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Vertical flow array chips reliably 
identify cell types from single-cell 
mRNA sequencing experiments
Masataka Shirai, Koji Arikawa, Kiyomi Taniguchi, Maiko Tanabe & Tomoyuki Sakai

Single-cell mRNA sequencing offers an unbiased approach to dissecting cell types as functional units 
in multicellular tissues. However, highly reliable cell typing based on single-cell gene expression 
analysis remains challenging because of the lack of methods for efficient sample preparation for 
high-throughput sequencing and evaluating the statistical reliability of the acquired cell types. Here, 
we present a highly efficient nucleic reaction chip (a vertical flow array chip (VFAC)) that uses porous 
materials to reduce measurement noise and improve throughput without a substantial increase in 
reagent. We also present a probabilistic evaluation method for cell typing depending on the amount 
of measurement noise. Applying the VFACs to 2580 monocytes provides 1967 single-cell expressions 
for 47 genes, including low-expression genes such as transcription factors. The statistical method can 
distinguish two cell types with probabilistic quality values, with the measurement noise level being 
considered for the first time. This approach enables the identification of various sub-types of cells in 
tissues and provides a foundation for subsequent analyses.

Single-cell gene expression analysis utilizing high-throughput DNA sequencing has emerged as a powerful tool 
to investigate complex biological systems1–7. Such analyses provide an unbiased means of identifying various cell 
types in tissues to characterize multicellular biological systems1,7–14, as well as insight into the processes of cell dif-
ferentiation14,15, genetic regulation16–18 and cellular interactions19–21 at single-cell resolution. Although cell typing 
without a priori knowledge provides a foundation for further studies of biological processes, including screening 
gene markers, the lack of statistical reliability hampers the application of single-cell analysis in discerning the 
functions of genes in heterogeneous tissues. To address this limitation, precise measurement technologies11,20,22–28, 
high-throughput sample preparation technologies2,11,12,24 and statistical methods for determining cell types1,11 
have recently been developed. The measurement of gene expression in single cells intrinsically suffers from con-
siderable measurement noise because mRNAs are present in small amounts in individual cells22,23. To alleviate the 
problem of noise, a sophisticated method involving unique molecular identifiers (UMIs) has been developed25–27 
that effectively reduces the measurement noise caused by the PCR amplification of cDNA synthesized from 
mRNA. However, the measurement noise arising from the low efficiency of cDNA synthesis in a random sample 
of mRNAs remains significant. Another source of stochasticity in measurements is the biomolecular processes 
of gene expression23,29,30. A sufficient number of cells must be analyzed to reduce the influence of randomness. 
High-throughput sample preparation technologies have been employed to dissect cellular types2,11,12,31, and the 
simultaneous pursuit of high efficiency and high throughput in sample preparation has led to highly reliable cell 
typing. The resulting single-cell data are analyzed using various clustering or visualization algorithms, including 
hierarchical clustering11,18, principal component analysis (PCA)4,12,18,32, graph-based methods9,18,32, t-distributed 
stochastic neighbor embedding (tSNE)1,7, the visualization of high-dimensional single-cell data based on tSNE 
(viSNE)33, k-means combined with gap statistics (RaceID)1, and a mixed model of probabilistic distributions 
with information criteria or a regularization constant11. A statistical or probabilistic clustering method1,11 that 
can evaluate the reliability of clustering is desirable for comparing cell types from different experiments with 
different marker genes. Although various clustering indices have been reported34–36, the evaluation of clustering 
from different data sets remains a challenging problem, especially for noisy data35. In the pioneering work by Fa 
and Nandi35, these problems were addressed by introducing two tuning parameters to alleviate the problem for 
noisy data sets. However, this approach requires a reference data set to select the parameters, and the parameters 
have no geometrical meaning in the data space.
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Here, to achieve high-efficiency and high-throughput sample preparation for high-throughput sequencers, we 
have developed a vertical flow array chip and a statistical method for evaluating the quality of clustering based on 
a noise model previously determined from a standard sample. The efficiency of sample preparation from standard 
mRNA to molecular counts with UMIs was estimated to be greater than 50 ±​ 16.5% for more than 15 copies of 
injected mRNA per microchamber. Flow-cell devices, including multiple chips, were applied to suspended cells, 
and 1967 cells were analyzed to discriminate between undifferentiated cells (THP1) and PMA differentiated 
cells. Our statistical clustering evaluation method offers the ability to determine the number of clusters without 
ground-truth data to supervise the evaluation; it is also based on additional information regarding measurement 
noise and cluster size, which controls the fractions of false elements in clusters to avoid overestimation of the 
number of clusters beyond the measurement resolution. It successfully provides the most probable number of 
clusters and is consistent with the results obtained using well-established methods, including a Gaussian mixture 
model with a Bayesian information criterion (BIC)34,37 and various clustering indices such as a silhouette index36. 
The method also provides quality values (pq-values) for clusters and determines different values of the most 
probable number of clusters depending on the degree of measurement noise and the cluster size, which controls 
the error rate, which is the fraction of false assignment of data to a cluster. The introduction of the two parameters 
controls the minimum geometrical size of clusters and the rate of false elements in clusters. Users of the statistical 
method can select the parameter values according to their predetermined noise model and error rate standard.

