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Abstract

This study aimed to evaluate team attacking performances in rugby league via expected

possession value (EPV) models. Location data from 59,233 plays in 180 Super League

matches across the 2019 Super League season were used. Six EPV models were gener-

ated using arbitrary zone sizes (EPV-308 and EPV-77) or aggregated according to the total

zone value generated during a match (EPV-37, EPV-19, EPV-13 and EPV-9). Attacking

sets were considered as Markov Chains, allowing the value of each zone visited to be esti-

mated based on the outcome of the possession. The Kullback-Leibler Divergence was used

to evaluate the reproducibility of the value generated from each zone (the reward distribu-

tion) by teams between matches. Decreasing the number of zones improved the reproduc-

ibility of reward distributions between matches but reduced the variation in zone values.

After six previous matches, the subsequent match’s zones had been visited on 95% or more

occasions for EPV-19 (95±4%), EPV-13 (100±0%) and EPV-9 (100±0%). The KL Diver-

gence values were infinity (EPV-308), 0.52±0.05 (EPV-77), 0.37±0.03 (EPV-37), 0.20±0.02

(EPV-19), 0.13±0.02 (EPV-13) and 0.10±0.02 (EPV-9). This study supports the use of EPV-

19 and EPV-13, but not EPV-9 (too little variation in zone values), to evaluate team attacking

performance in rugby league.

Introduction

In recent years, the growing availability of event level data in rugby league has led to an

increase in research surrounding the characteristics of match winning performances [1–4].

These studies can broadly be split into two categories based on the inclusion of spatial (i.e.

event location) data within their analyses [3], or lack thereof [1, 2, 4]. Although those studies

not including spatial data provide valuable insights into potential match winning actions [2] or
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the classification of player positions [4], they do not account for some of the most valuable

contextual information surrounding the location of the events analysed. Incorporating this

spatial context into the analysis of a team’s attacking performances could have a significant

impact on tactical preparations for future matches and thus provides a valuable avenue for

future research in rugby league.

Spatial data has been included in analyses of team and player performances via expected

possession value (EPV) models across several sports [3, 5, 6]. EPV models assign a value to

every pitch location (or location-action tuple) visited during a match based on the probability

of scoring a goal, basket or try from that action/location within a given amount of time. These

values can be summed at a match level to quantify attacking performances. EPV models have

been developed using either probabilistic [5, 7] or stochastic [8, 9] methods. Fernandez et al.

[5, 7] used probabilistic deep learning methods to establish the EPV in soccer, whereas Routley

and Schulte [9] and Liu and Schulte [8] both used stochastic models based upon Markovian

principles to evaluate ice hockey player performances via Q-values. The episodic nature of

rugby league, whereby teams have a finite six tackle period of possession, barring fouls/errors,

ensures it is perfectly suited to stochastic analyses. Despite this, limited research has been con-

ducted in rugby league using stochastic analyses [3].

When considering spatial data within EPV models, it is common to split the pitch into

different zones, which pool data together. Discretising the pitch into these zones is compu-

tationally efficient and allows for improved generalisability to other samples. Nevertheless,

selecting the correct zone system is fraught with difficulty. If the zones are too large, valu-

able data could be lost, but if they are too small, the results of the analysis will not be gener-

alisable [10]. Two key methods have been used to determine zone sizes within the EPV

literature. These are fixed zone sizes, arbitrarily chosen by the authors [3], and the selection

of zones based on likely shooting locations [6, 8]. Given a try can be scored across the

width of the pitch, it isn’t possible to identify specific shooting (or try scoring) locations

within rugby league. However, it may be possible to produce a set of zones which are more

rugby league specific by aggregating different zones based on their point scoring potential.

This aggregated set of zones may prove more adept at evaluating attacking performances

within rugby league than the fixed size zones previously considered [3], but to date no

study has compared these methods.

Within a model evaluating rugby league attacking performances, one of the most impor-

tant elements is the reproducibility of performances between fixtures [11]. To understand

the reproducibility of attacking performances from the perspective of an EPV model, it is

necessary to evaluate the similarity of the total EPV generated during a match by a zone

(i.e. the zone’s match EPV) between fixtures. Completing such an analysis with EPV mod-

els using different zone sizes (e.g. the previously published fixed zone size [3], a smaller

fixed zone size and aggregated zone sizes) would help to identify the most suitable set of

zones for rugby league.

