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Abstract Background: Osteoporosis parallels aging and functional mechanical unloading
(e.g., space flight and bed rest), jeopardizing mineral density, microstructure, and integrity
of bone and leading to an increased risk of fracture. A way to combat this deterioration is
to harness the sensitivity of bone to mechanical signals.
Objective: This study evaluates the longitudinal effect of a dynamic mechanical loading
through the heel on human bone in vivo during 90-day bed rest, monitored by quantitative ul-
trasound (QUS) imaging and dual-energy X-ray absorptiometry (DXA) in localized regions of in-
terests, i.e., calcaneus.
Methods: A total of 29 bed rest individuals were evaluated (11 control and 18 treatment) with
a brief (10-minute) daily low-intensity (0.3g), high-frequency (30Hz) dynamic mechanical stim-
ulation countermeasure through vibrational inhibition bone erosion (VIBE). Both QUS and DXA
detected longitudinal bone density and quality changes.
Results: Ultrasound velocity (UV) decreased in the control group and increased in the group
treated with low-intensity loading. The UV increased by 1.9% and 1.6% at 60- and 90-day
bed rest (pZ0.01) in VIBE over control groups. A trend was found in broadband ultrasound
attenuation (BUA), with a VIBE benefit of 1.8% at day 60 and 0.5% at day 90 in comparison with
control (pZ0.5). Bone mineral density (BMD) assessed by DXA decreased -4.50% for control in-
dividuals and -2.18% for VIBE individuals, showing a moderate effect of the mechanical inter-
vention (pZ0.19). Significant correlations between QUS and DXA were observed, with a
combined BUA and UV vs. BMD: r2Z0.70.
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Conclusion: These results indicated that low-intensity, high-frequency loading has the poten-
tial to mitigate regional bone loss induced by long-term bed rest and that QUS imaging may be
able to assess the subtle changes in bone alteration.
Translational potential of this article: Quantitative ultrasound has shown the efficacy of non-
invasively assessing bone mass and structural properties in cadaver and isolated trabecular
bone samples. While its ability in measuring in vivo bone quality and density is still unclear,
a scanning confocal ultrasound imaging is developed and can perform an instant assessment
for the subtle changes of such bone loss. This ultrasound imaging modality can potentially
be used in the clinical assessment of bone mass. Moreover, physical stimulation has shown
the ability to prevent bone loss induced by functional disuse and estrogen deficiency in animal
models. However, its treatment capability is unclear. This study has shown that low-magnitude
mechanical signals, introduced using low-intensity vibration (LIV), can mitigate regional bone
loss caused by functional disuse. Thus localized mechanical treatment, and the quantitative
ultrasound imaging have shown translational potential to noninvasively attenuate bone loss,
and assess bone mass in the clinic, e.g., in an extreme condition such as long-term space
mission, and long-term bedrest such as in case of spinal cord injury.
ª 2018 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking
Orthopaedic Society. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Figure 1 Short-term (<6 months) space mission and bed rest
induced the loss of bone mineral density, averaged per month
loss. Data adapted from reference LeBlanc et al., 2000, 2007
[40,43]. BMD Z bone mineral density.
Introduction

Musculoskeletal deterioration and its associated complica-
tions, i.e., disuse osteopenia and muscle atrophy, are sig-
nificant threats for astronauts and increase the risk of
fractures during a long-term space mission, such as staying
in the space station, and during the trip to Mars. Accumu-
lated data have demonstrated that space flight, particu-
larly in long-term missions, has detrimental effects on the
musculoskeletal system. Results from short-term space
mission (2e12 weeks) indicated that space flight with
microgravity alters calcium metabolism and bone mineral
density (BMD) in several hundreds of men and women who
have flown in space. With plans for extraorbital human
space exploration, such as human being flight to Mars
through the extended manned vehicle with 18e36 months
of duration, the risk and challenge to the musculoskeletal
system will be tremendous, and so little progress has been
made in understanding the significance of the problem.
There is an almost complete lack of onboard measurements
for assessing longitudinal musculoskeletal loss and associ-
ated evaluation of countermeasure outcomes.

