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Abstract
Purpose: The accuracy of dose prediction is essential for knowledge-based planning and automated planning techniques.
We compare the dose prediction accuracy of 3 prediction methods including statistical voxel dose learning, spectral
regression, and support vector regression based on limited patient training data. Methods: Statistical voxel dose learning,
spectral regression, and support vector regression were used to predict the dose of noncoplanar intensity-modulated radiation
therapy (4p) and volumetric-modulated arc therapy head and neck, 4p lung, and volumetric-modulated arc therapy prostate
plans. Twenty cases of each site were used for k-fold cross-validation, with k ¼ 4. Statistical voxel dose learning bins voxels
according to their Euclidean distance to the planning target volume and uses the median to predict the dose of new voxels.
Distance to the planning target volume, polynomial combinations of the distance components, planning target volume, and
organ at risk volume were used as features for spectral regression and support vector regression. A total of 28 features were
included. Principal component analysis was performed on the input features to test the effect of dimension reduction. For the
coplanar volumetric-modulated arc therapy plans, separate models were trained for voxels within the same axial slice as
planning target volume voxels and voxels outside the primary beam. The effect of training separate models for each organ at
risk compared to all voxels collectively was also tested. The mean squared error was calculated to evaluate the voxel dose
prediction accuracy. Results: Statistical voxel dose learning using separate models for each organ at risk had the lowest root
mean squared error for all sites and modalities: 3.91 Gy (head and neck 4p), 3.21 Gy (head and neck volumetric-modulated arc
therapy), 2.49 Gy (lung 4p), and 2.35 Gy (prostate volumetric-modulated arc therapy). Compared to using the original features,
principal component analysis reduced the 4p prediction error for head and neck spectral regression (�43.9%) and support vector
regression (�42.8%) and lung support vector regression (�24.4%) predictions. Principal component analysis was more effective in
using all/most of the possible principal components. Separate organ at risk models were more accurate than training on all organ
at risk voxels in all cases. Conclusion: Compared with more sophisticated parametric machine learning methods with
dimension reduction, statistical voxel dose learning is more robust to patient variability and provides the most accurate
dose prediction method.
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Introduction

Radiotherapy treatment planning involves considerable

interplanner and intraplanner variability, which leads to sub-

optimal plans, inconsistent planning results, and time ineffi-

ciencies.1-3 Knowledge-based planning (KBP) and automated

planning techniques are actively being developed to address

these challenges and facilitate easier or faster means to attain

optimal plans.4-6

To facilitate automated planning, KBP trains predictive

models on a knowledge base to predict the dose of new

patients. This study compares the prediction accuracy of 3

learning and dose prediction methods for representative

intensity-modulated radiation therapy (IMRT) sites and mod-

alities. Statistical voxel dose learning (SVDL) bins each organ

at risk (OAR) voxel according to their respective Euclidean

distance to the planning target volume (PTV). Statistical voxel

dose learning dose prediction has previously been reported to

be fast and accurate.7 However, it is difficult to incorporate

additional geometrical features into SVDL, which could be

considered a nonparametric machine learning method. In this

study, additional geometrical features are included in the 2

parametric machine learning methods: spectral regression

(SR) and support vector regression (SVR).

A key component in KBP is learning the correlation

between patient anatomies and planning dose. To achieve

this goal, Wu et al8 introduced the concept of the overlap

volume histogram (OVH) and established its relationship

with the dose–volume histogram (DVH). The OVH repre-

sents the relative spatial relationship between an OAR and

the PTV. Points on the OVH are correlated with dose–

volume points, which can perform predictions. This study

evaluated the predicted dose-volume points for the PTV and

OARs of 32 head and neck (HN) cases as quality control

measures to aid in replanning. Support vector regression

was used by Zhu et al9 and later by Yuan et al.2 Principal

component analysis (PCA) was performed on the spatial and

volumetric input features to identify the relevant principal

components (PCs). The PCs were used to train a SVR model

using the DVH as output. The training set size for these

studies ranged from 18 to 82 patients, demonstrating SVR’s

capability of mitigating overfitting with relatively small

training sets. Appenzoller et al10 predicted the full DVH for

prostate and HN cases by binning their distance to the target

and performing a skew-normal fit on the voxel doses within

each bin. The skew-normal fit was used to estimate the dose

of new voxels according to their distance to the target, and

the predicted DVH was calculated over the skew-normal fit

of all OAR voxels. We have previously reported a compar-

ison among OVH, skew-normal fitting, and SVDL predic-

tion accuracy.7 Statistical voxel dose learning is similar to

the skew-normal fitting method, but instead of performing a

skew-normal fit of voxel doses with the same geometrical

feature, the median dose value of each distance bin was

used, which resulted in comparable dose prediction and

shorter computational time.