The aims of this study were to i) produce six EPV models (two with fixed zone sizes of

~5m x 5m and ~10m x 10m [3], and four with aggregated zones based on differences in the

zones’ match EPV of 0.5, 1.0, 1.5 and 2.0 points per match) to quantify expected points

scored during rugby league matches from specific locations on the pitch (i.e. attacking per-

formances), ii) compare the reproducibility of match EPV between fixtures for the EPV

models, and iii) quantify individual teams’ attacking performances across a season using an

EPV model. Six EPV models were chosen to provide a range of zone sizes from small to

large, which could be compared with regards to their reproducibility between matches and

usefulness in practice.
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Methods

Sample

Event level match-play data were obtained from Opta (Stats Perform, London, UK) for all 180

matches of the 2019 Super League season. In total, 59,233 plays were analysed. Within this

sample, 1,369 tries were scored (1,013 successful conversions, 356 unsuccessful conversions),

271 penalty goals were attempted (239 successful, 32 unsuccessful) and 89 drop goals were

attempted (42 successful, 47 unsuccessful). Prior to analysis, informed consent was obtained

and ethics approval was provided by a University sub-ethics committee.

Data pre-processing

Although event level data can include various pieces of information regarding the actions com-

pleted and players involved, Opta only includes location data (x and y co-ordinates) for the

first action of each play. Consequently, only the location of the first action of each play was

used when developing the EPV models. Despite some variation being present in pitch sizes

across the Super League, Opta standardises pitch dimensions to 68m x 120m through its cod-

ing software so these dimensions were used for this study.

The two fixed zone size models used zone sizes of 5m x 5m and 10m x 10m [3]. When creat-

ing the zones for these models, the opposition try areas was removed from the 68m x 120m

pitch to leave a 68m x 110m area. This was necessary as the opposition try area is an area of

implicitly high value, where a team is likely to attempt to ground the ball for a try before the

next play begins. The 68 x 110m area was split into fourteen ~5m columns and twenty two 5m

rows, resulting in 308 ~5m x 5m zones (EPV-308), and seven ~10m columns and eleven 10m

rows, resulting in 77 ~10m x 10m zones (EPV-77). In both models, the columns closest to the

touchlines were 1m narrower than all other columns. This transformation was necessary as

Opta only provides location to the nearest metre, so splitting the 68m pitch width equally into

4.85m or 9.7m columns would provide no additional detail and would be more difficult to

understand in practice.

In preparation for use within the EPV models, match event data were split into attacking

sets. An attacking set was coded as a sequence of plays, which began when a team obtained

possession of the ball and ended when the team lost possession of the ball (i.e. due to an error,

handover, field kick, penalty, drop goal or try). The 59,233 plays used in this study were there-

fore grouped into 10,156 attacking sets (median length 4 plays per attacking set, range 1–26

plays). Table 1 provides a list of the events, which could end an attacking set and defines them.

Table 1. List of events, which could end an attacking set.

Event Description

Handover A completed sixth tackle by the opposition team

Kick at goal Conversion, Penalty Goal or Drop Goal Attempt

Foul Any foul resulting in the opposition team receiving the ball (e.g. conceding a penalty)

Misplaced

pass

A pass or tap down, which is intercepted by the opposition.

Misplaced

kick

Any kick not caught by the team in possession, including bombs/grubber kicks and positional kicks

Handling

error

Any situation where the ball is lost from the player’s possession or dropped (e.g. lost in contact,

dropped catch)

NB: Any situation where a pass/kick missed its target player, but was not successfully collected by the opposition

resulted in the continuation of the attacking set for the attacking team.

https://doi.org/10.1371/journal.pone.0259536.t001
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For every attacking set, the location at the beginning of each play (as a zone) was used. There-

fore, each attacking set consisted of a sequence of zones equal to the number of plays in the

possession. To enable the EPV models to calculate zone values, each zone visited was assigned

a reward based on the outcome of the play: converted try scored (+6); unconverted try scored

(+4); penalty goal scored (+2); drop goal scored (+1); loss of possession or missed goal attempt

(0). In plays where none of these events occurred, a reward of 0 was assigned. Each time step

within the sequence was assigned a reward, so it was possible for a zone to receive multiple

rewards if more than one play began in a given location within the same attacking set.