Osteoporosis and osteopenia are reductions in bone mass
or density that lead to deteriorated and fragile bones, with
diminishing of both the structure and strength of bone,
each critical in defining the ability of the bone to resist
fracture [66]. On average, the magnitude and rate of the
loss is staggering; astronauts lose bone mineral in the lower
appendicular skeleton at a rate approaching 2% per month
[39e41,43,72]. Although osteopenia can affect the whole
body, complications often occur predominantly at specific
sites of the skeleton with great load-bearing demands. The
greatest BMD losses have been observed in the skeleton of
the lower body, i.e., in pelvic bones (�11.99 � 1.22%) and
in the femoral neck (�8.17 � 1.24%), whereas there was no
apparent decay found in the skull region [39,41,72]
(Figure 1). Moreover, it is apparent that the full recovery
of bone mass may never occur [17,18,37,38,65,75,78],
potentiating skeletal complications later in the astronaut’s
life [37]. Similar results were found in bed rest studies [1].
In a �6-degree head-down tilt 7-day bed rest model for
microgravity, it was observed that there was a decreased
bone formation rate in the iliac crest [2] (Figure 1). Bone
loss and the resulting decrease in bone strength is a serious
health threat and a principal physiological hurdle to man’s
extended presence in space. Assuming a 2.5-year return
trip to Mars, half of an astronaut’s bone density may
vanish, severely jeopardizing his/her health and well-
being. The progressive adaptation of the human biological
system for short- and long-term space flight remains largely
unknown, i.e., current exercise countermeasure protocols
cannot sufficiently prevent bone loss [19]. Part of the
reason is extremely difficult to monitor continuous adaptive
decay of bone loss during the space flight.

Bone tissue rapidly accommodates changes in its func-
tional environment to ensure that sufficient skeletal mass is
appropriately placed to withstand the regions of functional
activity, an attribute described as Wolff’s law [82,83]. This
adaptive capability of musculoskeletal tissues suggests that
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biophysical stimuli may be able to provide a site-specific,
exogenous treatment for controlling bone mass, and the
effect of a mechanical influence on bone morphology has
become a basic tenet of bone physiology [48,77]. Absence
of functional loading results in the loss of bone mass
[20,62,70,79], and exercise or increased activity results in
increased bone mass [25,31]. Similarly, increasing exercise
of musculoskeletal tissues can significantly increase blood
flow, oxygen and exchange fluid in muscle [32,59,61,63].
Less-intensive, high-frequency mechanical vibration has
demonstrated to be effective in functional disuse animal
models and early-stage osteoporosis, as well as osteopenia,
which is related to specific mechanical parameters, e.g.,
strain, cycle number, shear strain and strain energy
[7,29,44,45,53,63,71]. In a 60-day human bed rest study, it
was demonstrated that resistive mechanical vibration
stimuli could retard bone loss in the weight-bearing skel-
eton [14,73,80]. It has been shown that low-magnitude
(e.g., 0.2e0.3 g), high-frequency mechanical loading has
anabolic effects in human skeleton and maintaining bone
mass and quality (including bone information of density and
structural and mechanical strength parameters)
[15,44,50,53,71,81]. Mechanical loadingeinduced bone loss
recovery not only showed efficacy using low-intensity of
stimulation but also demonstrated significance in higher
intensity of exercise. In a 56-day bed rest study, resistive
vibration exercises have shown to be effective in prevent-
ing bone loss and muscle atrophy [4,5,67]. These results
suggest that the mechanical loading as the countermeasure
applied in the skeleton is effective to prevent bone losses
from the tibia. This underlines the importance of mechan-
ical usage for the maintenance of the human skeleton.

