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a b s t r a c t

PathIN is a web-service that provides an easy and flexible way for rapidly creating pathway-based networks 
at several functional biological levels: genes, compounds and reactions. The tool is supported by a database 
repository of reference pathway networks across a large set of species, developed through the freely 
available information included in the KEGG, Reactome and Wiki Pathways database repositories. PathIN 
provides networks by means of five diverse methodologies: (a) direct connections between pathways of 
interest, (b) direct connections as well as the first neighbours of the given pathways, (c) direct connections, 
the first neighbours and the connections in between them, and (d) two additional methodologies for 
creating complementary pathway-to-pathway networks that involve additional (missing) pathways that 
interfere in-between pathways of interest. PathIN is expected to be used as a simple yet informative re-
ference tool for understanding networks of molecular mechanisms related to specific diseases.

© 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural 
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ 

licenses/by-nc-nd/4.0/).

1. Introduction

Pathway-based analysis has become a fundamental and rapidly 
accumulated field of research aiming to increase the capacity to 
explore large-scale omics data through the understanding of the 
molecular mechanisms, involved in complex diseases [1,2]. The 
plethora of available pathway databases has raised the need for 
developing tools and repositories, to integrate this type of knowl-
edge into a more holistic representation that involves network- 
based approaches [2,3]. Online tools for the visualization and ana-
lysis of biochemical pathways are under development for over two 
decades. Αt a gene and protein level analysis, eminent works like the 
STRING repository [4] are in a position to provide very informative 
networks that depict the functional associations between proteins, 

thus facilitating the analysis of modularity in biological processes. 
Commonly used enrichment tools like EnrichR [5],GeneTrail [6,7], 
and gProfiler [8] can efficiently provide ranked lists of pathways and 
strongly relate them with the biological condition under study. 
However, in some cases, pathway analyses may result in large lists of 
pathways that are difficult to be translated and related to a specific 
disease without network visualisation. Moreover, strict thresholding 
methodologies may lead to small and incomplete lists of significant 
pathways associated with the biological condition under study. At 
the same time, no straightforward post-enrichment tool exists that 
visualizes at network level pathways related to a particular gene, 
compound, reaction, and pathway of interest, and further proposes 
additional pathways that may be missed from the standard enrich-
ment analysis. Thus, it remains difficult to answer fundamental 
questions, such as: (a) which are the most closely neighbouring 
pathways that may be related to a single pathway of interest, (b) 
what is the connecting distance between two pathways, and which 
pathways are involved in-between them, (c) which pathways involve 
specific genes, or compounds or reactions of interest, and (d) how 
someone could easily perform additional methodologies to bring (or 
not) missing and critical pathways into their study. Expanding on 
this concept at a pathway level, we introduce PathIN: a generalized 
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web-tool that provides an easy and flexible way for rapidly relating 
pathways together, based on fundamental issues related to complex 
networks and graph theory. PathIN holds a large database repository 
of reference pathway networks across a large set of species, which 
have been developed through the freely available information in-
cluded in the KEGG [9], Reactome [10] and Wiki Pathways [11] da-
tabase repositories. Through this web-service, users can easily 
import (or search for) pathways, genes, compounds, reactions and 
enzymes of interest to be translated into a network (graph) of 
pathways. Using network approaches, PathIN further provides five 
diverse methodologies for network creation that the user can select. 
These are: (a) pathway networks that depict all the direct connec-
tions between pathways of interest, (b) pathway networks that in-
clude the direct connections as well as the first neighbours of the 
given pathways, (c) pathway networks that include the direct con-
nections, the first neighbours and the connections in between them, 
(d) complementary pathway networks that include additional 
(missing) pathways that interfere in-between pathways of interest, 
and (e) an extended approach for the creation of complementary 
pathway networks. The application further allows the calculation of 
network statistics based on the degree, closeness, centrality and 
betweenness measures derived from graph theory. PathIN is ex-
pected to be used as a reference post-experimental tool to under-
stand the functional environment around selected molecular 
mechanisms of interest within the framework of network medicine.