Calculation of EPV-308 and EPV-77 fixed zone size values

To evaluate the EPV for each zone on the pitch within the fixed zone size models, attacking

sets were considered as Markov Chains whereby the location of the ball on the pitch (i.e. its

zone) at a given time (i.e. play) within the possession was represented as an event. The value

for each zone s, at a given time within the possession t was defined as:

Vðs; tÞ ¼ E½
P1

k¼0
gk Rtþkþ1jSt ¼ s� ð1Þ

where V(s, t) is the estimated reward obtained from the zone s, at the time t, Ru = Rt+k+1 is the

reward obtained at the time u, which is determined by the end of play u-1 (e.g. if a converted

try is scored at play u-1, Ru = 6), γ is the discount factor and k is a play within the attacking set.

Subsequently, the overall return of any zone s after play t across the sample of attacking sets

was calculated as:

Gðs; tÞ ¼
P

j2As;t
gtj � 1� tRj ð2Þ

where G(s, t) refers to the overall return for zone s after play t across the sample of attacking

sets; As,t is a set of attacking sets where the ball is at location s, in play t; τj is the play number

within an attacking set j, Rj is the reward for the attacking set j.
Finally, the expected possession value (EPV) of each zone s after time t was simulated using

the Monte Carlo every visit algorithm. The Monte Carlo every visit algorithm calculates the

empirical mean of each zone by summing the discounted rewards accumulated by the zone

and dividing them by the total number of visits. The algorithm allows every visit to a zone to

be valued, which is important within rugby league as there is no guarantee that a play will be

able to move between states as the opposition defence aims to stop progression up the pitch. It

is calculated as follows:

EPV s; tð Þ �
1

jAs;tj
G s; tð Þ ð3Þ

Calculation of aggregated zone values (EPV-37, EPV-19, EPV-13, EPV-9)

To calculate the aggregated set of zones for EPV-37, EPV-19, EPV-13 and EPV-9, the zones

from EPV-308 were grouped together or split based upon differences in their match EPV. The

match EPV (Gm(s,t)) for zone s in match m was calculated using Eq 2. However, rather than

considering the zones’ match EPV individually, they were summed at a column level to pro-

vide the column match EPV, and at a row level to provide the row match EPV. This allowed

the influence of, for example, starting a play in a wide location to be evaluated globally across

the pitch.

Visual inspection of the initial column and row values showed that they could be smoothed

based on their spatial similarity. The fourteen columns were averaged at the 5m level symmet-

rically to form seven ~10m columns, whereas the twenty two 5m rows were aggregated to
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eleven 10m rows similar to Kempton et al. (2016). Following this initial aggregation, linear

mixed models were used to evaluate whether the columns or rows could be further combined.

In separate models, the column match EPV and row match EPV were added as dependent var-

iables, with team and fixture ID added as random effects. To evaluate for differences in their

match EPVs, column and row indexes were added to their respective models as categorical

fixed effects. Minimal effects testing [12] was used in four separate models to determine

whether two columns or rows could be combined against a smallest effect size of interest

(SESOI) of 0.5, 1.0, 1.5 and 2.0 units of match EPV respectively. If the difference between two

columns or rows was statistically significant (i.e. P< 0.05), they remained separate; otherwise,

their column/row match EPVs were averaged and compared to the next column or row’s

match EPV. This iterative process was conducted independently for the columns and rows.

The columns and rows were then combined to form a grid. All zones were aggregated at a row

level between -10m and 10m, rather than splitting them into columns. This decision was made

because the zones within the row were visited infrequently relative to the other zones and so

had highly variable zone values. All statistical values obtained within this process are provided

in S1 File.

At SESOI 0.5, 7 rows and columns were present, resulting in 37 zones for the EPV-37. At

SESOI 1.0, 4 rows and 6 columns were present, resulting in 19 zones for the EPV-19. At SESOI

1.5, 4 rows and 4 columns were present, resulting in 13 zones for the EPV-13. At SESOI 2.0, 3

rows and 4 columns were present, resulting in 9 zones for the EPV-9. The aggregated zone val-

ues were calculated as a weighted average of the values of the EPV-308 zones they were com-

posed of. Fig 1 highlights this process by depicting the similarities and differences between the

EPV-308, EPV-77 and EPV-19 in the 30m closest to the opposition try line.

