRNA in matched cancer cell lines
(Figure 3D) and normal tissues (Supplementary Figure S5A). As
a result, the eQTLs for lncRNA in the matched cancer cell lines
were significantly enriched in the active promoter or enhancer
markers, such as, H3K4me3 (OR=2.78, 95% CI: 1.60 to 4.83) and
H3K27ac (OR=1.91, 95% CI: 0.93–3.92). The eQTLs were also
negatively enriched in transcription repressor markers, such as
H3K27me3 (OR=0.31, 95% CI: 0.13–0.77) (Figure 3D). In the
matched normal tissues, the eQTLs of lncRNA showed a
consistent tendency of enrichment for the histone markers
(Supplementary Figure S5A).

About 10.86% independent cis-eQTLs of lncRNAs was
intercepted with known cancer risk loci (r2>0.5) (Figure
3E), which is much higher than that of cis-eQTLs of
mRNAs (3.07%) reported recently (40), suggesting lncRNA
is strongly related to GWAS cancer risk loci (Supplementary
Table S6 and Figure S4C). Herein, the cis-eQTLs of lncRNA
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were significantly enriched for GWAS cancer risk loci than for
non-eQTLs (fold of enrichment =3.51, P<2.2 × 10−16) (For
example, in ER-positive BRCA, we identified 12 cis-eQTLs
which were in LD (r2>0.5) with breast cancer risk loci of
rs62073257 (17q21.31), rs7104902 (11p15.5), and rs9393716
(6p22.2). In the case of trans-eQTLs, about 1.67%
independent trans-eQTLs were intercepted with known
cancer risk loci (Figure 3E) which corresponds to 7.74-fold
of enrichment (P<2.2 × 10−16) compared with non-eQTLs. In
the case of TAL, we observed that an average of 40.82% of cis-
eQTLs of lncRNA were overlapped with TAL, while 27.89% of
that of mRNA were intercepted with TAL (Supplementary
Table S6).

elncRNAs Enrich for lncRNAs with Known
Clinical and Therapeutic Implications
To assess the clinical relevance of the elncRNAs, we retrieved the
associations between the elncRNAs and the corresponding
cancer types from the lncRNADisease v2.0 database (http://
www.rnanut.net/lncrnadisease/). 462 of 4,742 (9.74%)
elncRNAs in-cis and 679 of 3,284 (10.51%) elncRNAs in-trans
were either proved or predicted to be associated with cancers
from the lncRNADisease database (Figure 4A). Both elncRNA
in-cis (OR=1.27, 95% CI: 1.16–1.40) and in-trans (OR=1.42, 95%
CI:1.28–1.57) were significantly enriched in cancer-related
lncRNAs (Figure 4B).

Recent studies suggest that lncRNA are associated with the
treatment responses of cancers (21). Therefore, we evaluated the
predictive power of the elncRNA in public databases contains
drug IC50 for various cancer cell lines (21). As a result, both
A

B

D

E

C

FIGURE 3 | Characterization of cis/trans-eQTLs of lncRNA. (A) Genomic locations of cis/trans-eQTLs (r2≥ 0.2). (B) Distribution of RegulomeDB categories of
cis/trans-eQTLs (r2≥ 0.2). (C) The location distribution of significant cis-eQTLs relative to their elncRNAs aggregated across all cancer types. (D) Meta-analysis of
corresponding cancer cell lines showed significant enrichment of cis-eQTLs in H3K27Me3, H3K4Me3, and H3K9Ac. (E) The percentage of cis/trans-eQTLs that
are associated with GWAS risk loci in 11 TCGA cancer types.
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elncRNAs in-cis (OR=1.25, 95% CI: 1.23–1.27) and elncRNAs
in-trans (OR=1.40, 95% CI: 1.38–1.43) were significantly
enriched for lncRNAs which are proved predictive of the
efficacy of anticancer drugs in the database of Cancer
Therapeutics Response Portal (CTRP, https://portals.
broadinstitute.org/ctrp/). Consistently, both elncRNAs in-cis
(OR=1.97, 95% CI:1.95–2.00) and elncRNAs in-trans
(OR=2.07, 95% CI:2.04 – 2.09) were enriched for the predictive
lncRNAs in the database of Genomics of Drug Sensitivity in
Cancer (GDSC, https://www.cancerrxgene.org/) (Figures 4C, E).
In particular, we reported top drugs from each database with the
highest significance of association to elncRNAs, namely, PX.12,
decitabine, cytabarine hydrochloride in CTRP, and PIK-93 and
I-BET-762 in GDSC (Figures 4D, F). There are also drugs which
are specifically associated with elncRNAs in-cis, such as
CH542802 (ALK inhibitor) in GDSC, and we found that
except for CH542802 (ALK inhibitor), both the elncRNA in-
cis/trans were significantly enriched in the predictive lncRNA
sets of PX.12, decitabine, cytabarine hydrochloride in CTRP, and
PIK-93 and I-BET-762 in GDSC (Figures 4D, F).