Finally, it was demonstrated that highly precise gene expression data were acquired from 76% of the dispensed 
cells, and two types of cells were derived with maximum pq-values among the possible number of clusters. Since it 
is difficult to reduce measurement noise thoroughly by improving the efficiency of sample preparation, the combi-
nation of the VFAC-based and statistical method to effectively manage the stochastic behavior of single-cell gene 
expression can be applied to various fields, including immunology, cancer biology, and developmental biology.

Results
Development of a flow-cell device for high-throughput single-cell sample preparation.  Our 
flow-cell device for single-cell analysis is composed of multiple VFACs to enable inexpensive, digital gene expres-
sion profiling for thousands of single cells across an arbitrary number of genes without using robotics. Figure 1 
presents a schematic of the flow-cell device and the VFACs. Each chip in the device contains 100 vertical flow-
through microchambers for synthesizing a cDNA library and a through-hole to capture single cells. After the 
single cells are drawn and captured in the holes, which are 3–5 micrometers in diameter, the drawing of lysis 
buffer into the holes enables the extraction of mRNA strands, which are then trapped by DNA probes with poly-T 

Figure 1.  Schematic structure of the vertical flow array chip and flow-cell device. (a) The vertical flow 
chips contain 100 microchambers with beads providing porous reaction fields. Each microchamber features a 
different cell-id tag sequence in the DNA probes immobilized on the beads. (b) Fluorescence microscopy image 
of the VFAC with trapped cells, where small white dots indicate individual cells. (c) Structure of DNA probes on 
the beads for mRNA trapping and 1st cDNA synthesis. (d) Schematic diagram of 2nd strand synthesis on beads. 
(e) Workflow of sample preparation for gene expression analysis using VFACs. Second-strand synthesis and 
subsequent steps were performed in a tube containing the VFAC.
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sequences immobilized on the packed beads in the microchambers. Then, 5 ×​ 109 copies of the DNA probes in 
each chamber (2 orders of magnitude greater than in previous works11) with cell-ID tags are immobilized on the 
1 ×​ 105 beads composing the porous structure in each microchamber. This structure enables the highly efficient 
trapping of mRNA within a few minutes and highly efficient cDNA synthesis from the small amount of mRNA in 
single cells. The cDNA library from single cells on the beads in the VFACs is then used to construct a sequencing 
library for high-throughput sequencing by PCR amplification. Gene-specific probes combined with primers are 
used for PCR (Methods) to acquire sequencing data, and the data are sorted by the cell tag sequences to identify 
their original positions on the chip. Single-cell gene expression data were acquired from the cells suspended in 
solution buffer. The high-density microchambers on the chips and the vertical flow system reduced the volume of 
expensive enzymatic reagent per cell by a factor of 2028, thus reducing the cost of sample preparation compared 
to reactions performed in tubes. The microchambers on the VFACs have no walls to prevent the exchange of 
reagents, simplifying the structure of the VFACs and the flow-cell device, and the high-density integration of the 
microchambers further reduces reagent costs. The crosstalk between wells was suppressed by continuous down 
flow through the micro-wells.