Osteoporotic bone loss can be measured through
commonly used clinical modality, i.e., using areal bone
mineral density (aBMD) assessed by dual-energy X-ray ab-
sorptiometry (DXA), e.g., estimating bone loss with ageing,
based on which longitudinal studies with multiple popula-
tion over 25 years have revealed that losses of BMD are
sensitive to age in both women and men (Figure 2). DXA is
currently a standard technique used because of its relative
precision (w2%) and whole-body/multisite imaging ability
(spine, hip, wrist and total skeleton), which provides BMD
Figure 2 Age-related BMD loss in both cortical and trabec-
ular bones in women and men. Longitudinal data were assessed
using DXA. Data are adapted from Khosla A, and Riggs BL, 2005
[28]. BMD Z bone mineral density; DXA Z dual-energy X-ray
absorptiometry.
based on the percentage of X-ray energy passing through
bone and other tissue mass and detected radiation atten-
uation [9]. The measurements obtained are an averaged
mineral density of the whole bone tissue and do not provide
information about the integrity of the trabecular
architecture or about the mechanical properties of the
composing trabeculae. Thus, the density, structure and
strength of bone, whether in normal or osteopenic states,
remain largely unknown (i.e., it is extremely difficult to
monitor the strength and ductility in vivo). An improved
diagnostic tool is needed to evaluate both the quantity and
quality of bone, which will help in early detection and
therefore the possible prevention and treatment of this
disease.

Quantitative ultrasound (QUS) with improved imaging
methodology has been introduced [13,35] to evaluate bone
status for osteoporosis in a manner that is nonionizing, easy
to use, repeatable and noninvasive [8,12,16]. Ample data
are suggesting that QUS can provide both bone density and
structure information [11,51,52,54,55,58] and predict
fracture risk [3,21,24,27]. A recent development by this
laboratory has shown that QUS scanning can predict both
structural and strength properties of trabecular bone and
estimate the alteration of trabecular orientation index
[46,47,60]. Introduction of QUS in space flight may provide
for an understanding of the adaptive decay of bone mass
and bone strength during space flight without introducing
radiation and, with prompt treatment, will reduce fracture
risk during missions and upon return to normal gravity
[10,13,60,64,76].

The objective of this study was to evaluate the hy-
pothesis that confocal scanning QUS can reveal the pro-
gressive bone loss and predict bone density and structure in
disuse osteopenia through a long duration bed rest study
(90-day) that simulated microgravity. The aims include (1)
to assess bone status at heel region using QUS scanning and
to compare it to X-ray image and (2) to evaluate the effect
of low-intensity mechanical vibration to mitigate disuse
bone loss. The capability of QUS measurement of bone
quantity changes during the bed rest period was evaluated
by correlating QUS parameter change to DXA-measured
BMD, the current standard for aBMD measure. These mea-
surements will provide insight into the utilization of QUS for
monitoring the bone quantity and quality change altered by
functional disuse. Human bed rest is an established ground-
based model to simulate microgravity and evaluate pre-
ventive measures for the detrimental effects of space flight
[43,57]. Both control and loading groups were evaluated, in
which the mechanically stimulated group was subject to a
low-intensity whole-body vibration [vibrational inhibition
of bone erosion (VIBE)] [26,53,68,69,71,81].

Methods

Participants and measurement schedule

This study was approved by both the Stony Brook University
Institutional Review Board and the University of Texas
Medical Branch at Galveston Institutional Review Board.
While this is part of NASA’s bed rest project conducted at
the University of Texas Medical Branch at Galveston, the
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participants who meet the general health requirements
(nonosteopenic, nondrug, nonsmoking, including both gen-
ders) were recruited through the recruitment team and
screening, e.g., public advertisement. Informed written
consent was obtained from all volunteers. A total of 29
volunteers (aged 25e48 years, 17 male and 12 female)
participated in the bed rest study, which includes 10e15
days normal activity before bed rest, 90-day bed rest and
14-day recovery period. The volunteers were recruited in
an on-going pattern and rotated through bed rest unit by
keeping approximately 5 volunteers in the bed rest unit at
the same time. Participants were screened to have normal
bone mineral density, normal physical activity level and no
diseases or medication that affects bone metabolism. Fe-
male participants included in this study were screened to
check for normal menstrual cycles. Participants were
randomly assigned into two groups, 11 individuals in the
control group and 18 individuals in the low-intensity vi-
bration countermeasureetreated experimental group. Both
the groups were subjected to functional disuse with a 6-
degree head-down tilt for 90 days during which no physical
exercise was allowed (Figure 3). Stretching twice each day
and massage therapy every other day during bed rest were
provided to the participants, who were monitored 24 h/day
by cameras. Daily vital signs including blood pressure, heart
rate, body temperature, respiratory rate and body weight,
as well as fluid intake and output, were monitored during
the study. Standard diet was provided based on NASA space
flight nutritional requirements, including caloric intake of
35.7 kcal/kg body weight, fluid intake of 28.5 mL/kg body
weight and carbohydrate:fat:protein ratio 55:30:15. All
food had to be consumed. Caloric intake was adjusted to
maintain weight within 5% of the baseline.