As prior studies show lncRNA strongly influence cancer
immunity, we move on to evaluated the enrichment of
elncRNAs in the annotated immunoreactive lncRNA database
(23). As a result, both elncRNAs in-cis/trans were significantly
overrepresented in the ImmLnc database (FDR<0.01). Moreover,
the magnitude of enrichment of the cis-elncRNAs range from
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1.20 fold (STAD) to 1.44 fold (THCA), while the enrichment for
the trans-elncRNAs range from 1.18 fold (KIRC) to 1.47 fold
(COAD) (Supplementary Figure S5B).

The Downstream Transcripts of
eQTL-elncRNA Influence Tumor
Immune Microenvironment
We further investigated the impact of eQTLs-lncRNA
associations on the downstream transcripts and the consequent
pathological clinical phenotypes, such as the tumor immune
microenvironment and the disease outcomes.

We conducted IV analysis to identify the eQTL-elncRNA-
mRNA regulatory axes in each cancer type. The IV regression
takes the eQTL as an instrument to the independent variable
(elncRNA in-cis), which in turn, affects the dependent variable
(mRNA). Thus, we identified a total of 191 unique regulatory
axes in 11 cancer types. (FDR<0.1; adjusted R2 >0.1,
Supplementary Table S7 and Figure 5A). We then evaluated
the biological processes enriched in the downstream transcripts
of the significant regulatory axes. As a result, we noticed that a set
of the downstream target genes such as IFNG, CALCA, CXCL1,
NLRP6, BLK, CD79, FASLG, CCR4, GZMM, were significantly
enriched in the immune system process and immune response
pathways (FDR<0.01 Figure 5B). This result prompted us to
further study the impacts of eQTL-elncRNA on cancer
immunity. We evaluated the effects of the 191 eQTL-elncRNA
A B