The fabrication of the VFACs comprised injection molding of polydimethylsiloxane (PDMS) to produce 
microchamber arrays and laser aberration to produce through-holes to capture cells. To retain the beads in the 
microchambers, we used a hydrophilic porous membrane (ISOPORE membrane (Millipore)) to cover the backs 
of the VFACs.

Figure 1(b) presents the workflow for single-cell analysis using VFACs. To prepare the VFACs, we used an ink-
jet system designed for biochemical applications (Microjet Inc., LabJet 500) to dispense solutions and magnetic 
beads to immobilize the DNA probes. The probes consisted of 18 bp of poly-T sequence, 7 bp of cell identifier 
(Cell-ID) and 7 bp of random sequence as UMIs. The supply of common reagents through the micro-reaction 
chambers on the chip enabled cDNA synthesis with gene-specific primers after mRNA trapping. After removal of 
the chips from the flow-cell device, PCR reactions were performed in tubes.

Quantification performance of the vertical flow chip.  We tested the quantification performance of 
the VFACs using a calibrated amount of mRNA (Methods). The mRNA solutions were injected into microcham-
bers on the VFACs, and the cDNAs were then synthesized individually on the chips. After PCR amplification, 
next-generation sequencing (NGS; Ion PGM) was performed. First, the copy numbers of mRNA determined by 
qPCR were correlated with molecular counts by sequencing (Fig. 2(a)). The copy numbers of mRNA injected into 
each microchamber on the chips were estimated using a calibration curve of the cDNA and cRNA acquired by 
bead-based RT-qPCR (Supplementary Figure 4). The efficiency of sample preparation from mRNA to molecular 
counts was estimated to be greater than 50 ±​ 16.5% for the injection of more than 15 copies of mRNA per micro-
chamber (Fig. 2(a)). The acquired efficiency was approximately 4 times higher than was obtained by Drop-seq7,14.
Second, we assessed the parallel sample preparation capability of the microchambers when the mRNA solutions 
were injected. Figure 2(b) presents the mapping of the total expression of 20 housekeeping genes on a VFAC with 
10 by 10 micro-reaction chambers. The positions of the peaks matched the positions of the microchambers into 
which the solutions were injected, confirming the accuracy of the sample position assignments. The quantities 
of gene expression in Fig. 2(b–e) were indicated as molecular counts using UMIs, where the total number of 
acquired reads mapped on 20 genes was approximately 1 million for each VFAC. Third, Fig. 2(c) presents calibra-
tion curves of the gene expression levels of four housekeeping genes (RPS18, EEF1G, ALDOA, and HMBS). The 
amount of mRNA in a single cell (1 pg) is within the linear region for all genes. Figure 2(d) presents the lowest 
copy number detection limit of 15 copies per chamber, at which the detection rate is greater than 90%. Finally, 
we estimated the coefficient of variation (CV) depending on the copy number of mRNAs injected into individual 
chambers (Fig. 2(e)). These curves describing the CV values of measurement noise (55% at 15 copies of mRNA) 
are comparable to the ones reported previously26 as a result of the highly efficient cDNA synthesis. The regression 
curve was used as a probabilistic model of measurement noise.

Description of the statistical method for calculating pq-values.  The main purpose of the statisti-
cal method is the unbiased comparison of the qualities of the clusters across different experimental conditions, 
including measurement noise, number of cells and number of genes. For the unbiased comparison of clustering 
results among the different conditions, the function used for clustering evaluation should have a definite range for 
all conditions. Therefore, a probabilistic function is preferable for the clustering evaluation because the range of 
probability is from 0 to 1. Furthermore, the application of a conventional clustering evaluation method to highly 
stochastic single-cell gene expression data may assign high scores to accidentally formed clusters even though 
the cluster size is smaller than the measurement noise or have a potentially large fraction of false assignment of 
individual cells to clusters due to overlapping distributions. Therefore, we propose an evaluation function for clus-
tering with a clustering resolution that considers measurement noise and a cluster size that controls the fraction 
of false assignment of cells to a cluster.

