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Observational studies have shown that elevated systolic
blood pressure (SBP) is associated with future onset of
type 2 diabetes, but whether this association is causal is
not known. We applied the Mendelian randomization
framework to evaluate the causal hypothesis that elevated
SBP increases risk for type 2 diabetes. We used 28 genetic
variants associated with SBP and evaluated their impact
on type 2 diabetes using a European-centric meta-analysis
comprising 37,293 case and 125,686 control subjects. We
found that elevation of SBP levels by 1 mmHg due to our
genetic score was associated with a 2% increase in risk of
type 2 diabetes (odds ratio 1.02, 95% CI 1.01–1.03, P =
9.05 3 1025). To limit confounding, we constructed a sec-
ond score based on 13 variants exclusively associated
with SBP and found a similar increase in type 2 diabetes
risk per 1 mmHg of genetic elevation in SBP (odds ratio
1.02, 95% CI 1.01–1.03, P = 1.48 3 1023). Sensitivity anal-
yses using multiple, alternative causal inference measures
and simulation studies demonstrated consistent associa-
tion, suggesting robustness of our primary observation. In
line with previous reports from observational studies, we
found that genetically elevated SBP was associated with
increased risk for type 2 diabetes. Further work will be
required to elucidate the biological mechanism and trans-
lational implications.

Metabolic syndrome is defined by a collection of risk
factors that strongly predict the onset of type 2 diabetes
later in life (1). A component of this syndrome—
hypertension—is decidedly associated with type 2 diabetes
(2). Beyond association with this clinical classification,
observational studies have also demonstrated that, mea-
sured as a continuous trait, systolic blood pressure (SBP)
is associated with type 2 diabetes, with a 1-mmHg in-
crease associated with a 1%–4% increase in type 2 diabetes
risk (3–6). It would desirable for mechanistic and thera-
peutic reasons to better understand the relationship—
causal or correlation—between these factors (7,8).

Investigating a causal relationship between blood
pressure and type 2 diabetes is a difficult problem. Observa-
tional studies are limited in their ability to investigate
causality due to confounding factors such as obesity and
use of medications and due to issues of reverse causality.
The randomized clinical trial can assess causality, and such
studies have been used to demonstrate the therapeutic
benefit of blood pressure–lowering medication on cardio-
vascular events (9–11). Because elevated blood pressure is
causally related to cardiovascular disease, a well-controlled,
ethical placebo-based randomized intervention study for
the effects of antihypertension medication on populations
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with type 2 diabetes is inconceivable. Previous clinical
trials designed to assay the diabetic properties of antihyper-
tension medications follow an “add-on” regimen of these
medications in the control arm. Thus, in well-designed
studies, “untreated” groups are simply treated less often
with a specific therapeutic (12,13). Although powered to
study drug efficacy, such trials are weakly powered to
evaluate causality between blood pressure and type 2 di-
abetes. Blood pressure is a complex trait with multiple
etiological underpinnings (e.g., insulin resistance, obesity,
inflammation, etc.). It may be that some, all, or none of
these underlying factors directly relate to type 2 diabetes
etiology. Thus, investigating specific, physiological path-
ways that putatively elevate blood pressure and type 2 di-
abetes risk is another obstacle to progress.

Recent advances in our genetic understanding of blood
pressure provide a new avenue to characterize this relation-
ship: the approach of Mendelian randomization (MR). MR is
a form of instrumental variable analysis whereby selected
genetic variants related to a specific exposure of interest are
used to statistically evaluate a causal hypothesis between the
exposure and an outcome (14,15). Because genotypes assort
randomly during the process of meiosis and genotypes pre-
cede phenotype, MR addresses the issue of reverse causality.
Confounding can be addressed in part by selecting genetic
factors that are exclusively associated with SBP (16–18).
Multiple variants can be combined into a genetic risk
score (GRS) and subsequently used for hypothesis testing
to provide a causal effect estimate of genetically elevated
SBP on risk to type 2 diabetes. As it is difficult to guarantee
that each variant used in a GRS is a statistically valid
instrument, it is also desirable to quantify and control
potential confounding bias that may impact the inference.
Toward this end, Egger regression and a novel weighted-
median effect estimator have been proposed as sensitivity
analyses for causal effects estimated from traditional MR
(19,20).