The VIBE group was given a daily low-intensity vibration
(LIV) treatment (10 min/day, 30 Hz, 0.3 g) during the bed
rest period. LIV was applied to the individuals while in a
supine position using a vest and spring system, which
loaded the individual to the vibration platform on mobile
support positioned at the foot at the bed (Figure 3). Spring
Figure 3 Daily mechanical loading was applied to the bed
rest individuals with a 6-degree head-down tilt for 90 days
during which no physical exercise was allowed. The low-
magnitude, high-frequency stimulation was applied to the in-
dividuals while in a supine position using a vest and a bungee
spring system, which loaded the individual horizontally to the
vibration platform on mobile support positioned at the foot of
the bed. The mechanical vibration was set at 0.3 g, 30 Hz and
10 min per day.
loading was adjusted to match 60% of the participants’
body weight. This loading achieved a vibration magnitude
at the hip which measured 80% of the magnitude seen in an
individual standing on the plate.

QUS measurements were performed using the scanning
confocal acoustic diagnostic navigation (SCAN) system
developed in our laboratory. Measurements were scheduled
at three time points: before bed rest, 60 days into bed rest
and 90 days into bed rest. DXA measurements were per-
formed using the same schedule. The SCAN system
measured bone mass changes at the calcaneus on both
control and experimental groups, which were compared
with changes in bone mass as measured by DXA at heel,
spine and hip.

QUS measurement

QUS measurement was performed on individuals’ right foot
using the SCAN system while they still maintained the 6-
degree tilt. The technical aspect of the QUS parameter
calculation has been published before [84]. The device
measures the overall ultrasound attenuation (ATT; dB), the
broadband ultrasound attenuation (BUA; dB/MHz) and the
ultrasound velocity (UV; m/s) to generate ATT, BUA and UV
images. Measurements were performed over an area
measuring 38 mm � 38 mm, at 0.5 mm resolution.

An automatic irregular region of interest (ROI) selection
method was used in this study for QUS measurement
(Figure 7). The technical detail of this method was pub-
lished in a separate study [85]. The rationale of using the
automatic irregular ROI selection is based on our previous
study [85] and the study by Damilakis et al. [12], which
showed that automatic irregular ROI selection can adapt to
the anatomy of the calcaneus and has better clinical per-
formance than regular shaped ROI as used in clinical de-
vices. Also, the irregular ROI was automatically selected by
the computer, eliminating the possible human error. The
same ROI can be selected and applied to UV and BUA images
generated at different time points to calculate UV and BUA
values for each individual. Figure 4 showed the ROI selected
from before bed rest, at Day 60 and Day 90 of QUS mea-
surement using this method for a bed rest individual. This
automatic ROI technique could solve the issue of longitu-
dinal stability of the ROI location, which is important in
clinical situations, especially for assessing individual
changes over time [36]. A 500-pixel ROI was determined
using the automatic ROI technique and used for the calcu-
lation of BUA and UV results.

The short-term precision of the bed rest study was
calculated using QUS data collected at the pre bed rest time
point. Three repetitive scans were conducted for each indi-
vidual. The root mean square of individuals’ standard de-
viations was used to calculate the short-term QUS precision.

Bed rest study requires individuals to stay in bed,
maintaining 6-degree head-down tilt while doing the QUS
measurement. The SCAN system was designed to take the
measurement at the edge of the bed with the individual’s
leg dangling over the bed and the foot resting on a foot
measurement stage. A foot stopper was designed to facili-
tate repositioning of the foot perpendicular to the ultra-
sound pathway in subsequent scans, and restraining straps
were used to immobilize the heel and lower leg. Before



Figure 4 QUS attenuation images and obtained irregular ROI by automatic procedures at baseline, day 60 and day 90 for bed rest
individuals. QUS Z quantitative ultrasound; ROI Z region of interest.
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each measurement, alcohol swabs were used to clean the
individual’s foot before positioning the foot into the SCAN
system.