Evaluating the reproducibility of match EPV between fixtures

To evaluate the reproducibility of match EPV between fixtures, the individual zones’ match

EPV was compared between fixtures at a team level. The previous 1–10 fixtures were com-

pared against the subsequent fixture. Every possible fixture within the 2019 Super League sea-

son was evaluated, resulting in 28 comparisons per team when one previous fixture was

considered through to 19 comparisons per team when ten previous fixtures were considered.

The Kullback-Leibler (KL) Divergence [13] was used to calculate the similarity between the

reward distribution in the subsequent match i and the reward distribution in the k previous

match(es). The reward distribution for zone s in match mi (PGmi(s)) was calculated via the

equation:

PGmi sð Þ ¼
GmiðsÞ

PS
s¼1

GmiðsÞ
ð4Þ

The reward distribution for zone s in k matches prior to match i was calculated as:

PGM sð Þ ¼
Pk¼i� 1

k¼1
GmkðsÞ

Pk¼i� 1

k¼1

PS
s¼1

GmkðsÞ
ð5Þ

where PGM(s) refers to the reward distribution obtained by zone s across M fixtures, Gm(s)

refers to the match EPV obtained by zone s in match m and S refers to the set of all zones

within the EPV model.

The KL Divergence is calculated according to the equation:

DKL PjjQð Þ ¼
X

s2S

PðsÞlog
PðsÞ
QðsÞ

� �
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Where P is the true reward distribution, Q is the approximating reward distribution and S

refers to the set of all states within the model. The subsequent match’s reward distribution

(PGmi(S)) was used as the true reward distribution with the previous matches’ reward distribu-

tion (PGM(S)) as the approximating distribution.

The KL Divergence is a measure used in information theory and provides an understanding

of the similarity between two distributions of values. It is an unbounded measure, where a

value of 0 indicates two distributions are perfectly matched, but a value of infinity indicates

that there is no relationship between the two distributions. A value of infinity typically occurs

when a zone within the approximating distribution (PGM(S)) has no value (i.e. it has not been

visited), but has been visited by the true distribution (PGmi(S)). The percentage of non-infinity

values was used to provide an understanding of how many of the subsequent match’s zones

were completely visited in the previous matches. The KL Divergence value was used as a mea-

sure of similarity between the two reward distributions’ values. All results are provided as a

mean and standard deviation values across the twelve Super League clubs.

Quantifying teams’ attacking performances using EPV-19

The attacking performances of individual teams was quantified using z-score analysis. Each

team’s reward distribution across the 2019 Super League season was calculated for the EPV-19

via Eq 5. Z-score analysis of the reward distributions was used to calculate a standardised value

evaluating how the proportion of match EPV a team obtained from a zone compared to the

Fig 1. Depiction of similarities and differences between EPV-308 (A), EPV-77 (B) and EPV-19 (C) in the 30m closest

to the opposition try line. Each zone from the EPV-77 and EPV-19 is a weighted average of the EPV-308 zones they are

composed of. Dotted line represents the opposition 20m line.

https://doi.org/10.1371/journal.pone.0259536.g001
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average across all teams in the Super League. Values of +1 and +2 z-scores were chosen to rep-

resent greater and much greater proportion of match EPV generated by the zones relative to

the average team, values of -1 and -2 were used to represent a lower and much lower propor-

tion of match EPV generated.

All analyses were conducted using bespoke Python scripts (Python 3.7, Python Software

Foundation, Delawere, USA) or via Proc Mixed (SAS University Edition, SAS Institute, Cary,

NC).

Results

Calculation of EPV models

Fig 2 illustrates the zone values for all six EPV models (EPV-308, EPV-77, EPV-37, EPV-19,

EPV-13 and EPV-9). There is a general trend that the closer the zone is to the opposition try

line, the more valuable it is. Similarly, central zones are more valuable than wider zones as

Fig 2. EPV-308 (A), EPV-77 (B), EPV-37 (C), EPV-19 (D), EPV-13 (E) and EPV-9 (F). Lines represent the try line,

20m line and 50m line. All state values are shaded to the same scale.

https://doi.org/10.1371/journal.pone.0259536.g002
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indicated by the darker colours in these areas. As the number of zones decreases, there is a

smoothing effect, whereby the values of adjacent zones move closer together (indicated by the

reduced light-dark contrast between them).