In addition to these relatively simple learning methods, arti-

ficial neural networks (ANNs) were used to predict brain

stereotactic radiosurgery (SRS) and prostate dose distribution

for voxels within 30 to 32 mm of the PTV.4 Like SVR, ANNs

are flexible in the number of input features, in this case using

spatial and volumetric features as well as the number of fields

and the voxel angle from the PTV centroid and principal coor-

dinate system defined by PCA. Small training set sizes of 23

and 43 for prostate and SRS cases, respectively, were used for

acceptable dose prediction accuracy (8%-10% average) for the

small volume near the target. However, the computational time

becomes intractable for larger regions of interest and more

complex cases using the method.

A more sophisticated atlas-based dose prediction method

was reported for HN patients.5 Each patient in the training set

represents 1 atlas, and computed tomography (CT) radiomics

texture features were extracted to characterize each image.

Feature extraction and characterization was then performed

on CTs of the patients to implement atlas selection. This

resulted in probabilistic dose estimates which were then used

with a conditional random field to find the most likely voxel

dose from similar atlases and evaluate the prediction accuracy.

This method required relatively large training sets, with train-

ing set sizes ranging from 58 to 144 patients for the various

treatment sites. It took 48 hours to train the model and addi-

tional 15 minutes for individual case prediction.

A summary of these dose prediction studies is presented

in Table 1. In clinical practice, KBP learning and prediction

needs to balance the efficiency, sample size requirement,

and accuracy. Although increasing the number of plans

could increase the training accuracy theoretically, a large

high-quality training set is not always attainable. The plan

quality heterogeneity often increases with more plans

included. Due to the need to repeatedly retrain the model

with new or updated cases, the computational speed is also

important. In this study, we focus on comparing learning

methods that are fast, yet rely on relatively small data sets

that are readily available at most clinics. A direct
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comparison of the dose prediction methods will provide

guidance to automated treatment planning.

Materials and Methods

Dose prediction for both noncoplanar IMRT (4p) and

volumetric-modulated arc therapy (VMAT) was performed for

HN, lung, and prostate cases. It is the current standard-of-care

modality in IMRT. The 4p radiotherapy was developed to sub-

stantially improve dose conformity and normal tissue sparing

by optimizing noncoplanar beam angle selection. This

improved dosimetry has been reported for liver,11,12 lung,13

brain,14 prostate,15,16 and HN17 cases. Both modalities can be

automated using a voxel-based optimization without a need to

manually select the beams, making them well suited for KBP

automated treatment planning.

The patient cohorts and their respective planning techniques

for this study were chosen as listed in Table 2. Twenty patients

were selected for each treatment site. Predictions were per-

formed using k-fold cross-validation with k ¼ 4, resulting in

training set sizes of 15 patients. These 3 disease sites were cho-

sen as we believe them to be generally representative of IMRT

planning cases. Patients’ CTs and VMAT plans were retrospec-

tively obtained from the clinic under an institutional review

board–approved protocol (IRB# 12-001882). Head and neck and

lung cases were replanned using 4p optimization in MATLAB

(version 2017a; Mathworks, Natick, Massachusetts).11

Although noncoplanar beams have been shown to improve

the dosimetry,11,15,16,13 the delivery of such beams can be chal-

lenging due to potential patient collision. Furthermore, prostate

dose constraints are typically met with coplanar arc beams. For

these reasons, we only included coplanar VMAT plans for

prostate cases. On the other hand, dose compactness has a

much higher importance in lung stereotactic body radiation

therapy (SBRT) with dose prescriptions of 12.5 Gy in 4 frac-

tions.18,19 Noncoplanar 4p treatment is particularly effective in

reducing the high dose spillage and improving dose conform-

ality.13 The current study focuses on centrally located lung

tumors. Lastly, HN cases represent the most challenging dis-

ease site, commonly including up to 40 OARs with complex

PTV shapes, location, and various prescription dose levels.