Three scans were performed for each individual at each
bed rest time point. In between each scan, the individual’s
lower leg was taken out of the measurement position and
repositioned to check repeatability. Two phantoms reflected
the heal bone density were used to calibrate the measure-
ment system. Phantom calibration scans were performed
before the measurements, and the phantom result was
checked over bed rest period to verify system stability.

DXA measurement

aBMD was measured at baseline, 60 and 90 days into bed
rest using a DXA (Hologic, MA) with individuals transferred
to the DXA room on a 6-degree tilt transport gurney. All the
BMD tests were conducted using the same DXA machine.
Measurements were analyzed in the following regions: heel,
whole body and hip (femoral neck and trochanter) (coeffi-
cient of variationZ 2.0%). For the BMD analysis at the heel,
the back part of the calcaneus, corresponding to where the
Table 1 Demographic profiles.

Group Gender Race A

Control (n Z 11) 5 male
6 female

6 white
5 black

3

VIBE (n Z 18) 12 male
6 female

7 white
7 black
4 Latino

3

VIBE Z vibrational inhibition of bone erosion.
QUS ROI was selected, was chosen to calculate calcaneus
BMD. All the DXA scans and data collections were per-
formed by an experienced technician to ensure data quality
and eliminate interobserver variability. QUS parameters
and DXA-determined BMD were evaluated through multiple
correlations.

Statistics

A general linear model was used to perform the analysis of
variance for UV, BUA and BMD. The model was constructed
with sources of variance such as treatment groups (control
and VIBE groups), time of measurement points (pre bed
rest, 60 days and 90 days into bed rest), treatment groups
with the interaction of time and time points with the
interaction of individuals nested in different groups. The
individuals were randomly assigned to either control or VIBE
group or treated as a random factor in the general linear
model. P values smaller than 0.05 were considered to be
statistically significant. The analysis was performed using
Minitab, a statistical analysis software package (Minitab,
Inc., State College, PA, USA).
ge (years) Height (cm) Weight (kg)

4.7 � 7.9 (26e48) 171 � 11 74 � 18

5.6 � 7.1 (25e47) 172 � 7 75 � 9



Table 2 Baseline measure for different participant groups.

Group QUS DXA

UV (m/s) BUA (dB/MHz) Heel BMD FN BMD WB BMD

Control (n Z 11) 1547 � 27 93 � 20 0.65 � 0.11 0.86 � 0.11 1.19 � 0.11
VIBE (n Z 18) 1559 � 33 93 � 19 0.66 � 0.11 0.87 � 0.12 1.19 � 0.10

BMD Z bone mineral density; BUA Z broadband ultrasound attenuation; DXA Z dual-energy X-ray absorptiometry; FN BMD Z DXA BMD
at femoral neck region; Heel BMD Z DXA BMD at heel region; UV Z ultrasound velocity; VIBE Z vibrational inhibition of bone erosion;
WB BMD Z averaged DXA BMD.
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Results

The demographic profile of the participants was listed in
Table 1. There was no difference between control and VIBE
group regarding age, weight and height. There were seven
more male individuals in the VIBE group. The baseline
measurement using QUS and DXA (Table 2) did not show any
value differences in BUA and UV measurement, as well as
BMD at heel, femoral neck and whole-body regions.

The short-term in vivo precision calculated from pre bed
rest data showed a coefficient of variation of 0.41% for BUA
and 1.97% for UV. Quantitative calculation of the UV values
showed that UV decreased from 1555 � 8 m/s (n Z 29,
Figure 5 SCAN system shows the change in UV
(mean � Standard Error) and BUA (mean � standard error)
from baseline to 60 days and 90 days, for 11 control individuals
and 18 VIBE individuals. BUA Z broadband ultrasound attenu-
ation; SCAN Z scanning confocal acoustic diagnostic naviga-
tion; UVZ ultrasound velocity; VIBEZ vibrational inhibition of
bone erosion.
average � standard error) to 1537 � 12 m/s (�1.2%) at Day
60 and to 1538 � 11 m/s (�1.1%) at Day 90 for control in-
dividuals. For the VIBE individuals, UV increased from
1555 � 8 m/s to 1566 � 7 m/s (0.72%) at Day 60 and
decreased to 1562 � 8 m/s (0.5%) at Day 90 (Figure 5A). The
mean UV percentage change between control and VIBE
groups was 1.9% for 60 days and 1.6% for 90 days. A sig-
nificant difference was found for UV between control and
VIBE group (p Z 0.01) with the interaction of time, as well
as between individuals within each group (p < 0.001). No
significant difference was found between Day 60 and Day 90
(p Z 0.5).