It is noticeable in all models that the majority of variation in values between zones is present

within 30m of the opponent’s try line. There are considerable differences in how each of the

aggregated models handles this variation though. EPV-37 has a separate row for each 10m

block, EPV-19 and EPV-13 split it into 20-30m from the try line and 0-20m from the try line,

whereas EPV-9 only considers the 0-20m area to be different from the rest of the pitch.

Reproducibility of match EPV between fixtures

Table 2 shows the percentage of non-infinity values for all six models after 1–10 previous

matches (i.e. the percentage of fixtures where all subsequent match’s zones had been visited in

the previous matches). For EPV-308, there were only three occasions where this is not 0% (8, 9

and 10 previous matches). There was a consistent increase in the percentage of non-infinity

values as the number of previous fixtures increased for EPV-77 and EPV-37, peaking at

77 ± 8% and 97 ± 4% respectively after 10 previous fixtures. For EPV-19, there was a large

increase in the percentage of non-infinity values before 6 previous fixtures were considered,

after which limited change was observed (95–98% from 6 to 10 fixtures). A similar trend was

present for EPV-13 before 3 previous fixtures were considered (96–100% from 3 to 10 fix-

tures). In EPV-9, 100% of values were not infinity after only 3 previous fixtures.

Fig 3 shows the KL Divergence for EPV-77, EPV-37, EPV-19, EPV-13 and EPV-9. After 8

(KL Divergence = 1.50 ± 0.19), 9 (KL Divergence = 1.41 ± 0.15) and 10 (KL Diver-

gence = 1.44 ± 0.15) previous matches, the KL Divergence for EPV-308 was greater than any

other model. The KL Divergence reduced as more previous matches were considered in all

EPV models in Fig 3. For EPV-37, EPV-19, EPV-13 and EPV-9, the majority of this reduction

occurred between 1 and 3 previous matches before the values stabilised. For EPV-77, the values

stabilised after six previous matches.

Quantifying teams’ attacking performances using EPV-19

Fig 4 provides a numbered zone breakdown for the EPV-19. Fig 5 depicts the z-score analysis

of each team’s attacking performances across the 2019 Super League season using the EPV-19

Table 2. Percentage of non-infinity zones for each model, providing the percentage of matches where the complete set of the subsequent match’s zones were visited

in the previous n matches. Values are mean (standard deviation) percentage (%) across all clubs.

Number of previous matches

Model 1 2 3 4 5 6 7 8 9 10

EPV-308 0 0 0 0 0 0 0 2 4 5

(0) (0) (0) (0) (0) (0) (0) (2) (4) (5)

EPV-77 0 2 13 26 40 51 63 69 72 77

(0) (2) (6) (7) (9) (12) (9) (8) (8) (8)

EPV-37 1 19 48 67 77 85 89 92 95 97

(2) (7) (8) (11) (8) (9) (9) (6) (5) (4)

EPV-19 23 59 76 88 91 95 96 96 98 98

(8) (6) (6) (8) (5) (4) (3) (3) (3) (3)

EPV-13 61 89 96 98 99 100 100 100 100 100

(9) (3) (4) (4) (2) (0) (0) (0) (0) (0)

EPV-9 86 99 100 100 100 100 100 100 100 100

(5) (2) (0) (0) (0) (0) (0) (0) (0) (0)

https://doi.org/10.1371/journal.pone.0259536.t002
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model. Relative to the average Super League team, team 4 gained greater proportion of match

EPV from wider areas 10-70m from their try line. Conversely, teams 6 and 8 gained a greater

proportion of match EPV attacking centrally (zones 5–7 for team 6, zones 5–6 for team 8).

Within 20m of the opposition try line, team 9 gained a lower proportion of match EPV from

the widest zone (zone 14), but the spread of their match EPV over the more central areas was

much more even than other teams.