2. Software description and methods

2.1. The pathway reference network repository

The pathway-to-pathway network draws information from a 
web-service that holds a large database of reference pathway net-
works, which have been developed through the freely available in-
formation included in the KEGG [12], Reactome [13] and Wiki 
Pathways [11] database repositories. Herein, the functional relation 
between two pathways, as provided by these databases, is con-
sidered when the first pathway involves or is involved into the 
second pathway, accordingly. A pathway that involves a pathway 
may refer to any kind of relation between two pathways, subjected 
to the way in which these repositories have structured their pathway 
relations. In effect, this type of information can form an undirected- 
unweighted pathway-to-pathway network. In this line of thought, 
we retrieved pathway information for all the organisms included in 
the three repositories mentioned above, parsing all the available 
information about the functional connections between the available 
pathways. Specifically, we obtained pathway information for 177 
organisms (species) from KEGG, 16 from Reactome and 38 from Wiki 
Pathways repositories. This resulted to totally 231 undirected 
pathway reference networks, one for each specie, which in turn were 
merged in to one large network per repository. The following table 
shows in details these amounts per repository. Tables 1–4.

An extra-layer above the aforementioned binary connectivity 
between the pathways is offered using the edge weight attributes. 
The following table shows the supported reference network types 
according to the terminology of each repository.

Herein, the edge weight between two pathways was formed through 
the number of common biological entities, such as: genes, compounds, 
reactions and pathways. In the same manner, the total number of each of 

these biological entities can also form the node size of the pathway, 
accordingly. For example, if the user selects to work with genes, then the 
edge weights represent the number of common genes the two pathways 
share, while the node sizes represent the number of the genes involved 
in the pathway. The same approach is used in the case of compounds, 
reactions, metabolites and pathway sharing options. However, pathway 
connectivity does not necessary means commonality of elements. The 
relation between two pathways may also be a single membership, 
namely a relation without necessary sharing any specific element. In that 
case the edge weight is zero, and the connection remains in the network 
since this cannot be ignored. On the contrary, if two connected pathways 
share the same pathway according to their reference map, then the edge 
weight in between them is 1.

2.2. General design and implementation

PathIN comes with a web interface consisting of (a) the main-
frame, which holds all the appropriate tools for the users to perform 
their analysis, and a detailed help page written in HTML, PHP and 
JavaScript. The backend of PathIN has been written in an R en-
vironment, where several functionalities have been parallelised to 
achieve fast performance. Users can quickly evaluate, test and un-
derstand the PathIN functionalities through several available ex-
amples, which can be automatically loaded from the web interface. 
The following table depicts the list of libraries and modules used for 
the implementation of the web interface.

PathIN algorithms work with pathway IDs in how these have been 
defined by each pathway repository. The overall workflow of PathIN is 
depicted in Fig. 1. Specifically, there are three input type formats users 
can easily upload or create through the available interface: (a) simple 
lists of pathway IDs or two column tab-separated edge lists of 
pathway IDs, (b) lists of gene symbols, (c) lists of compounds (or re-
actions/metabolites) according to the terminology of each repository. 
Pathway IDs are directly translated to network graphs of pathways 
(pathway-to-pathway networks) on which users can perform addi-
tional methodologies for further network manipulation. For the rest 
of the input types, a specific process identifies the pathways (pathway 
IDs) that involve at least one of these biological entities, which are 
translated into pathway-to-pathway networks. The underlying utility 
aims to answer which pathways involve a specific biological entity of 
interest and how these pathways form a network which is related to a 
particular biological condition or disease of interest. An auto-com-
plete utility has also been rooted in the web-interface which allows 
searching either for pathways (by name) or specific compounds, re-
actions, and metabolites of interest. Users can interactively create 
their own lists of interest through this utility, bypassing the limitation 
of knowing a priori specific IDs.

The tool can be accessed through the webpage of the 
Bioinformatics Department at the Cyprus Institute of Neurology and 
Genetics (CING) https://bioinformatics.cing.ac.cy/pathin. It is also 
containerised and available at the High-Performance Computer 
Facility (HPCF) of the Cyprus Institute (https://pathin.cing- 
big.hpcf.cyi.ac.cy). Expanding on the network creation concept, we 
further rooted into PathIN five diverse methodologies for the ex-
traction of pathway-to-pathway interaction networks, described in 
detail in the following sub-sections. The calculations used in those 
methodologies refer to the unweighted and undirected versions of 
the pathway-to-pathway reference networks.

Table 1 
Information content of the reference network repository. 

Repository Num of Species Total Pathways Total NET Edges

KEGG 177 24878 124707
Reactome 16 20398 21198
Wiki Pathways 38 2753 1433

Table 2 
The supported reference network types and terminology. 