A similar trend was observed for BUA values. BUA
changed from 93.0 � 5.0 dB/MHz (n Z 29,
average � standard error) to 93.0 � 7.1 dB/MHz (0.03%) at
Day 60 and to 92.3 � 7.6 dB/MHz (�0.7%) at Day 90 for
control individuals; for VIBE individuals, BUA increased
from 93.0 � 5.0 dB/MHz to 94.7 � 4.4 dB/MHz (1.9%) at Day
60 and fell to 92.7 � 4.2 dB/MHz (�0.2%) at Day 90 as
indicated in Figure 5B. The overall present change between
VIBE and control groups was 1.8% at Day 60 and 0.5% at Day
90. Analysis of variance test showed no significant differ-
ences between control and VIBE (p Z 0.51) and between
time points (p Z 0.7). A significant difference was found
between individuals within each group (P < 0.001).

DXA-measured heel BMD showed a decrease from
0.657 � 0.033 g/cm2 (n Z 29, average � standard error) to
0.637 � 0.035 g/cm2 (�2.5%) at Day 60 and 0.626 � 0.035 g/
cm2 (�4.2%) at Day 90 for control group. For VIBE group,
heel BMD decreased from 0.657 � 0.025 g/cm2 to
0.655 � 0.025 g/cm2 (�0.4%) at Day 60 and 0.647 � 0.026 g/
cm2 (�1.7%) at Day 90. The mean BMD percentage change
for the control group was �4.50%, which was essentially
twice as high as the �2.18% heel BMD loss for VIBE in-
dividuals. The difference between control and VIBE group
with the interaction of time was moderately different but
not significant (p Z 0.199). The difference between in-
dividuals (p < 0.001) within each group and between time
points (p < 0.001) was significant.

While the trend of increased BMD loss values was
observed in the heel of control individuals compared to
VIBE individuals, no significant BMD change was found at
other skeletal sites between control and loaded groups,
such as femoral neck (control �1.56% vs. VIBE -2.45%,
p Z 0.29) and whole-body region (control �0.91% vs. VIBE
-1.09%, p Z 0.73).

Correlation tests between SCAN QUSemeasured UV and
BUA and DXA-measured BMD at the calcaneus site, pooled
all the data points together, rendered r2 Z 0.69 between
BUA and DXA heel BMD and r2 Z 0.54 between UV and BMD.



Figure 7 SCAN systemedetermined BMD change
(mean � standard error) from 90-day bed rest showed a similar
pattern to DXA-determined BMD change. BMD Z bone mineral
density; DXA Z dual-energy X-ray absorptiometry; SCAN Z
scanning confocal acoustic diagnostic navigation; VIBE Z
vibrational inhibition of bone erosion.

Figure 6 SCAN systemedetermined BMD showed a high cor-
relation (r2 Z 0.70) with DXA-measured BMD. BMD Z bone
mineral density; DXA Z dual-energy X-ray absorptiometry;
SCAN Z scanning confocal acoustic diagnostic navigation.
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Combined BUA and UV using a linear regression model
further increases the r2 to 0.70 between QUS and DXA as
shown in Figure 6. Combined BUA and UV showed that a
mean percentage change for the control group was �1.84%
and 0.18% for VIBE group. The mean BMD percentage
change as measured by DXA was �4.5% for the control group
and �2.18% for the VIBE group (Figure 7).
Figure 8 SCAN system shows the BUA images measured at base
individual. Arrow indicates regional bone property changes due to
scanning confocal acoustic diagnostic navigation.
Discussion