D

E F

C

FIGURE 4 | Association between elncRNAs, cancers and drugs. (A) Venn diagram showing the overlap among elncRNAs in-cis, elncRNAs in-trans and cancer-
associated lncRNAs annotated by lncRNADisease v2.0. (B) Forrest plot showing the enrichment of elncRNAs in-cis and elncRNAs in-trans in cancer-associated
lncRNAs. (C) Venn diagram showing the overlap among elncRNAs in-cis, elncRNAs in-trans and predictive lncRNAs for drugs in GDSC database. (D) Venn diagram
showing the overlap among elncRNAs in-cis, elncRNAs in-trans and predictive lncRNAs for drugs in CTRP database. (E) Forrest plot showing the enrichment of
elncRNAs in-cis and elncRNAs in-trans in predictive lncRNA for all drug sensitivity in two databases. (F) Forrest plot showing the enrichment of elncRNAs in-cis and
elncRNAs in-trans in predictive lncRNA for the selective drug sensitivity in two databases (Fisher test).
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pairs on the fractions of tumor infiltrating immune cells in each
TCGA cancer type estimated by prior studies (39). As a result, we
identified 23 eQTL-elncRNA pairs in different cancer types (10
elncRNAs in 5 cancer types) which were significantly associated
with the fraction of at least one immune cell subtype (P<0.05 and
R2>0, Supplementary Figure S7). The eQTL-elncRNA pairs
showed two opposite ways of impact (Supplementary Figure
S7). In one way, AC092580.4 in OV and LINC00426 in KIRC
were associated with lower fraction of Macrophage M2 and
higher fraction of Macrophage M1 and CD8+ T cells
(Supplementary Figure S7). M1 macrophages and CD8+ T
cells are well known for their anti-tumoral effect, while M2
macrophages are reported as anti-inflammatory and associated
with pro-tumor phenotypes (43). In the other way, RP4-
756H11.3 in LIHC and RP11-677M14.7 in THCA were
associated with increased fraction of M2 macrophages and
decreased percentage of CD8+ T cells hence a pro-cancer effect
(Supplementary Figure S7).
Frontiers in Oncology | www.frontiersin.org 9
We further investigate the biological processes of the
immune-related eQTL-elncRNA pairs. We showed that
rs34631313 was a robust genetic instrument of AC092580.4
(P = 3.93 × 10−4), which influences a set of immune genes in-
trans, including FASLG (effect size (b) = 1.53, P = 4.99 × 10−9),
GZMM (b=1.20, P = 5.95 × 10−6), PYHIN1 (b=1.54, P=3.42 ×
10−6) and TRAT1 (b = 1.42, P = 2.00 × 10−5). These genes are
known to be involved in the regulation of immune system and
cancer progression (44–47) (Figure 5C, Supplementary Figure
S6). Consistently, the very same pair is also associated with
higher fraction of CD8+ T cells (b= 0.095, P = 0.032) and M1
macrophages (b=0.065, P = 5.95 × 10−6) in ovarian cancer
(Figures 5E, F).

In another case, rs9546285 (13q12.3) was a robust genetic
instrument for LINC00426 and thereby influences an immune
gene set of TNIP3 (b=1.58, P=5.57 × 10−5), ZBED2 (b=1.98,
P=6.51 × 10−8), IFNG (b=1.58, P=1.78 × 10−7), and DTHD1
(b=1.20, P=6.47 × 10−6) in-trans (Figure 5D, Supplementary
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FIGURE 5 | eQTL-elncRNA-mRNA regulatory axes are enriched in immune-related processes. (A) Circos plot showing the significant regulatory axes (inner circle)
with FDR<0.1 and adjusted R2>0.1. the eQTL-elncRNA pairs are colored blue and the transcripts in-trans are colored in red. (B) Gene set enrichment analysis of the
downstream target genes of the 191 eQTL-lncRNA-mRNA regulatory axes. (C) Illustration of the rs34631313(2p25.2)-AC092580.4-FASLG/GZMM/PYHIN1/TRAT1”
regulatory axis in ovarian cancer. (D) Illustration of the rs9546285(13q12.3)-LINC00426-IFNG/TNIP3/DTHD1/ZBED2” regulatory axis in KIRC. (E) rs34631313
(2p25.2)-AC092580.4 is positively associated with the fraction of tumor infiltrating CD8+ T cells in ovarian cancer. (F) rs34631313(2p25.2)-AC092580.4 is positively
associated with the fraction of tumor infiltrating M1 macrophages in ovarian cancer. (G) rs9546285(13q12.3)-LINC00426 is positively associated with the fraction of
tumor infiltrating CD8+ T cells in KIRC. (H) rs9546285(13q12.3)-LINC00426 is negatively associated with the fraction of tumor infiltrating M2 macrophages in KIRC.
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Figure S6). These genes are involved in the antiviral and
antitumor effects (48, 49). In KIRC, the same pair is associated
with higher fraction of CD8+ T cells (b= 0.72, P = 6.34 × 10−4)
and lower fraction of M2 macrophages (b = −0.39, P = 0.04)
(Figures 5G, H). These results suggest that eQTLs of
lncRNA influence the immune processes by regulating relevant
genes and thus influence the constitutions of the tumor
immune microenvironment.