Head and neck cases are highly diverse based on the origin

of the tumors and the laterality. In this study, without losing

generality, we focused on oropharyngeal tumors, which are

representative of the complex HN anatomy. Both 4p and

VMAT plans were included for HN cases as they could both

be valuable depending on actual dosimetric requirement and

delivery time.

Table 2. Patient Cohort Disease Sites and Planning Techniques.

Head and Neck Lung Prostate

4p X X

VMAT X X

Abbreviation: VMAT, volumetric-modulated arc therapy.

Table 1. Summary of Previous Dose Prediction Studies.

Input Features Predicted Output Learning Method

Training

Set Size Disease Sites

Training

Time

Prediction

Time

Wu et al Overlap volume histogram Dose–volume points OVH-DVH

correlation

32 HN - -

Zhu et al Distance to target DVH SVR 18 Prostate - -

Yuan et al Distance to target DVH SVR w/PCA 64, 82 Prostate, HN - -

Structure volumes

Overlap volumes

Out-of-field volume

Appenzoller et al Distance to target DVH Skew-normal

fitting

20, 24 Prostate, HN - -

Shiraishi et al PTV volume Voxel dose ANN 23, 43 Prostate, SRS 4 hours -

Distance from structures Within 30-32 mm

of PTV

Number of fields

Angles from PTV centroid

Principal coordinate system

Tran et al Distance to target OAR voxel dose SVDL 20 Liver 2-4 minutes 1 second

McIntosh et al Radiomics features Image voxel dose Atlas-based CRF 97 Breast cavity 48 hours 15 minutes

144 Whole breast

113 CNS brain

144 Prostate

77 Lung

58 Rectum

Abbreviations: ANN, artificial neural network; CNS, central nervous system; CRF, conditional random field; DVH, dose–volume histogram; HN, head and neck;

OAR, organ at risk; OVH, overlap volume histogram; PCA, principal component analysis; PTV, planning target volume; SVDL, statistical voxel dose learning;

SVR, support vector regression.
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For each site, there are numerous OARs to predict. All

relevant OARs with clinical dose constraints were predicted.

We tested predictions from models trained independently on

each OAR as well as those trained on all OAR voxels collec-

tively. Separate models allow more specialized predictions, but

combining all voxels ensures large training data. For the

VMAT predictions, voxels were separated to in-beam and

out-of-beam groups based on their axial slice location relative

to the PTV voxels.

Dose Prediction Techniques

We used the median-approximated SVDL method as described

by Tran et al.7 Computed tomography and dose arrays were

resampled into isotropic 0.25 � 0.25 � 0.25 cm3 voxels. The

only voxel information used in this SVDL is the Euclidean

distance to the PTV surface. Voxels are sorted into bins based

on their distance to the PTV and the median dose of each

distance bin calculated. The median dose is then used as the

predicted dose of each new voxel of the same distance to the

PTV. Statistical voxel dose learning can be viewed as a

weighted nearest neighbor regression using the median statis-

tic. As such, SVDL is robust to noise on both the input feature

vector and mapped dose value.

Spectral regression and SVR are supervised machine learn-

ing models that can predict an output value from input features.

In this case, the features included the distance to the PTV

(r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
), r2, r3, r�1,; r�2, y, z, x2, y2, z2;x�1;y�1;z�1,

xy, yz, xz,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

, angle from PTV

centroid, angle from linac source, PTV volume,

PTV volume:2, OAR volume, OAR volume2, OAR volume
PTV volume , and

PTV volume
OAR volume, resulting in a total of 28 features. Spectral regression

and SVR predictions were performed using the aforementioned

features as well as using PCA. Principal component analysis

transforms the feature vectors into orthogonal PCs that are

linearly uncorrelated and variance preserving. Principal com-

ponent analysis allows control of the degree of dimension

reduction by simply choosing how many PCs to train on. Dose

predictions with PCA were performed with 1 to 28 PCs to find

the ideal number of PCs for each case and compared with

predictions using the original features. Pearson correlation

coefficients (R) were evaluated between all pairs of PCs and

original features.