KEGG Reactome Wiki Pathways

Genes Genes Genes
Compounds Reactions Metabolites
Pathways Pathways Pathways
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2.3. Method 1: original pathway-to-pathway network creation

The underlying methodology aims to map pathways using the 
reference network repository of pathways described in previous sec-
tions. Mapping is achieved by finding only the direct connections 
between pathways of interest, as shown in Fig. 2, where a network of 
three KEGG pathways is depicted. Herein, the absence of direct con-
nections between pathways may result in networks with un-
connected pathways (nodes). For example, in the network of 
pathways depicted in Fig. 2a, the “regulation of actin cytoskeleton” 
node has no direct connection with any of the remaining pathways in 
the network. We start with the assumption that these three pathways 
are strongly related with the disease under study as a result of a well- 
performed pathway enrichment analysis. where a specific threshold 
has been performed on their score. Our hypothesis here is that since 
these pathways are strongly related with the disease under study 
then there should be a minimum connectivity between them. In this 
line of thought, unconnected significant pathways may indicate that 
there is a missing link between those pathways and the rest (con-
nected) pathways of the network. Methodologies that follow aim to 
improve this limitation by including additional pathways, which in 
turn may form more complementary and informative networks 
without significantly exceeding the size of the final network.

2.4. Method 2: identifying missing pathways based on shortest-paths

As opposed to the latter approach, herein, the underlying meth-
odology identifies and adds key pathway nodes that ensure the net-
work’s minimal connectivity. A specific script finds and calculates all 
the shortest paths within the reference network that interconnect the 
pathways of interest and chooses only those nodes that belong to the 
shortest path-length to be included in the final network. Herein the 
shortest path between two distant nodes is calculated employing the 
breadth-first search (BFS) algorithm [14] used in igraph R package 
[15], suitable for unweighted networks. The BFS algorithm is able to 
traverse a graph, starting from a root vertex and spreading along 
every edge simultaneously. Formally, the BFS algorithm visits all 
vertices in a graph that are k edges away from the root vertex before 
visiting any vertex +k 1 edges away. This is done until no more 
vertices are reachable from the root vertex. When the algorithm finds 
more than one shortest path of the same path-length, these additional 
paths are also included into the final network. An example of this 
outcome is depicted in the complementary network of Fig. 2b, where 
four additional pathways (green circles) have been added to the initial 

3-node network (blue-circles) shown in Fig. 2a. These new pathways 
are able to interconnect the underlying unconnected pathways, by 
keeping the shortest path length in the network. The underlying 
methodology allows the production of more complementary net-
works where all pathways are closely connected.

2.5. Method 3: identifying missing pathways based on forced pairwise 
connectivity

The above described missing pathway approaches draw from a 
recently introduced work, namely the PathwayConnector [16,17], 
which in turn has been further updated to support networks ob-
tained from PathIN. Expanding on this type of pathway networks, in 
the latest version of PathwayConnector, an additional process has 
been rooted, that allows to shortly expand the size of produced 
complementary networks, and bring to our attention additional 
pathways that may be related to the specific biological condition or 
disease under study. Specifically, focusing on the original network of 
pathways depicted in Fig. 2a, the minimal complementary network 
is depicted in Fig. 2b by means of the above-described methodology. 
However, it is observed that although the network is a connected 
network, there is no direct information between the pathway en-
titled “tgf-beta signalling pathway” and the node entitled “Regula-
tion of actin cytoskeleton”. The nodes “Pathways in cancer” and 
“TGF-beta signaling pathway” already keep minimal connectivity, 
which in effect does not allow the BFS algorithm to expand the 
network with additional nodes. Someone would eventually like to 
know which other intermediate key nodes interconnect the “tgf- 
beta signalling pathway” with the “Regulation of actin cytoskeleton” 
by slightly expanding the underlying network. In this line of thought 
and in the prospect of covering such a scientific question, a new 
algorithm was further developed that examines pairwise the 
shortest paths between two nodes, independently of whether the 
network keeps or not its minimal connectivity. Specifically, for a 
given graph =G V E( , ) with n total nodes and m input nodes, we 
calculate a matrix that holds the pairwise combinations of m. For 
each pair of nodes, we perform the BFS algorithm without taking 
into consideration the connectivity of the rest (m 2) candidate 
nodes. In effect, this process brings all the possible intermediate 
nodes between the specific pair under study, which are then stored 
in a list, until all combinations are completed. This process safely 
brings additional nodes and edges (if any), without significantly af-
fecting the overall size of the network. An example of this attempt is 
depicted in Fig. 3 where the “proteoglycans in cancer” pathway along 

Table 3 
List of libraries and modules used for the implementation of the web interface. 