Our method is based on a probabilistic distribution model of gene expression and a noise model of measure-
ment; the model assumes a multidimensional log-normal distribution38. An explicit parameterization of clus-
tering resolution and clustering size is the first key step in evaluating the probability that a certain datum is 
appropriately allocated to a cluster. The first parameter to determine the resolution of clustering is defined as a 
surface with constant likelihood from a covariance matrix, which is determined from the noise model of a meas-
urement for a standard sample. The noise model consists of measurement noise, regarded as a minimum reso-
lution for clustering, and intrinsic biological noise, derived from the covariance matrices of acquired individual 
clusters. Similarly, the second parameter varies from 0 to 1 and indicates the size of a cluster with probabilistic 
confidence, as the pq-value of a cluster is defined as the maximum boundary with constant likelihood to control 
the fraction of false assignment of data to each cluster. The second key element of the method is the evaluation 
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of both the probability that each datum belongs to a cluster (homogeneity) and the probability that the datum 
does not belong to other clusters (separation). These criteria permit the method to appropriately calculate the 
pq-values of clusters such that the method can avoid overfitting without any information criteria, as will be dis-
cussed later. An example of overfitting is that an optimum number of clusters is determined to be a number of 
fitting parameters in a Gaussian mixture model.

A schematic diagram of the algorithm for evaluating the pq-value of clustering is shown in Fig. 3. The 
first step is the loading of the measurement noise model, which is expressed as a fitting curve of the stand-
ard deviations against the gene expression levels for standard samples. For a given gene expression datum, the 
constant-confidence surface in n-dimensional space (n: number of genes) is defined as the clustering resolution of 
the measurement noise. Next, the acquired data are applied to a k-means or hierarchical clustering algorithm with 
a given number of clusters: K (1…​Kmax). The center of each cluster (mean) and the eigenvalue of the covariance 
matrices are calculated to determine the cluster size (CS) and clustering resolution (Σ​CR), which is determined 
from the measurement noise and intrinsic biological noise. The clustering resolution is defined as the largest of 
the variations between the resolution of biological intrinsic noise and measurement noise in each direction of the 
eigenvector (axis of principal components) and for each cluster (Methods).

Generally, clusters can be characterized in terms of homogeneity and separation based on the definition of the 
cluster39. For a fixed datum point xi and cluster k (k =​ 1…​K), the probability of homogeneity for cluster k (blue 
curve in Fig. 3) can be defined as a conditional probability of qk =​ P(Bk|R(xi)), where Bk is the inside region of 
cluster k determined by a constant Mahalanobis distance, and R(xi) is also an inside region determined by the 
clustering resolution. Similarly, the probability of separation for cluster k’, except for k (green curve in Fig. 3), 
can be defined as qk’ =​ P(Bk’

c|R(xi)), where Bk’
c is the complementary region of Bk’. The pq-value for a datum xi is 

evaluated as Π​qk (k =​ 1…​K), and the pq-value of clustering is evaluated based on the average of Π​qk over all xi 
(Methods).