Spectral regression is a modified form of ridge regression

realized through a subspace learning formulation.20 The SR

algorithm discovers the subspace embedding vectors as the

eigenvectors of an eigenproblem involving the similarity

matrix from spectral graph theory,21 with flexible regulariza-

tion options such as L2 (ridge) regularization. The SR for radio-

therapy dose prediction has not been studied before, and it was

performed using the open source MATLAB code from Cai

et al.20,22,23 The prediction model is based on subspace learning

using the input features and corresponding voxel dose labels of

the training set. This prediction model produces an embedding

vector of the same length as the feature vectors; hence, predic-

tion for new voxels is a simple dot product.

Support vector regression is based on support vector

machines, which is a large margin classifier. Support vector

machines are used for the classification of new data into separate

categories. It trains a model by defining a decision boundary that

maximizes the margin separating different categories in labeled

training data. Support vector machines use kernel-induced fea-

tures to specify nonlinear decision boundaries, allowing consid-

erable flexibility in prediction models. Instead of defining

decision boundaries to separate categories, SVR trains a regres-

sion function that minimizes the error of data points outside of

the margin. Support vector regression in combination with PCA

has previously been demonstrated to predict specific dose–vol-

ume points.2 It was performed using LIBSVM, an open source

software library for support vector optimization.24 The n-SVR

model was chosen after preliminary comparison with E-SVR due

to more consistent and accurate predictions. Large OARs were

downsampled to a maximum of 20 000 voxels due to the sub-

stantial time requirements for SVR.

Both SR and SVR require tuning of hyperparameters to

ensure the models are properly trained for our specific task.

Spectral regression uses the Tikhonov regularization para-

meter, a, and SVR requires selection of a kernel and tuning

of the penalty parameter, C, and kernel parameters. Linear,

polynomial, radial basis function, and sigmoid kernels were

evaluated for the SVR regressions. Parameters were tuned

with exhaustive grid searches in exponential increments (eg,

a ¼ 0.1, 0.3, 1, 3, 10, . . . ).

After the optimal parameters for SR and SVR were

found, overfitting analysis was performed by predicting one

of the 5 patient test cohorts with training set sizes varying

from 1 to 15 patients. If the prediction error does not con-

verge, it would indicate that larger training sizes would

improve the accuracy and that overfitting is likely a prob-

lem with our training set size.

Prediction Accuracy Analysis

All dose prediction methods in this study are capable of pre-

dicting the 3D voxel dose for each OAR. Both root mean

squared error (RMSE) and mean absolute error (MAE) were

used to evaluate the voxel dose prediction accuracy,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1
ðd̂ i � diÞ2

s
;

MAE ¼1
n

Xn
i¼1
jd̂ i � dij;

where n is the number of voxels and d̂ i and di are the predicted

and actual doses, respectively. Both prediction accuracy mea-

sures keep the original units (Gy) that can be intuitive to inter-

pret. The errors were calculated for each predicted OAR as well

as for all OAR voxels as a whole.

The DVH prediction accuracy was also evaluated, as it still

contains relevant clinical information. The mean absolute
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difference (MAD) of the actual and predicted DVHs was cal-

culated for each prediction,

MAD ¼1
m

Xm
j¼1
jDVHactual

j � DVHpredicted
j j;

where m is the number of DVH bins, separated by 0.05 Gy.

Since the DVH is conveyed as a fractional volume, MAD is

reported in units of percentage. Mean absolute difference is

compared between the DVH predictions of SVDL and the SR

and SVR models with the lowest voxel dose error.

Results

Exhaustive grid search resulted in different optimal SR and

SVR hyperparameters depending on the accuracy measure,

RMSE or MAE. To illustrate the problem, the lung 4p RMSE

and MAE results are shown in Table 3. The optimal hyperpara-

meters would ideally match, whether we optimized the regres-

sion parameters based on RMSE or MAE. However, since they

resulted in differing parameters, we visually compared the

results to determine whether they are representative of a

realistic dose prediction. Isodose color wash comparisons are

shown in Figure 1. Root mean squared error-optimized dose

predictions better approximate the sharp dose gradient of the

PTV surface; hence, RMSE was used for the remainder of the

study for evaluations of prediction accuracy. In fact, the pre-

diction optimized for MAE resulted in piecewise constant dose

predictions, where most of the voxel doses were equal to zero.