Module Languages Packages/libraries Used

Frontend Web Interface html, php, JavaScript bootstrap, jQuery, datatables, vis.js
Database Repository php MySQL
Backend interface (algorithms, functionalities, pipelines, etc) R curl, igraph, dplyr, openssl, jsonlite, apcluster, pracma, foreach, doParallel, 

RMySQL, stringr
Network manipulation & methods R igraph, custom R scripts

Fig. 1. Overall workflow, Figure depicts the overall workflow of PathIN web tool and its main components. 
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with three additional edges have been included in the com-
plementary network, interconnecting the “tgf-beta signalling” 
pathway with the “Regulation of actin cytoskeleton” pathway.

Extended complementary network where 2 additional pathways 
(green circles) have been included to the initial 3-node network 
(blue circles). Herein, the edge weights characterize the number of 
common genes between two pathways and the functional relation 
between them. The node sizes refer to the number of genes involved 
in the specific pathway.

2.6. Method 4: identifying pathways based on first-neighbours network 
connectivity

We recall that the overall concept of PathIN is not only to map the 
pathways of interest on the reference network, but to further bring 
pathways in to attention that may be related to a specific disease 
under study. These may not be necessary pathways of high sig-
nificance but pathways which are simply very close to the subnet-
work of pathways under study. The above-described methodologies, 
have been designed to bring new pathways that interconnect other 
pathways of interest using shortest path approaches. However, there 
are also pathways which are closely related with those of interest 
and do not necessary act as interconnected nodes. These may be the 
first neighbours of a single pathway of interest which are very close 
to the subnetwork under study. In this line we further developed 

additional methodologies that slightly expand existing networks of 
pathways using first neighbour network approaches. Specifically, for 
each pathway of interest, a specific process finds all the direct 
connected pathways (first neighbours) and creates a pathway-to- 
pathway network with these nodes. The underlying method keeps 
only the edges between the input pathways, if any, and not the re-
lations between first neighbours. Fig. 4a depicts an example of two 
pathways of interest (blue circles), which share two of their first 
neighbours, namely, the “metabolic pathways” and the “glycosami-
noglycan biosynthesis”.

2.7. Method 5: extended first neighbour approach

In the prospect to further expand small networks of pathways, 
we further introduce an additional methodology that slightly in-
creases the information content of networks obtained by method 3. 
Herein for each pathway of interest, a specific process finds the first 
neighbours of each pathway under study as well as their connections 
in between them, resulting to an even more connected pathway-to- 
pathway network. In effect, this method further allows to examine 
the existence of intermediate and direct connections between 
pathways of interest, as well as the connections in between the first 
neighbours. Fig. 3b depicts an example of this methodology, showing 
that the previously mentioned network shown in Fig. 3a, is now 
enriched with additional edges (depicted in red colour) which in 
turn refer to the connections between the first neighbours.

The above-described methodologies provide innovative in-
formation content between pathways of interest, allowing users to 
create informative pathway networks that may be related to a spe-
cific disease or biological condition of interest. Users can easily 
download all the produced networks in a tab-separated text file 
form that holds all the information rooted in these reference net-
works.

2.8. Software performance: on the connectivity of spastic ataxia related 
pathways

Herein, the evaluation of PathIN draws from our recent work 
based on identifying pathways related to spastic ataxia following 
differential expression analysis (DEA) on 22 human microarray gene 
expression datasets derived from various tissues of patients with 
ataxia or spasticity [18]. As a part of that work, we examined whe-
ther the “sphingolipid signalling pathway” and the “sphingolipid me-
tabolism” could be considered candidates for developing the disease 
phenotype. In this context, the top scored genes obtained from DEA 
analysis, were further analysed using specific tools for pathway en-
richment, and pathway identification [19,20]. This analysis revealed 

Fig. 2. Human pathway2pathway networks, (a) Original network of 3 human KEGG pathways where the edge weights characterize the number of common genes between two 
pathways and the functional relation between pathways. The node sizes refer to the number of genes involved in each pathway. (b) The complementary network has four 
additional pathways (green circles) added to the initial 3-node network (blue circles). Τhe calculations of shortest paths in the networks refer to the unweighted and non-directed 
versions of the pathway-to-pathway reference networks.