Here, we present evidence that genetically elevated SBP
increases the risk of type 2 diabetes. To perform our test, we
meta-analyzed case and control cohorts to summarize the
association with type 2 diabetes, evaluated a set of genetic
variants reproducibly associated with SBP, and used multiple
MR inference techniques robust to assumptions of bias in
the analysis.

RESEARCH DESIGN AND METHODS

Selection of Genetic Variants for the SBP Genotype
Risk Score
We developed two instruments for MR analysis. First, we
selected 26 single nucleotide polymorphisms (SNPs) with
established association from a recent meta-analysis of
SBP, spanning 69,395 individuals from a three-stage valida-
tion experiment using association data from up to 133,661
additional individuals (16). We added three variants
(rs13359291, rs1563788, and rs2014912) reported in a
recent genome-wide association study (GWAS) of blood
pressure–related phenotypes in up to 320,251 individuals,

and an additional SNP (rs12946454) drawn from a com-
bined analysis of Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) Consortium results
with an additional study of 34,433 subjects (17,18). Two
SNPs were eliminated due to associations with potential
confounding factors (BMI, coronary heart disease, and type 1
diabetes), resulting in 28 SNPs for our “expanded” genetic
instrument. Our “conservative” instrument comprised
13 SNPs used by Yin and Voight (21), which were selected
based on criteria to minimize linkage disequilibrium (LD)
among SNPs and to reduce potential confounding from
cardiometabolic phenotypes (Supplementary Table 1). All
SNPs used were genome-wide significantly associated with
SBP and were not in strong LD with one another (CEU
r2 , 0.05). Where possible, we obtained effect sizes for
SNPs from the winner’s curse–adjusted estimated effects
(see Supplementary Table A.2 in Ehret et al. [16]). We
scrutinized rs2521501, which fell into a region of estab-
lished association with T2D (22,23). However, tags for
this association (rs12899811 and rs8042680) were not
in strong LD with rs2521501 (CEU r2 , 0.01), suggesting
our selected SBP-associated SNP is independent of these
tags. Moreover, several of our casual effect estimators are
designed to be robust against the potential invalidity of
specific instruments, so we opted to retain this SNP in
our primary analysis. We note that a sensitivity analysis
that excluded rs2521501 did not alter our central findings
(Supplementary Tables 2A–C).

Obtaining Summary Association Data for
Type 2 Diabetes
We combined type 2 diabetes association data obtained
from the DIAbetes Genetics Replication And Meta-analysis
(DIAGRAM) consortium, which included stage 1 GWAS
meta-analysis and stage 2 Metabochip genotyping. This
comprised up to 34,840 case and 114,981 control subjects
(24). To these data, we incorporated summary association
data from three additional cohorts (PennCATH, MedStar,
and the FINRISK study), totaling an additional 2,453
case and 10,705 control subjects (25–27). Odds ratios
(ORs) with SEs for each SNP were generated using
inverse-variance weighted (IVW) fixed-effects meta-
analysis. All data sets were based on summary-level
(not individual-level) data. Our causal inference tests
assumed that the samples used to estimate the genetic
effects for SBP and type 2 diabetes are nonoverlapping.
As we used the effect estimates for SBP obtained in the
replication (not discovery), the sample overlap was slight
(;4%–5%).

Causal Effect Estimate via Genotype Risk Score and
Heterogeneity Analysis
We estimated a causal effect from our SNP collections
using the GRS method, as previously described (28).
Briefly, under the standard MR assumptions and provided
that each SNP is not strongly linked to one another, a
causal effect (â) and error [SE(â)] between SBP and type 2
diabetes can be estimated by (28):
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where for all j SNPs, bj represents the estimated natural
log odds effect of the jth SNP on type 2 diabetes, sj rep-
resents the standard error on the log odds effect of the jth
SNP on type 2 diabetes, and gj represents the effect of the
SNP on SBP (i.e., the weight) in millimeters of mercury.
Assuming 17.87 mmHg per SD of SBP, we estimated ;1%
and;0.5% variance explained in SBP levels and F-statistics
of 11.6 and 11.9 for the n = 28 and n = 13 variant scores,
respectively (28). Sample size used for the F-statistic calcula-
tions was estimated as the median across SNPs, calculated for
each given the allele frequencies, OR, and SE of the type 2
diabetes association (Supplementary Tables 3 and 4). We also
computed a causal estimate using an unweighted GRS (i.e.,
weights set to one for all variants). As for the weighted
scores, the type 2 diabetes log-odds was polarized to the
SBP-increasing allele. The Cochran Q test, implemented in
the gtx package (v0.0.8) in R (v3.3.0), was used to assess
heterogeneity for each risk score (Supplementary Table 2B).
Estimates for the effect of SBP on type 2 diabetes for indi-
vidual SNPs was calculated using Eqs. 1 and 2. The number
of SNPs reporting a positive association between SBP and
type 2 diabetes was totaled, and statistical significance was
calculated using the binom.test function in R (v3.2.1).