Osteopenia and osteoporosis are systemic skeletal diseases,
and long-term bed rest resulted in bone loss all across the
body. The calcaneus QUS is one of the primary measure-
ments of assessing change in bone quantity and quality.
Bone loss at the heel has been investigated in previous bed
rest studies and before and after space flights by DXA
technique. It was indicated that bone loss at the calcaneus
occurs at a rate of 1.6e3.7% per month during extended
space flight (2 þ months) [33,43,49]. In bed rest studies,
bone loss averages 1.73e2.75% per month with individuals
in bed for four months [6,38,43,74]. The rate of bone loss
from the calcaneus tended to be smaller than the loss
observed in bed rest studies because the heel is subject to
ground reaction forces during in-flight treadmill exercises.
However, bone loss at calcaneus could be astonishing in
individual astronauts [42,43]. Previous three-manned Sky-
lab missions reported by LeBlanc et al. [43] showed that
bone loss in calcaneus reached �3.5% per month (�7.4% in
59-day flight) for one crew member and �2.7% (�7.9% in
84-day flight) and �1.5% (�4.5% in 84-day flight) per month
for other two crew members. In this study, calcaneus BMD
loss was averaged approximately �1.5% per month with
large individual differences (ranging from a gain of 0.22%/
month to a loss of 6.54%/month). Given the significant
different response as individuals subject to the micro-
gravity environment and the relatively large percentage
bone loss at human heel, SCAN system can be used as an
effective tool to monitor individual bone quantity change
with reasonable precision in a microgravity environment.

Ultrasonic imaging with UV and BUA changes during bed
rest period showed the increase of both values from before
bed rest to Day 60 into the bed rest and returned to preebed
rest level at day 90 into the bed rest for VIBE subjects. This
suggested the improvement/maintenance of bone quality
and quantity for bed rest individuals due to VIBE treatment.
For control individuals, both BUA and UV decreased from
baseline to Day 60 and plateaued from Day 60 to Day 90,
suggesting a fast adaptation of bone tissue to disuse envi-
ronment in the first 60 days with little or no change during
the last month of bed rest. Overall, the different response to
bed rest between VIBE and control individuals was signifi-
cant (p< 0.05) as indicated by UVmeasurement. While DXA-
measured heel BMD did not show a significant difference
line, 60 days and 90 days (from left to right) for one control
bed rest. BUA Z broadband ultrasound attenuation; SCAN Z
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(p Z 0.199) between control and VIBE group, the mean
percentage bone loss in the control group is 2% more than
that in the VIBE group. These results indicate a positive ef-
fect of high-frequency, low-magnitude vibration as a mean
to counter bone loss in bed rest environment.

The reduced BMD loss at the calcaneus site seen in VIBE
individuals (VIBE �2.18% vs. control �4.50%) was not
evident at other skeletal sites such as the femoral neck or
across the entire skeleton (whole body). This may be
because the vibration countermeasure was directly applied
at the human foot. Compared to other skeletal sites,
calcaneus was subject to stronger vibration forces than the
hip and spine, which experienced less vibration due to the
natural damping system introduced by the human body.
Further studies are needed to explore the most effective
way to introduce VIBE countermeasure to the appendicular
and axial skeleton, such as changing intensity (increasing g-
force) and duration (10e20 min) or incorporating refractory
periods to enhance the receptivity of the skeleton [56].

In combination with some gravitational loading, low-
intensity, high-frequency mechanical loading has been
shown to promote bone mass in children with disabling
conditions, including cerebral palsy [1,2] and Duchenne
muscular dystrophy [3] and girls with idiopathic scoli-
osis [4]. This is anabolic to bone and muscle in young
women with osteoporosis [5], and augments bone accretion
in childhood cancer survivors [6], and Crohn’s disease [7].
While VIBE cannot be considered a substitute for exercise,
these studies indicate that they represent salutary me-
chanical signals to improve clinical endpoints in individuals
with limited exercise capacity [8] and may represent a
means of priming responsiveness to exercise [56].