Discussion

The aims of this study were to i) produce six EPV models (two with fixed zone sizes of ~5m x

5m and ~10m x 10m [3], and four with aggregated zones based on differences in the zones’

match EPV of 0.5, 1.0, 1.5 and 2.0 points per match) analysing attacking performance in rugby

league, ii) compare the reproducibility of match EPV between fixtures for the EPV models, and

iii) quantify individual teams’ attacking performances across a season using an EPV model. Six

EPV models were produced: EPV-308, EPV-77, EPV-37, EPV-19, EPV-13 and EPV-9. The

results show that the attacking performances of previous matches, as assessed by the match EPV,

were more reproducible in subsequent matches as the number of zones in the model decreased

and the number of previous matches used increased. However, as reproducibility increased, the

homogeneity of the zone values also increased. The results also showed that z-scores of the

reward distribution could be used to identify zones through which teams obtain a greater or

lower proportion of their match EPV relative to the average Super League team.

Generation of EPV models

By generating six EPV models, it is possible to compare the value that each model estimates to

be generated by possessing the ball in any location on a rugby league pitch. In all six EPV

Fig 3. KL Divergence values for EPV-77, EPV-37, EPV-19, EPV-13 and EPV-9. A lower value indicates greater

similarity in reward distributions between previous matches and the subsequent match. EPV-308 not included as

values could not be calculated for the first seven matches due to no non-infinity values being present. Line provides

mean value, shaded area indicates standard deviation.

https://doi.org/10.1371/journal.pone.0259536.g003
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models, zones were more valuable the closer they were to the opposition try line and the more

central they were, which aligns with the findings of Kempton et al. [3]. Additionally, in all six

models much greater value is generated within 20-30m of the opposition try line, compared

Fig 4. EPV-19 zones numbered so they can be distinguished from each other. Where numbers are repeated, both

sides of the pitch make up the same zone (e.g. zone 2 is comprised of the widest ~5m on both sides of pitch, between

10m and 70m from the team’s own try line).

https://doi.org/10.1371/journal.pone.0259536.g004
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with>30m. This finding is similar to previous research within football, which shows that the

chance of scoring is significantly reduced to below 7% when shots are taken from outside the

18 yard box [14]. The identification of these zones of value in all six models provides a new

method through which individual possessions can be valued. Furthermore, they provide a

valuable methodology through which the zones visited in tactical set plays could be measured

to establish which play may be most advantageous against a given team. However, it should be

noted that within Kempton and colleagues’ [3] model, the increase in value was much more

gradual from the team in possession’s 20m line through to the opposition try line than in the

models produced here. Whether this is due to the methodological differences (e.g. the different

Fig 5. Z-score analysis of teams’ attacking performances in 2019 Super League season. Numbers 1–19 reflect the zone numbers in Fig 4. A greater value

indicates a greater proportion of EPV was obtained from the zone than the average Super League 2019 team. Distances are measured from the team’s own try line.

https://doi.org/10.1371/journal.pone.0259536.g005
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definition of possessions) or a difference in playing style between National Rugby League and

Super League teams is unclear.

Reproducibility of attacking performances

A key element of any model evaluating attacking performances is to identify how well they

relate to performance in future fixtures. Despite this, few studies have attempted to evaluate

this component of their models [15]. This study was the first to evaluate the reproducibility of

the EPV models between fixtures via the KL Divergence. The results showed that although the

EPV-308, EPV-77 and EPV-37 provide significantly more variability than either the EPV-19,

EPV-13 and EPV-9 with regards to the values of different zones, they had poor reproducibility

between fixtures. This was noticeable in both the percentage of subsequent match zones visited

and in the similarity in reward distributions between the previous and subsequent matches.

The EPV-308, EPV-77 and EPV-37 therefore have limited application in practice. By contrast,

the EPV-19, EPV-13 and EPV-9 all showed excellent reproducibility between fixtures. When

six previous matches were considered, these three models were able to visit all zones in the

subsequent match on 95–100% of occasions. Furthermore, the reward distributions had low

KL Divergence values indicating that proportion of points obtained from each zone was also

very similar to the subsequent match.