Fig. 3. Extended complementary network. 
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that the “PI3K-Akt signalling pathway”, “MAPK signalling pathway”, 
“Calcium signalling pathway”,”cAMP signalling pathway”, “Apoptosis”, 
“AMPK signalling pathway”, and “Insulin signalling pathway”, are 
common among the neuronal, peripheral blood and fibroblast 
“ataxia” datasets. A network of these pathways is depicted in Fig. 5, 
using the 1st methodology described in the previous section.

Undirected network of 2 human KEGG pathways, obtained by 
means of the 1st methodology described in the text. The red edges 
highlight the first neighbour connections around the selected node.

We further perform literature search to examine whether the 
methodologies used for the identification of missing pathways, can 
adequately lead to candidate pathways for consideration. Our first 
approach attempts to create an even larger network that brings 
additional missing pathways on one hand and keeps the minimum 
connectivity of the network on the other. Specifically, using the 
above network of pathways, we performed the 2nd and 3rd meth-
odologies, which are based on the shortest path approach, gen-
erating a network depicted in Fig. 6a. It is observed that 8 additional 
pathways (depicted in green colour) have been included in the un-
derlying network. Indicatively, the “Phospholipase D signalling 
pathway”, which is one of the first neighbours of the “sphingolipid 
metabolism” has already been mentioned in studies related to ataxia 
[21–23], as well as pathways related to fatty acids [24,25]. Analysis 
using the 3rd methodology resulted in a larger network (depicted in 
Fig. 6b), where additional intermediate pathways bridged the con-
nection between the “sphingolipid signalling pathway” and the 
“sphingolipid metabolism”. Furthermore, additional pathways have 
also been included that interconnect the “PI3K-Akt signalling 
pathway”, and the “Calcium signalling pathway”, without necessarily 
suggesting a straightforward relationship with the “sphingolipid 
metabolism” and the “sphingolipid signalling pathway”. On the con-
trary, the latter observation suggests that some of these pathways 
could potentially be used to bridge these two candidate pathways 
under study.

A second approach that has been employed, starts from an initial 
network that includes the “sphingolipid signalling” and the “sphin-
golipid metabolism” pathways. Specifically, we performed the 5th 
methodology in the prospect to expand the underlying network in 
terms of their first neighbours and their in-between connections. 
The outcome of this process is depicted in Fig. 7a, where the ob-
tained network has been enriched with additional edges in-between 
these first neighbours. However, none of these first neighbours in-
terconnect the two underlying pathways of interest, except the di-
rect connection between them. Another observation here is that the 
“PI3K-Akt signalling pathway” and the “MAPK signalling pathway” 
mentioned in [18], have also appeared in these networks, as first 
neighbours of the “sphingolipid signalling” pathway. Expanding on 
the latter approach, the aim here is to bridge the initial 2 pathways 
of interest by creating an extended complementary network on one 

hand and further keeping a network with minimal connectivity on 
the other. For this approach we used as input the obtained pathways 
that are depicted in Fig. 7a, on which we performed the 2nd 
methodology. Fig. 7b depicts the obtained network, showing that 7 
additional pathways (depicted with green colour) have been further 
included in the network, also mentioned in studies related to ataxia 
and other neurodegenerative disorders. Indicatively these include 
the “Carbon Metabolism in Cancer” [26], “Gluconeogenesis” [27], 
“Glycosaminoglycans” [28], “mTOR signalling” [29,30].

Herein it should be stressed that the above analysis by no means 
suggests any objective truth on the underlying mechanisms related 
to ataxia, but just a simple biological scenario that aims to show the 
performance of PathIN as a tool for the investigation of pathway 
interactions.

2.9. Biological importance and statistical significance of implicated 
pathways

The importance of biology and the implicated pathways that 
derive from PathIN methodologies, has been initially examined in 
[16] through a comparative statistical analysis between enrichment 
analysis tool, random pathways and pathways deriving from the 
missing pathway methodology described in this work. The missing 
pathway methodologies were further performed with noteworthy 
results to pathways related to Alzheimer’s Disease (AD) [31], to 
Huntington’s disease (HD) and Spastic Ataxia (SA) [18,32], as well as 
to identify pathways related to the inhibition of Breast Cancer cell 
invasion [33]. However, the concept of PathIN is not to serve as a 
traditional pathway enrichment tool but as a post analysis tool that 
deals with the results obtained from any kind of pathway-based 

Fig. 4. Human pathway-to-pathway networks based on first neighbour approaches, (a) Network of 2 human KEGG pathways of interest and their first neighbours, obtained using 
the first neighbour approach. (b) Network of the same pathways of interest and their first neighbours, obtained through the extended first neighbour approach, where additional 
edges (depicted in red colour) refer to the connections between the first neighbours.