Causal and Bias Estimation Using Egger Regression
and Weighted-Median Estimation
Egger regression analyses were performed in R (v3.3.0,
code available at https://github.com/raikens1/T2D_MR),
and details on the specific approach are described else-
where (20). Briefly, Egger regression is analogous to the
causal effect approach that uses IVW regression on the
summary estimates of the effect of the biomarker versus
the effect on the outcome. In traditional IVW, the inter-
cept term is fixed at zero, which provides an estimate of
causal effects that is asymptotically equivalent to the GRS
method (20). Egger regression instead estimates an inter-
cept term in the regression. A significant, nonzero inter-
cept implies directional bias among the selected genetic
instruments, and the resulting effect estimate is a valid
causal effect in the context of estimated directional bias.
Significance tests for both approaches were performed
using the Student t test distribution, and CIs for the
estimated causal effects were obtained via bootstrapping.
We also used a simulation approach to explore the sensi-
tivity of Egger regression for detecting different bias lev-
els in our data. By constructing simulated data sets
(n = 1,000) with a preset effect of SBP on type 2 diabetes,
we noted the behavior of Egger regression estimates of SBP
effect and average bias under different patterns of pleio-
tropic bias (see Supplementary Data and sample code).

A weighted-median method for assessing causal effect
is unbiased asymptotically (as sample size increases) and
requires at least 50% of the weight for the score to derive
from valid instruments (19). Weighted-median estimation
was carried out in R (v3.3.0) using sample code previously
made available (19). SE and 95% CI were estimated by
bootstrapping.

Exploring Potential for Bias Due to Adiposity
Adjustments via Simulation
To explore potential sources of bias due to adjustments in
the primary GWAS analysis (16), we used the MR pre-
dictor tool (29) to generate sets of simulated phenotypic
data for 150,000 individuals under a model whereby SBP
and BMI increase type 2 diabetes risk. To construct our
simulations, estimates of type 2 diabetes prevalence (30),
association of SBP with BMI (31), and BMI-associated
type 2 diabetes risk (32) were drawn from the literature.
We then used PLINK (v1.07) (33) to generate linear SBP
association estimates for each of the 13 SNPs in our con-
servative instrument set (1,000 simulations). To quantify
the deviation under different models, for each SNP we
measured the deviation between the true SBP effect and
the estimate for each simulation, averaged over all 13 loci
(see Supplementary Data, sample code is available at
https://github.com/raikens1/T2D_MR). Differences in the
distributions were evaluated for significance using a two-
sided t test in R (v3.3.0).

RESULTS

Genetically Elevated SBP Associates With
Type 2 Diabetes
We calculated a causal effect estimate with the GRS method,
using an expanded instrument with the greatest number of
SBP associations (n = 28 SNPs) and our European meta-
analysis association for type 2 diabetes (see RESEARCH DESIGN

AND METHODS). We found that a 1-mmHg genetic elevation
of SBP was associated with a ;2% increase in type 2 di-
abetes risk (OR 1.018, 95% CI 1.009–1.028, P = 9.1 3
1025) (Fig. 1A, Table 1, and Supplementary Table 3).
Next, we applied a more conservative genetic instrument
comprising SNPs exclusively associated with SBP (n = 13)
to evaluate a causal effect for type 2 diabetes. Consistent
with the above, we found that a 1-mmHg genetic increase
in SBP associated with a ;2% increase in type 2 diabetes
risk (OR 1.021, 95% CI 1.008–1.033, P = 1.53 1023) (Fig.
1B, Table 1, and Supplementary Table 4). Our causal genetic
estimates are consistent with observational reports suggest-
ing a 1%–4% increase in hazard of type 2 diabetes for a
1-mmHg elevation in SBP (3–6).