A representative example of the overfitting analysis is

shown in Figure 2. All other treatment sites exhibited the same

trend. Both SR and SVR prediction accuracy did not converge

using the training set sizes we had available. The RMSE was

still decreasing using our largest training set of 15 patients.

The voxel dose prediction RMSEs are shown in Figure 3.

Between the parametric machine learning methods, SVR con-

sistently achieved lower prediction errors compared to SR, both

with and without PCA. Nevertheless, both parametric machine

learning methods are inferior to SVDL in RMSE. The SVDL

prediction RMSE for HN is greater (3.91 Gy 4p and 3.21 Gy

VMAT) than for the prostate (2.35 Gy) and the lung (2.49 Gy).

The actual and predicted OAR voxel dose of an example case is

illustrated in Figure 4 as isodose color washes.

Combining all OAR voxels into the same prediction model

to enlarge the training set size did not offset the advantage of

specialized models for each OAR. For all cases, collectively

training on all OAR voxels resulted in increased prediction

error of 11.7% (SVDL), 6.7% (SR), and 19.0% (SVR).

Principal component analysis reduced the SR and SVR error

for all 4p cases, except for lung 4p with SR, in which case using

PCA yielded worse accuracy than SR without PCA (�4.74%).

Dimension reduction with PCA had no effect in improving

VMAT dose prediction. For HN VMAT prediction, using PCA

with SR also resulted in worse performance than SR using the

Table 3. Root Mean Squared Error and Mean Absolute Error Results

for RMSE-Optimized and MAE-Optimized Lung 4p Spectral Regres-

sion and Support Vector Regression Dose Predictions.

(a) Alpha RMSE MAE

RMSE-optimized 102 5.497599 3.682

MAE-optimized 109 5.812917 1.78

(b) C Gamma RMSE MAE

RMSE-optimized 1 0.5 4.0196 1.706

MAE-optimized 0.01 0.5 4.957 1.568

Abbreviations: RMSE, root mean squared error; MAE, mean absolute error.

SR SVR

RM
SE

-
op

�m
ize

d
M

AE
-
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�m

ize
d

0 Gy

50 Gy

Figure 1. Representative isodose color wash comparison between root

mean squared error (RMSE)- and mean absolute error (MAE)-opti-

mized spectral regression and support vector regression dose predic-

tions for an example lung 4p case. The planning target volumes

(PTVs) are shown in white.

Figure 2. Dose prediction root mean squared error (RMSE) using

spectral regression and support vector regression with varying training

set size.
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original features (�4.20%). With the inclusion of more PCs in

4p prediction, RMSE outcome was noisy but typically reduced

the error. As shown in Figure 3, SVR and SR for HN 4p and

SVR for lung 4p had general prediction improvement with

more PCs. In the case of lung 4p, the inclusion of more PCs

exhibited a valley trend, seen with 10 to 27 PCs in Figure 3C as

the solid blue line. In the analysis of correlations between the

PCs and original features, Pearson correlation coefficients (R)

greater than 0.7 were observed between PC1 and r2 (R ¼ 0.96),

PC4 and the PTVvolume (R ¼ 0.78), and PC7 and PTV volume
OAR volume (R

¼ 0.90). All other PCs had no strong correlation with the orig-

inal features. From observation of the resulting coefficients, 0.7

was chosen as the cutoff for strong correlation as most other

PC-feature combinations had coefficients less than 0.4.

Figure 5 shows the RMSE for dose prediction of each OAR

for the most accurate method (SVDL in all cases). The box

plots illustrate the range of error for each of the 20 patients’

OAR prediction. For HN 4p predictions, there are consistently

large errors for the cricoid pharyngeal inlet (CPI) and tempor-

omandibular joints (TMJs). These errors are also present in HN

VMAT predictions, but not to the same scale. The HN VMAT

predictions have more intermediately sized errors for other

OARs, namely the parotids, mandible, lips, cochlea, larynx,

pharynx, esophagus, oral cavity, and submandibular glands.