Fig. 5. Human pathway-to-pathway network. 
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analysis that brings candidate pathways related to a specific biolo-
gical condition. PathIN assumes that the significance/importance of 
the input pathways has already been evaluated by the user and 
subjected to the user’s biological question. PathIN doesn’t deal with 
the significance of each pathway but it provides a network-based 
information about its connectivity with other pathways, by 

examining and suggesting a plausible subnetwork where these 
pathways of interest may belong to. The proposed methodologies 
aim to bring pathways that are not necessary top-scored on one 
hand, but very close to those of interest on the other. Insignificant 
pathways of interest are also in the scope of PathIN for those who 
want to address generalized biological questions. This is a crucial 

Fig. 6. Human pathway-to-pathway network (a) Network of human KEGG pathways, obtained using the 2nd method described in the text (b) Network of human KEGG pathways, 
obtained through the 3rd method described in the text.

G. Minadakis, K. Christodoulou, G. Tsouloupas et al. Computational and Structural Biotechnology Journal 21 (2023) 378–387

383



difference in between PathIN and other tools. PathIN does not use 
any predictive algorithms for candidate pathways, but simply pro-
vides a well-designed/evaluated pathway connectivity which is 
subjected on the biological, structural and functional parameters of 
the repositories that draws from. However, in the following section 
we employ a statistical methodology in order to show that pathways 
which are closely connected to a significant cluster of well-grounded 
pathways, may also be related or relevant to the condition under 
study.

2.10. Statistical significance of implicated pathways using 2case studies

In practice there is not an optimal way to find a solid “ground 
truth”, namely a set of either ranked genes or ranked pathways that 
are related to a disease and we understand that this is a problem 
when validating such kind of methods. However, in order to bypass 
this limitation and to provide an accepted notion of statistical sig-
nificance, we further employ an additional methodology used in 
[16], that shows the significance of the implicated pathways that 

Fig. 7. Human pathway-to-pathway networks based on first neighbour approaches (a) 2 human KEGG pathways (blue circles) along with their first neighbours (green circles) (b) 
the same network (blue circles) expanded using the 2nd methodology described in the text.
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derive from the introduced methodologies. Assuming that we have a 
list of N top-scored candidate genes related to a specific disease. 
Then, using the EnrichR [5] package, we further perform enrichment 
analysis to end up with a sorted list of K top-scored pathways. 
Starting from a seed of the first five top-scored pathways in the K list 
and adding one pathway at a time from the same list, we are writing 
down the new pathways that appear by performing the introduced 
methodologies. In the sequel, we are counting the number of 
common genes between the new pathways and the seed pathways 
and we compare this number with the number of common genes 
found between the same number of randomly selected pathways 
and the seed pathways. These two distributions are compared with a 
z-test algorithm, in order to estimate their statistical significance 
difference. To examine latter approach, we firstly focus on a recent 
study on mRNA expression data from blood samples taken from 
patients with sepsis and healthy individuals [34]. The authors pro-
vided a list of genes showing that AGTRAP, IRAK3, ADM, ALOX5, 
MMP9, S100A8 and ENTPD1 have potential diagnostic value in 
sepsis. Herein, we used this list of genes to perform pathway en-
richment analysis by means of the EnrichR package. The outcome of 
this process was 37 KEGG pathways sorted by means of the Com-
bined Score provided by the EnrichR tool. Starting with the first 5 
top-scored pathways, we performed the above-described compara-
tive analysis in order to examine whether the methodologies 2,3,4 
and 5 described in this work can adequately bring significant and 
relevant pathways with those derived by an enrichment analysis 
tool. Fig. 8 depicts the outcome of this attempt. It is observed that 
the pathways deriving from those methodologies (see green bullets) 
have increased commonality at gene level comparing to those that 
derive from random selection (blue triangles). The low p-value ob-
tained from the z-test algorithm further indicate that the two dis-
tributions have significant statistical difference. In effect this 
observation further shows the irrelevance of the random implicated 
pathways with the network of pathways under study.