Type 2 Diabetes Risk Estimates From Individual SNPs
and Risk Score Heterogeneity
To determine if an individual SNP used in our score drove
this result, we calculated effect estimates for all variants
used in our risk scores on type 2 diabetes risk. A total of
19 out of 28 SNPs in our expanded set reported a positive,
consistent association between the allele increasing SBP
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and type 2 diabetes, and 9 out of 13 SNPs for the
conservative score (binomial test P = 0.09 and P = 0.27 for
the expanded and conservative sets, respectively) (Fig. 1

and Supplementary Tables 2B, 3, and 4). While 3 of
28 SNPs in the expanded set and 2 of 13 SNPs in the
conservative set were nominally associated with type 2

Figure 1—Summary of association between genetic variants and type 2 diabetes with causal effect estimated via GRS. Genetic variant
associations from the expanded instrument of 28 SBP-associated variants (A) and the conservative instrument of 13 SNPs (B). ORs and
95% CI are shown in units per 1-mmHg risk increase. P values were calculated using a x2 distribution.
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diabetes (P , 0.05), this was not unusual (binomial test
P = 0.16 and P = 0.14, respectively). A formal test for
heterogeneity using Cochran Q did not detect evidence
for heterogeneity (P = 0.2 and P = 0.59 for the expanded
and conservative scores, respectively) (Table 1 and Sup-
plementary Table 2B). These results suggest that the ef-
fects estimated from our GRSs derived above are not
driven by outlier genetic variants with strong effects on
type 2 diabetes risk (Fig. 1 and Supplementary Fig. 1).

Sensitivity Analysis for SBP Genetic Instruments Using
Alternative Causal Inference Methods
We next performed an Egger regression analysis using
the expanded and conservative SBP genetic variant sets
described above. This approach provides a point esti-
mate and test of directional bias that might result due to
pleiotropy with causal factors that may confound our
interpretation of causality, in addition to a causal estimate in
the context of estimated bias (20). Although less well pow-
ered than the GRS method, this method provides an appro-
priate sensitivity analysis to help interpret results (19): if our
result was completely explained by directional bias due to a
confounding (but unmeasured) factor, this effect could be
discovered and our results reinterpreted in this light.

After applying the Egger regression approach, we did
not detect bias for either genetic score (P = 0.08 and P =
0.10 for the expanded and conservative SNP sets, respec-
tively) (Table 1 and Supplementary Table 2C). This itself
may not be surprising, as empirically it has been shown
that this test is modestly powered to detect bias when
present (Supplementary Data and Supplementary Tables
5 and 6) (20). We noted that the direction of estimated
bias was negative in both cases, suggesting that the average
effect of putative bias present across the selected genetic
variants results in an underestimation of the causal effect
on type 2 diabetes risk (Supplementary Data and Supple-
mentary Fig. 2). We next generated a causal effect estimate
using Egger regression for each of our expanded and con-
servative SNP sets. We found that a 1-mmHg genetic in-
crease in SBP was associated with a 4%–5% increase in type 2
diabetes risk for both the expanded (OR 1.04, bootstrap
95% CI 1.006–1.064, P = 5.5 3 1023) and conservative

SNP sets (OR 1.05, bootstrap 95% CI 1.004–1.086, P =
1.8 3 1022) (Table 1 and Supplementary Table 2C).
Simulations we performed to understand the impact
of negative bias on the analysis (Supplementary Data)
suggest that the effect estimates reported by Egger re-
gression are unbiased on average, although the variance
in estimation is higher than when no bias is at work
(Supplementary Fig. 3). This is consistent with previous
simulation studies for Egger regression (20).

We next obtained a weighted-median estimate for
the causal effect. This method provides a point estimate
analogous to the GRS that is unbiased asymptotically and
only requires 50% or more of the weight for the score to
derive from valid instruments, a less stringent require-
ment compared with the GRS score method (19). For both
expanded and conservative SNP sets, the weighted-
median estimated for 1-mmHg genetic elevation of SBP on
type 2 diabetes risk agreed with estimates from our pre-
vious analyses (OR 1.02 and P , 0.05 for both) (Table 1
and Supplementary Table 2A). These data suggest that 1)
our result cannot be fully explained by an unknown con-
founding factor contributing positive, directional bias to
our causal estimate, and 2) if bias is present, the estimated
causal effect of SBP on type 2 diabetes may be greater than
reported by our GRS.