Lung 4p predictions were mostly consistent through each

OAR. All OARs had a few outliers except for the lung, eso-

phagus, and liver. The prostate VMAT predictions are overall

scaled lower than the other sites and even the outliers have

considerably lower error.

The prediction error for DVHs was also evaluated using

MAD between the actual DVH and the 3 predicted DVHs. Box

plots of the MAD results for the 20 patients of each treatment

site are shown in Figure 6. A representative DVH with the

predicted DVHs is shown in Figure 7. Mean absolute difference

in the DVH fractional volumes across the tabulated dose bins is

reported in units of percentage. However, it is important to note

Figure 3. Root mean squared error of dose predictions for (A) head and neck 4p, (B) head and neck volumetric-modulated arc therapy (VMAT),

(C) lung 4p, and (D) prostate VMAT. All results shown are for predictions using separate models for each organ at risk (OAR). Errors for

spectral regression (SR) and support vector regression (SVR) using principal component analysis are shown with varying numbers of principal

components (PCs). Root mean squared error for statistical voxel dose learning (SVDL), which only uses the voxel distance to the planning target

volume (PTV), and SR and SVR using the original geometrical features are shown as dashed lines.
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that MAD is not a percent difference metric. Overall, SVDL

produced an average MAD of 4.33, compared to 7.37 and 5.65

for SR and SVR, respectively. For reference, the atlas-based

dose prediction method introduced by McIntosh and Purdie5

resulted in an average MAD of 1.33 and 2.12 for lung and

prostate, respectively. However, it is important to note the

differences both in training set size and computational time

with their method, which used 77 lung and 144 prostate plans

and took 48 hours for training.

All prediction methods are relatively fast compared to the

typical planning time for voxel-based 4p and VMAT optimiza-

tion. Average training times were 24.0 seconds (SVDL), 0.06

seconds (SR), and 87.7 seconds (SVR) for each OAR training set.

Average prediction times were 0.03 seconds (SVDL), 0.01 sec-

onds (SR), and 0.89 seconds (SVR) for each new patient OAR.

Discussion

Counterintuitively, despite more geometrical features being

included, the parametric machine learning methods were less

accurate than the simple SVDL for both voxel dose and DVH

predictions. Feature reduction using PCA was not able to

substantially improve the results. Using some or all of the PCs

from PCA improved the SR or SVR prediction accuracy over

using the original features, but only for 3 of the four 4p pre-

dictions. This is likely because the VMAT predictions already

separated in-beam and out-of-beam voxels, making the Eucli-

dean distance to the PTV the primary relevant feature for

VMAT cases. Conversely, 4p dose distributions are much more

dependent on the relative 3D spatial differences than just the

axial in-beam and out-of-beam categories. By organizing the

features into high variance, orthogonal PCs, the parametric

machine learning methods can better utilize the data to improve

the prediction accuracy. Strong correlations were found

between PCs and r2, PTVvolume, and PTV size
OAR size. This indicates

that these particular features are mostly orthogonal with each

other and an increase in model complexity could be beneficial.

In general, the increase in error with reduction in PCs suggests

that dimension reduction unnecessarily excludes uncorrelated

information. The valley trend for PCs in lung 4p SR suggests

that for this particular case, the full set of features is unneces-

sary to predict the dose.

Additionally, prediction accuracy was not improved by

training a model using all OAR voxels, which resulted in even

HN
 

4π
 

Lu
ng

 
4π

 
HN

 
VM

AT
Pr

os
ta

te
 

VM
AT

Actual SVDL SR SVR

0 Gy

40 Gy
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50 Gy

0 Gy

66 Gy
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66 Gy

Figure 4. Isodose images of the actual and predicted organ at risk (OAR) voxel dose for representative example head and neck (HN), lung, and

prostate cases. The planning target volumes (PTVs) are shown in white.
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higher error. A possible reason is that SR and SVR are more

dependent on their respective training sets, with variable dose

gradients for the different OAR predictions. A training set size

analysis was performed to understand the performance of SR

and SVR. The results indicate that overfitting exists for the

current training set size. Larger training sets are likely required

to fully take advantage of the machine learning methods. How-

ever, when the training set is practically limited, the study

demonstrates that SVDL can better predict the 3D dose distri-

bution and DVH. Statistical voxel dose learning collapses the

available data into one estimated number for each distance bin.