The ultrasound images from the confocal scanning can
reveal the regional distribution density and strength of
tested bone (Figure 8). It is capable of identifying the local
acoustic feature change of bone, which is important for a
longitudinal study such as bed rest study because bone loss
may happen first at some specific sites and can only be
discovered from the spatially distributed data such as the
images generated from the confocal acoustic scanning
technique. This technique can make an ultrasound to be
more accurate, straightforward and efficient in the detec-
tion of bone loss. Overall, a significant correlation between
SCAN and DXA was observed at dedicated sites, e.g.,
calcaneus, in bed rest (r2 Z 0.70), suggesting that BMD loss
is one of the major contributors for bone alterations in the
skeleton during unloading. However, it should be noted that
this study is mainly focused on longitudinal changes of bone
through 90-day functional disuse.

For a longitudinal follow-up, the ability of QUS to
distinguish between trabecular bone, cortical bone and
soft tissue changes was a concern. Overlying soft tissues
and cortical shell have been shown to influence the results
of UV [30,85] and BUA [34,84] measurements, especially if
variations in tissue thickness and composition occur. In a
separate study, our laboratory introduced a newly devel-
oped three-dimensional surface topology mapping tech-
nique, which could potentially quantify the soft tissue
thickness and hence enhance the measurement accuracy
[85]. Also, experiment and model simulation has been
introduced to quantify the influence of cortical shell on
the BUA measurement [34,84]. With the newly developed
technique, QUS could be a useful tool for the monitoring
of longitudinal changes in bone for both astronaut and
ground-based operation. It seems clear that the changes
in BMD are much more heterogeneous in bed rest than
the skeletal changes occurring in metabolic bone
disease, such as osteoporosis: Measurement of changes
occurring at one site may not be used to predict changes
at other sites during bed rest. Although SCAN system
does show advantages as a portable, imaging-based,
nonradiation and easy-to-use modality, it can only be
applied at the peripheral skeletal region at the current
stage. While osteoporosis-induced bone losses are
demonstrated systematically, the consequences of bone
losseinduced fracture often occurred at the critical skel-
etal sites, such as the hip and spine. Although the longi-
tudinal monitoring for the individual bone mass change in
the peripheral skeletal regions may be feasible, further
study for bone assessment at the more critical sites, e.g.,
hip and spine, is needed.

It is noted that although QUS and DXA data correlated
well with r2 Z 0.7 between BUA and BMD, QUS data showed
an increase for VIBE group whereas DXA showed a decrease.
While QUS result can largely be explained by DXA, e.g. BMD,
it has been shown that QUS result report additional bone
density information using microCT measurement, e.g.
related to trabecular space (Tb.Sp), trabecular thickness
(Tb,Th.) and structure model index (SMI), in addition to
BMD. In addition, DXA is an accurate measurement of total
BMD, which is dominated by cortical BMD, but the physics of
QUS should address a combination of both cortical and
trabecular BMD, which is potentially a better measure of
bone density and structural properties.

Limitations of this study include the modest and uneven
sample size (n Z 11 for control and n Z 18 for VIBE group),
concerning limited resources and costs of such human
study. Human bed rest studies have provided unique
analogue simulation of microgravity environment and in-
sights into the physiology of noneweight-bearing and
deconditioning associated with space flight. Several of
previous studies reported bone and muscle alterations after
30e60 days of bed rest and showed efficacy and signifi-
cance [14,22,23,73]. Although a total of 29 individuals were
considered a small number, the data have shown the effi-
cacy of bone alteration between simulated microgravity
and mechanical stimulation using both DXA and QUS in the
heel region. The statistical power of the study could be
further improved if the study can be extended to address
the aforementioned concerns. Despite the sample size and
distribution as limited by the study protocol, there are
more than 260 ultrasound scans performed during the
study. The promising results as presented in this study will
warrant further investigation of QUS in bed rest, as well as
in the microgravity environment. In addition, further
development of QUS in the critical skeletal sites, such as
the hip and spine, would provide significant assessments in
fracture risk of the skeleton.
Conclusion

QUS and DXA demonstrated significant correlation for BMD
at the calcaneus region to monitor the longitudinal bone
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loss and the effect of LIV as a means to prevent bone loss in
the skeleton. The confocal scanning ultrasound imaging is
capable for bone mass assessment in the ROI, which may be
used to predict the alteration of bone loss in the long-term
bed rest simulation and potentially future space mission.
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