Estimate of Causal Effects Are Robust to Blood
Pressure Effect Estimates
To investigate if our inference was robust to the choice of
weights used in our GRS analysis, we estimated a causal
effect using an unweighted GRS for both the expanded
and conservative SNP sets. This score can be interpreted
as the average increase in odds of type 2 diabetes per SBP-
increasing allele and should be robust to concerns on
the proper selection of weights used above (i.e., sample
overlap between genetic association studies), albeit with a
reduction in statistical power (29). We found that type 2
diabetes risk was increased by ;1% per SBP-increasing
allele for both the conservative (OR 1.008, 95% CI 1.001–
1.015, P = 1.8 3 1022) and expanded (OR 1.008, 95%
CI 1.003–1.013, P = 2.0 3 1023) risk score (Table 1
and Supplementary Table 2A). Using simulations, we also

Table 1—Summary statistics for genetic instruments used for causal inference analysis for SBP to type 2 diabetes

Expanded set (n = 28) Conservative set (n = 13)

OR* 95% CI P OR* 95% CI P

Cumulative GRS†‡ 1.018 1.009–1.028 9.1 3 1025 1.021 1.008–1.033 1.5 3 1023

Unweighted GRS†‡ 1.008 1.003–1.013 2.0 3 1023 1.008 1.001–1.015 0.018

Weighted-median GRS§ 1.018 1.006–1.033 , 0.05 1.020 1.003–1.039 , 0.05

Egger regression (causal estimate)§|| 1.043 1.006–1.064 5.5 3 1023 1.052 1.004–1.086 0.018

Egger regression (bias estimate) 20.014 — 0.08 20.018 — 0.10

Heterogeneity (Cochran Q) — — 0.2 — — 0.59

*ORs are given in units of fold increase in type 2 diabetes risk per unit increase in mmHg, except the unweighted score, which is given in
unit increase per allele. †95% CI from normal distribution. ‡P value from x2 test. §95% CI calculated by bootstrapping. ||P value from
Student t test.

diabetes.diabetesjournals.org Aikens and Associates 547

http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0868/-/DC1


evaluated if adjustment for adiposity and/or exclusion of
type 2 diabetes case subjects contributing to the SBP asso-
ciation scan could contribute bias to the SBP effects used in
our risk scores, but we did not observe substantial effects
(Supplementary Data and Supplementary Figs. 4–6).
These results suggest that our findings are somewhat ro-
bust to the choice of SBP effects used in our risk scores.

DISCUSSION

Causal inference is one of the most challenging problems
in medicine and biology. Here, we report that a theoretic
1-mmHg genetic increase in SBP translated into 2%
increased risk of type 2 diabetes, consistent with evidence
obtained from observational studies of these traits. We
also performed sensitivity analyses to demonstrate the
robustness of our estimates to the chosen method or
sample exclusion filters (16), employed MR analyses sen-
sitive to directional pleiotropic bias, incomplete validity of
genetic variants used in our score, and weights used in the
score. Our report follows an initial screen that reported
an initially positive association (21). Compared with that
study, we increased the number of samples contributing
to the type 2 diabetes association, expanded the list of
SBP-associated genetic variants used for testing, and per-
formed additional sensitivity analyses using three MR meth-
ods. A recent study reported a MR analysis between SBP and
type 2 diabetes in;96,000 subjects (5). However, this study
reported an effect opposite of observational epidemiology,
with limited interpretation power owing to the genetic var-
iants used (n = 5, compared with the n = 13 or 28 we used)
and sample size (2,859 incident cases, compared with
37,293 subjects with type 2 diabetes in this report).

Our results do not indicate a mechanism, and speculation
on that score should be interpreted cautiously. One possibil-
ity is that SBP directly increases risk to type 2 diabetes. One
suggested model is that elevated blood pressure manifests as
vasoconstriction, impairing blood flow and glucose disposal
in peripheral tissues (e.g., skeletal muscles or adipose) and
subsequently causes type 2 diabetes (34). This model could
explain, in part, why therapeutic perturbations of the renin
or angiotensin systems could result in putative protection
against type 2 diabetes (35). In support of this model,
previous studies have shown that use of antihypertension
drugs in type 2 diabetes mouse models lower blood pres-
sure, body weight, and plasma glucose levels and improve
insulin sensitivity and resistance, along with additional,
favorable metabolic parameters (36,37).