This makes it more naive to the variations of PTV and OAR

geometry, resulting in site-dependent prediction error. This is

evident in the isodose images in Figure 4. Realistic voxel dose

predictions require sharp dose falloffs near the PTV boundary

but otherwise smooth transitions. Statistical voxel dose learn-

ing consistently maintains this sharp dose gradient by indepen-

dently estimating each distance bin. In contrast, the SR and

SVR methods are unable to achieve these gradient qualities,

instead having abrupt dose gradients between OARs and at the

Figure 5. Root mean squared error of statistical voxel dose learning (SVDL) dose predictions for each organ at risk (OAR).
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primary beam plane. Statistical voxel dose learning is able to

consistently produce such dose distributions because the same

predicted dose is applied to all voxels of the same distance to

the PTV.

An interesting observation for the machine learning meth-

ods is the apparent discrepancy in the RMSE and MAE trends

for the same regularization parameter tuning. The discrepancy

between MAE- and RMSE-optimized dose predictions is due

to their different preferences to small and large errors. Mean

absolute error allows larger outliers as long as most voxel

residuals are minimal. However, RMSE penalizes large resi-

duals more than small errors. In the case where the MAE is

minimized by heavily regularizing the predicted dose distribu-

tion, a nearly piecewise constant dose distribution resulted that

is drastically different from realistic dose distributions because

MAE is dominated by the majority of voxels with near zero

dose and forgiving toward the few voxels with substantial dose.

Therefore, the RMSE metric is better correlated with realistic

dose distributions and was chosen as the sole accuracy measure

for the rest of the study.

Although only a subset of HN cases were included, that is,

oropharyngeal, these cases are still highly variable in relative

organ geometry, dose prescription levels, and PTV. This high

variance contributed to the overall higher HN prediction error

compared to lung and prostate cases. Although the lung tumor

locations vary, fewer and larger OARs are involved, resulting

in more consistent prediction than HN. Prostate dose prediction

RMSE had the least amount of variability as would be expected

due to the more consistent geometry in prostate cases.

The comparison of the OAR prediction accuracy between

HN 4p and VMAT highlights interesting differences between

the 2 modalities. The VMAT prediction inherently accounts for

beam orientation, as in-beam and out-of-beam voxels are sep-

arate. However, since 4p performs simultaneous beam angle

selection with fluence map optimization, it is impossible to

preemptively sort in-beam and out-of-beam voxels for 4p.

Despite this difference, 4p prediction had relatively low errors

for most OARs, except for the CPI and TMJs, which are small

organs near the PTV and can be particularly affected by pri-

mary beam paths. In contrast, for HN VMAT prediction, organs

at the same level of the PTV had higher RMSEs than OARs out

of the VMAT arc plane. This is most likely because they are

close to the PTV and in the high-dose gradient region. These

organs are very small (<3 cm3) and are often near the PTV,

leading to a greater degree of dosimetric variability and thus

inferior dose prediction accuracy.

Conclusion

This study compared 3 learning methods using limited training

set sizes for the dose prediction of 4p noncoplanar IMRT and

coplanar VMAT plans for HN, lung, and prostate patients.

Statistical voxel dose learning not only was found to be a

simpler approach compared to SR and SVR but also produced

the lowest prediction error for all cases. Principal component

analysis was useful in improving SR and SVR dose prediction

accuracy for 4p prediction in most cases, but still could not

reach the accuracy of SVDL. Training set size analysis found

that the parametric machine learning predictions could be

improved with larger training sets due to overfitting. Among

the 3 sites, prostate plans had the lowest prediction error, with

HN producing the highest error. Using separate OAR-specific

prediction models was more beneficial than trying to increase

Figure 6. Mean absolute difference in fractional volume for the dose-

volume histogram (DVH) predictions of 20 patients of each site for (in

order from left to right) statistical voxel dose learning (SVDL),

spectral regression (SR), and support vector regression (SVR).

Figure 7. Comparison of the predicted and actual dose for representative example dose–volume histogram (DVHs). The structures shown in

each of these examples are the pharynx (head and neck), heart (lung), and femoral head (prostate).
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data set size by including all OAR voxels in the training set. All

training methods utilize clinically feasible time, but SVR is

considerably slower than the other 2 methods.
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