eQTL-elncRNA Regulatory Axis
Associated With Cancer Clinical Outcome
Finally, we report a regulatory axis, “rs4888920 (16q23.1)-RP11-
319G9.3-FOXA1” (F-test for weak instrument, adjusted P=0.07,
adjusted R2=0.14), with significant predictive power in KIRC
(Figure 6A). rs4888920 (16q23.1) was a cis-eQTL of RP11-
319G9.3 (P=8.69 × 10−6) which is, in turn, positively associated
with the expression of FOXA1 (b=2.06, P=6.12 × 10−6) (Figure
6B). Our data suggested that the eQTL (G/G vs. A/A and A/G:
HR = 0.57, CI= [0.32, 1.02], P=0.037) and its elncRNA (RP11-
Frontiers in Oncology | www.frontiersin.org 10
319G9.3) in-cis (HR = 0.68, CI= [0.49, 0.93], P=0.015) are
consistently significantly predictive of the overall survival in
TCGA KIRC cohort (Figure 6A). In addition, we also found
23 eQTL-elncRNA pairs for FOXA1 in KIRC with significance
and we listed the results in Supplementary Table S8.
DISCUSSION

The present study aimed to provide an in-depth view of the eQTL
landscape of lncRNA in cancers by systematic assessment the
downstream effects of the eQTL-elncRNA associations (40). Our
data suggested that the genetic determinants of lncRNA expression
are more active in cancer than those of mRNA, as the latter is
directly associated with cancer phenotypes hence subject to higher
selection pressure. Nevertheless, our results confirmed that the
eQTL-elncRNA associations show more diverse but indirect effects
on the phenotypes via the transcriptome such as the treatment
responses (50) and immune microenvironments (51, 52).
A

B

FIGURE 6 | eQTL-elncRNA-mRNA regulatory axes predict clinical outcome of KIRC. (A) Illustration of the “rs4888920 (16q23.1)-RP11-319G9.3-FOXA1” regulatory
axis in KIRC (lower panel) and the Kaplan-Meier curves based on overall survival of TCGA KIRC cohort stratified by the genotypes of rs4888920 (left) and the median
expression levels of RP11-319G9.3 (right). (B) Correlations between rs4888920 (16q23.1)-RP11-319G9.3-FOXA1 in KIRC.
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While mapping the eQTLs in cancer, we accounted for
different confounding effects (such as PEERs, SCNA, DNA
methylations). Thus, our model is more stringent than those
reported previously (11, 26), and the eQTLs directly interfered
with the regulome of cancers. In addition, we demonstrated that
the genomic landscape of cis-eQTLs of lncRNA was similar to
that of the cis-eQTLs of mRNA. However, the cis-eQTL of
lncRNA was greater than that of mRNAs in both cis-acting
gene numbers per eQTL and effect sizes, which suggested that
lncRNA expression is more susceptible to the genetic regulators
than mRNA expression in cancers. Intriguingly, a number of
cancer-related studies have demonstrated that germline risk
variants effectuate via specific lncRNAs to impact tumor
phenotypes (24, 53, 54). Such differences might be attributed
to the different selection pressure in mammals (55) or different
regulatory mechanisms underlying these two types of transcripts
(56). Furthermore, the current data showed a significant higher
enrichment of cancer risk loci in the eQTLs of lncRNAs than in
those of mRNA in cancer, which is consistent with a previous
study (26).

LncRNAs are known for a variety of regulatory activities in
gene expression, many of which might exert functional and
phenotypical impact in cancers. Therefore, we hypothesized
that these elncRNAs can further interact with various
downstream mRNA targets to influence the whole cancer
transcriptome. Therefore, IV analysis was performed to
identify regulatory axes in different cancer types. Especially, we
report that the downstream transcripts of the elncRNAs in
cancers were significantly enriched for the immunoregulatory
processes. These results suggested that the eQTL act on immune
genes in trans via the elncRNA. A previous study of cis-eQTL
analysis of mRNA in cancers has also demonstrated that the cis-
eQTL regulated mRNA are enriched in immunity pathways (40).
We further conducted a second round of IV analysis, and 23
eQTLs-elncRNAs pairs were found to be significantly associated
with at least one immune cell type. We closely analyzed the top
representative eQTL-elncRNA pairs to determine the target
immune genes and immune cell types of these pairs. These
observations suggest germline variants have a strong impact on
cancer immunity and may serve as predictive markers for
immune therapy.