In order to further examine the reproducibility of the method, in 
the following we focus on a different case study related to the colon 

cancer related genes identified in [35]. Herein the authors mention 
24 candidate genes related to hypermutated and non-hypermutated 
cancer, obtained from a genome-scale analysis of 276 samples, 
analysing exome sequence, DNA copy number, promoter methyla-
tion and messenger RNA and microRNA expression data. Enrichment 
analysis revealed 110 KEGG pathways sorted by means of the Com-
bined Score. Fig. 9 depicts the results of the statistical analysis across 
the four methodologies, showing the significant difference in com-
monality of genes between the two distributions.

Graphs depicting the significance of complementary pathways 
compared to randomly selected ones. Distributions show the 
number of common genes for different number of enriched path-
ways between complementary (green bullets) and random pathways 
(blue triangles).

Although gene-commonality does not necessary means sig-
nificance or relevance for a candidate pathway, it still remains as one 
of the factors used by enrichment tools to score pathways. The above 
results indicate that when having a cluster of pathways strongly 
related to a disease/condition under study, neighbouring pathways 
to that cluster may also be relevant at gene-commonality level, de-
spite the fact that are statistically insignificant. This is consistent 
with the missing pathway concept employed in this work, towards 
bringing closely connected complementary pathways.

2.11. Comparison with other tools

Eminent tools that involve pathway network visualisation such 
as ClueGO [36], PathExNET[37], PathME [38], PANEV [39], ComPath 
[40], and many other [41,42], can successfully create pathway-to- 
pathway networks. However, although these applications are based 
on the connectivity information provided by the available pathway 
repositories, the commonality numeric information draws only from 
the genes involved in the pathways. On the contrary, the PathIN 
software further allows the construction of pathway networks that 
draw from commonalities at compound, gene, reaction and meta-
bolite level information, while simultaneously provides several 

Fig. 8. Statistical analysis of implicated pathways related to sepsis Graphs depicting the significance of complementary pathways compared to randomly selected ones. 
Distributions show the number of common genes for different number of enriched pathways between complementary (green bullets) and random pathways (blue triangles).
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methodologies for manipulating these networks depending on the 
user’s specific scientific question. The following table provides an 
indicative list of existing tools compared with PathIN functionalities.

3. Discussion

Casting biological pathways as networks has become a promising 
and valuable Systems Bioinformatics approach that aims to enhance 
post-experimental omics analyses and to provide further insights on 
the functional inter-relation of pathways [16,17,37]. The powerful 
concept of the graph theory and the plurality of pathway-based in-
formation included in eminent database repositories such as the 
KEGG [9], the Reactome [10] and the Wiki Pathways [11], has put 
significant contribution to the understanding and development of 
novel software that allows the integration of pathway data at net-
work level [43,44]. The creation of pathway networks through the 
PathIN web-framework can act as a reference map of implicated 
pathways, which is a promising approach towards enhancing our 
understanding of the biological mechanisms that may be related to a 
specific biological condition under study. Novel genes, compounds 
and reactions derived from additional omics sources or even smaller 
scale laboratory experiments can potentially be projected on this 
map. The PathIN outcome, has been further evaluated and verified in 

this work, through a comparative statistical analysis between out-
comes of enrichment analysis tool, and implicated pathways de-
riving from PathIN methodologies. PathIN holds an integrated 
environment for pathway connectivity that aims to act as a post- 
analysis tool, providing additional information on the candidate 
pathways obtained from traditional pathway analyses.
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Fig. 9. Statistical analysis of implicated pathways related to colon and rectal cancer. 

Table 4 
A list of existing tools compared with PathIN functionalities. Herein, the aces mean that the underlying functionality is supported by the specific tool. The last column refers to an 
indicative score calculated by the sum of the aces. 

Tool Web Score- 
Based

Multiple Species Supported input entities for edge commonality Supported Repositories Overall Score

Genes Compounds/ Metabolites Reactions KEGG Reactome Wiki Pathways

PathIN 1 0 1 1 1 1 1 1 1 8
PathExNET 1 1 1 1 0 0 1 1 1 7
Pathway Connector 1 1 1 1 0 0 1 1 0 6
PathME 1 0 1 1 0 0 1 1 1 6
PANEV 0 0 1 1 0 0 1 0 0 3
ClueGO 0 1 1 1 0 0 1 1 1 6
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