Six matches is a relatively small number of matches to consider given the excellent repro-

ducibility shown, suggesting that any of the EPV-19, EPV-13 or EPV-9 models could be used

to evaluate team attacking performance in rugby league. However, it is the usefulness of the

zones generated that should define which model is used in practice. The EPV-19 and EPV-13

both contain four rows (-10 to 10m, 10-70m, 70-80m, 80-100m), whereas the EPV-9 only con-

tains three rows (-10m to 10m, 10-80m, 80-100m). As five of the six models produced suggest

that the value of zones in the 70-80m row can be differentiated from those around it, it is possi-

ble that the EPV-9 has oversmoothed the data, reducing its usefulness in practice. The EPV-19

and EPV-13 models only differ in the manner through which they split group the columns

along the x-axis. The EPV-19 has more columns (6), separating out the widest and second

most central areas of EPV-13. This results in the EPV-13 having a smoother progression of

zone values from wide to central. However, it also results in the value of the zones just outside

the posts being much smaller relative to EPV-19 and EPV-37. Given the value of the central

zones being of upmost importance for conversions of tries, the EPV-19 may be considered the

more useful set of zones, but either model could be used in practice.

Quantifying teams’ attacking performances using EPV-19

This study used the EPV-19 model to quantify the attacking performances of individual teams

within the 2019 Super League season. Using z-score analysis of the match EPV, it is clear that

team 4 generates a greater proportion of match EPV than the average team from different

zones to team 6 when 10m-70m from its own try line (Fig 5). Team 4 gains greater match EPV

from wide areas (zones 3 and 4), whereas Team 6 gains more match EPV centrally (zones 5–7)

relative to other zones. The identification of these zones pre-match could assist teams in their

tactical preparations. Furthermore, the figure shows those teams who spread their attack more

evenly. For example, from 80-100m, team 9 obtained a small proportion of its match EPV

from the widest zone (14) compared to other Super League teams, but they generated similar

proportions of match EPV across the rest of the zones. It is possible that this ability to generate

value close to the average team across the majority of the pitch made the team difficult to

defend against and could explain why they were one of the top points scorers across the season.

The use of this z-score analysis has strong potential as a method through which the areas on a
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pitch where an opposition team may attack can be highlighted quickly and efficiently, regard-

less of the EPV model used, enabling tactical preparations for future matches to be tailored to

the opposition.

Limitations

The EPV-19 provides an excellent starting point through which the tactical analysis of opposi-

tion teams can be conducted in a time efficient and easily interpretable manner in rugby lea-

gue. However, it is subject to several limitations. The first of these is the use of only the start

location of each play. Although it is not currently possible to provide any further information

due to the limitations of the data used, it is important to note that the model could be

improved if specific actions (e.g. passes, kicks or tackles) and their locations were included,

alongside the locations of all players on the pitch. In soccer for example, every single action is

location-coded by several providers, so a more complete model could be completed in that

domain using a similar event level data only process. A second limitation of the model is that it

does not analyse whether being aware of or attempting to stop an opposition team from visit-

ing their highest valued zones during their attacking sets is detrimental to their ability to win

rugby league matches. Future studies could resolve this by building on our framework and

evaluating whether there is a difference in the zones visited when a team wins or loses matches.

Similarly, future studies may wish to consider identifying specific sequences of play, as has

recently been published in rugby union [16], as these sequences may also help with tactical

preparations for future matches. Finally, our study also does not attempt to directly predict

future attacking trends. The authors do not consider this to be a limitation due to the variabil-

ity inherent within predicting single matches, but it should be highlighted. By using the KL

Divergence with the subsequent match as the true distribution, any areas with 0 values in the

subsequent match are automatically believed to have 0 values in the approximating distribu-

tion. Consequently, teams could spend time preparing for the opposition to use a zone they

have used in previous matches, which they don’t end up visiting in this specific match. How-

ever, using the EPV-19 model, the team would be prepared for the vast majority of other zones

that the opponent visits during attacking sets based on the previous six matches’

performances.

Conclusions

In conclusion, this study produced six EPV models, which could be used to analyse a team’s

attacking performances in rugby league. The EPV-19 and EPV-13 both provide a useful under-

standing of attacking performances, which are reproducible in subsequent fixtures, when six

previous matches are evaluated. Furthermore, z-score analysis comparing the proportion of

match EPV generated by each zone relative to other teams within the league highlights the

zones a team gains more value from and may provide a method through which the tactical

preparation of rugby league teams could be enhanced.
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