The more likely possibility is that our genetic score for
SBP is a close proxy for another etiological factor. One
potential candidate risk factor is insulin resistance. The
long-standing view is that insulin resistance is the first
“step” in a metabolic cascade (7,8) that ultimately results
in hyperinsulinemia and elevated blood pressure through
several mechanisms, including enhanced sodium absorp-
tion in distal nephrons, sodium retention, vascular defects,
or others (38). But if our score captured insulin resistance
by proxy, we would expect to observe an association with

other insulin resistance traits, as previously demonstrated
with fasting insulin levels (39). However, the conservative
risk score we used was not associated with triglycerides,
HDL cholesterol, or fasting insulin levels, all hallmarks of
insulin resistance phenotypes orthogonal to obesity. A sec-
ond candidate could be inflammation. Inflammation and
biomarkers associated with inflammation are associated
with hypertension (40) and type 2 diabetes (41,42); a causal
relationship here could also explain our result. However,
previous MR studies for a causal relationship here have
yielded inconsistent results (43). Still, we cannot rule out
that our genetic score implicates a previously unknown in-
flammatory pathway common to both conditions.

It is important to consider other sources of bias that
may contribute to our observation. Because our estimates of
SBP associations used in our GRS are taken from a large
meta-analysis, conditioning on adiposity or type 2 diabetes
could result in associations that could confound our in-
terpretation of causality. This effect is referred to as collider
bias, which is the induction of false associations between
two or more variables due to conditioning on a common
cause (Supplementary Data and Supplementary Fig. 6)
(44). There are two possibilities to consider in which col-
lider bias would result in inaccurate estimates of SBP as-
sociation for a given variant: 1) if elevated SBP increased
BMI, then conditioning on BMI will cause a BMI-elevating
variant to falsely associate with SBP, and 2) if elevated SBP
causes type 2 diabetes, excluding subjects with type 2 diabetes
would cause type 2 diabetes–causing variants to falsely asso-
ciate with SBP. However, each is addressable. It is understood
that elevated BMI raises blood pressure, but there is little
evidence to suggest that the reverse is true (31,45). This
indicates that the first case is unlikely. The second case could
be of issue if a substantial proportion of the cohorts used to
identify SBP-associated variants systematically excluded di-
abetes case subjects. However, upon closer investigation of
cohorts participating in the SBP association study, results
there were based heavily on prospective cohort studies with-
out a disease restriction, with ,5% of the total sample sizes
for the GWAS meta-analyses drawn from control cohorts for
type 2 diabetes (16). Thus, each SNP in our genetic instru-
ment is quite close to the population-level estimate of SBP
effect rather than a false association to type 2 diabetes in-
duced by potential collider bias. Our simulation analyses also
support this supposition.

Two additional limitations of our study involve the
participants in the type 2 diabetes meta-analysis studies.
The first involves antihypertension medication use: if
patients with diabetes were more likely to be using anti-
hypertension medications relative to control subjects, and
if antihypertension therapeutics actually increased the
risk for type 2 diabetes, then we might falsely observe an
association between SBP and type 2 diabetes. In particular,
there is increasing evidence that the use of b-blockers
and thiazide diuretics is associated with increased risk of
type 2 diabetes (46,47). A simulation analysis suggested that
this type of effect could result in bias to our GRS, but would
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also be detectable as positive bias through Egger regression
and could be accounted for in our causal inference (Supple-
mentary Table 7). In the real data, we observed that Egger
regression did not detect the presence of bias, and the
magnitude of that bias was negative rather than positive
bias (Table 1), the opposite of what would be expected from
this type of effect. A second issue that could arise is due to
ascertainment of coronary heart disease (CHD) cases among
subjects with type 2 diabetes. Because patients with type 2
diabetes are at increased risk for CHD and because SBP is
causal for CHD, our observed association could reflect an
excess number of residual and/or undiagnosed participants
with CHD in patients with type 2 diabetes. In this scenario,
it would follow that a GRS combining variants reproducibly
associated with CHD would also associate with type 2 di-
abetes (48), which we do not observe (n = 41 variants, GRS
P = 0.16, data not shown). It is apparent that prospective
cohort studies would certainly be of benefit in further clar-
ifying these potential issues, and our findings certainly mo-
tivate such analyses in the future.

Ultimately, the translational benefits based on these
results are not obvious. This is due to the complexity that
different blood pressure–lowering medications may ultimately
have on type 2 diabetes risk, through on- or off-target effects
(46,47). However, our findings here do make a specific
prediction: genetic pathways for SBP either intrinsically or
through existing and/or as-yet-undescribed mechanisms re-
late to type 2 diabetes. This prediction adds increasing weight
to both identify and characterize the causal genes underlying
blood pressure associations as a strategy toward novel ther-
apeutics for both hypertension and type 2 diabetes.
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