Notably, the top immune related eQTL-elncRNA pairs
reported in the present study are also reported for association
with drug sensitivity in prior independent studies (21). For
example, LINC00426 is a strong predictor for Dexamethasone
sensitivity in CCLE cell lines (21). Dexamethasone is a
glucocorticoid (GC) steroid that is used as a supportive care
co-medication for cancer patients undergoing standard
pemetrexed/platinum doublet chemotherapy. It is used to
reduce inflammation and suppress the body’s immune
response by inhibition of IL-2, IL-12, and IFN-g of signaling
activities in NK, Th1, and CD8+ T cells (57). LINC000426 is
associated with IFNG transcription and the activities of tumor
infiltrating CD8+ T cells, hence LINC000426 expressing tumors
are more sensitive to Dexamethasone. Since rs9546285 is a
robust genetic regulator of LINC00426, this eQTL-elncRNA
Frontiers in Oncology | www.frontiersin.org 11
pair can inform the efficacy of Dexamethasone in cancer
patients and also for cancer immunotherapy.

In addition, we identified several regulatory axes involving
eQTL, elncRNA and mRNA by taking eQTLs as instrument
variables. These regulatory axes cannot be easily identified by
conventional trans association analysis due to the huge number
of tests needed and the stringent control of false discovery rate.
Many studies have shown that instrument variable regression,
which is also known as Mendelian Randomization, is more
efficient in identification of potential causal relationships
between germline variants and different traits.

In certain cancer types, different eQTL-lncRNAs pairs
influence the same set of mRNA targets; for example, in
ovarian cancer, two eQTL (2p25.2 and 7q34) eventually
regulate the same set of mRNAs (FASLG, GZMM, PYHIN1
and TRAT1) but through different elncRNAs (AC092580.4 and
TRBV11-2). These results suggested that lncRNA act as a flexible
intermediate between germline variants and gene expression in-
trans and hence may play more active roles in cancers.

Nevertheless, the present study has several limitations. First,
the inferred interaction patterns were based on multi-omics data,
and further cellular and molecular experiments are needed to
validate the findings. Then, the results were derived from 11
cancer types, and, thus, our findings may not apply to other
cancer types. Third, the mapping of eQTLs of lncRNA was
limited by the sample size, missing data, and confounding
factors. The current results for the trans-eQTL hold limited
statistical power due to a relatively small sample size (2549
samples). As a consequence, many eQTLs with small effect
sizes cannot be identified. Also, we used the IV analyses to
identify several regulatory axes with functional implications.
However, these associations can occur in different cell types in
the tumor tissue, or even via more complex intercellular
interactions (58). Further functional analysis is needed to
reveal the underlying biological mechanisms.

Taken together, the current findings provided insight into the
genetic regulation of lncRNAs in 11 cancer types and explored
the biological role as well as clinical phenotypes of eQTL-
elncRNA in cancer immunology. Our findings may provide
valuable genetic or lncRNA biomarkers for drug sensitivity and
cancer immune therapy.
CONCLUSIONS

This study investigated the eQTL landscape of lncRNAs in
cancers and the potential biological function of elncRNAs in
cancer microenvironment and drug sensitivity prediction. We
performed instrumental analysis (Mendelian Randomization) to
identify genes, pathways and immune cell types influenced by
eQTL-elncRNA associations.

Our findings suggest that the downstream targets of eQTL-
elncRNA pairs are enriched for immune system pathways and
are consistently associated with varied fractions of immune cell
types and patient clinical outcomes. Our data confirm that
elncRNAs are active intermediates of non-coding genetic
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variants in cancer immunology and clinical outcome of cancers
and provide valuable genetic and lncRNA biomarkers for drug
sensitivity and cancer immune therapy.
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