Figure 2.  Quantitative performance of VFACs. (a) Reaction efficiency from mRNA to molecular counts by 
sequencing 20 housekeeping genes. The R value is the square root of the residual variance. (b) Mapping of the 
molecular counts on VFACs for a predetermined position and amount of injected mRNA. (c) Dynamic range of 
quantification by molecular counting of fragments covering the amount generated at the single-cell level: 1 pg 
of mRNA. Cross markers indicate background signals corresponding to each gene expression level indicated by 
the round markers. These data indicate that crosstalk during the RT reaction was less than 1%. (d) Minimum 
detection limit of this method. (e) Coefficient of variation of molecular counts for various levels of expression.
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Performance of the statistical method.  We assessed the performance of our statistical method for data 
generated using a mixture of Gaussian distributions with various parameters, including the number of genes 
(n =​ 2, 10, 20, 50), the number of data points (N =​ 100–1000), and the distance between clusters (0–8 times 
the standard deviation (SD) of a cluster), by comparing the optimum number of clusters with the results of 
other conventional methods, including the Gaussian mixture model with the negative signed BIC34,37,40 (which is 
(−​1) ×​ BIC and represented as negative BIC) and silhouette index36 (Fig. 4, Supplemental Figures 1 and 2). The 
parameters for calculating the pq-values included the measurement noise (Σ​me = 0.5, 1.0, 1.5, 2.0, 2.5 ×​ SD), clus-
ter size (CS =​ 90%) and number of clusters (K =​ 1–5). As shown in Fig. 4, the numbers of clusters for maximum 
pq-values when the measurement noise is less than 1.0 ×​ SD were consistent with the numbers for negative BICs 
in various numbers of genes and of data points. For larger measurement noise, a single cluster was selected in the 
pq-value method as expected. The apparent discrepancy in the optimum number of clusters between negative 
BICs and pq-values when the distance between two clusters is small is related to the rate of improperly assigned 
cell data to a cluster, which can be evaluated as the fraction of overlapping cluster distributions (Supplementary 
Fig. 3). Because pq-value method false assignment rate is controlled by the parameter CS, the discrepancies 
should come from differences in the standard of discrimination of neighboring clusters between the BIC and 
pq-value. The robustness of pq-values against skewing of the data distribution from the Gaussian distribution 
model also makes it different from the BIC (Supplementary Figure 4), as the pq-value does not rely on fitting the 
data to a model distribution.

In Fig. 4(g), the dependence of the pq-values for various K numbers on the distance between the clusters indi-
cates a crossover of the maximum pq-value curves corresponding to a change in the optimum number of clusters 
from 1 to 2 at a distance of 3.5 SD, which depends on CS (Supplementary Figure 3). Furthermore, as the number 
of data points in a cluster increases, the standard deviation of the pq-values decreases (Fig. 4(h)). As measurement 
noise increases, the pq-value of clustering decreases when the measurement noise is larger than the SD (Fig. 4(i)). 
This dependence indicates that reducing the measurement noise associated with sample preparation and increas-
ing the cell number using a high-throughput method would be effective in improving the probabilistic quality of 
clustering.

Application of the VFACs and statistical methods to cultured cells.  Multiple (10–12) chips embed-
ded in the flow-cell devices were used for single-cell analysis of THP1 (PMA(−​)) and PMA-induced THP1 
(Macrophage-like PMA(+​)) cells. We injected 2580 fluorescently labeled cells into 34 VFACs (Supplementary 
Table 1). Because the full volume of the cellular suspension (2 μ​l) dispensed onto each chip was completely 
absorbed through the cell-capturing holes within 2 minutes, a high proportion (76%) of the dispensed cells was 
captured effectively (Fig. 5(a)) and generated molecular counts for gene expression greater than the threshold of 
250 total molecular counts for housekeeping genes. In a previous study, the efficiency of cell capture was approx-
imately 10–15%7,12,14, and the threshold for further analyses was specified as 30 total molecular counts12. As a 
result, 3.5 M molecular counts (19 M reads) were mapped onto 41 genes, including 20 housekeeping genes and 
21 marker genes. The 21 genes used as markers of differentiation for THP1 were selected based on the results 

Figure 3.  Schematic diagram of the algorithm of the probabilistic clustering method. (a) Block diagram 
of the method. (b) Illustration of calculations for homogeneity and separation. After evaluating the initial 
clustering, the centers and covariance matrices of the cluster data are replicated K-fold, where K is the number 
of clusters. The clustering resolutions were used to evaluate the probability of the correctness of the clustering of 
the data with respect to homogeneity and separation.
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of a protocol for genome-wide single-cell analysis using a cDNA library on beads (bead-seq)41. The averaged 
profiles of PMA(+​/−​) cells demonstrated that the expression levels of 21 marker genes differed consistently with 
the results of the genome-wide analysis (Fig. 5(b), Methods). Successfully acquired single-cell gene expression 
data included low-expression genes and transcription factors (POU6F1) as low as several copies per cell, whose 
gene expression levels were evaluated by the average of the transcriptomes at the single-cell level (bead-seq41 for 
34-cells (THP1), Supplementary Figure 15).

Before clustering analyses, the acquired gene expression data were pre-processed to reduce the influence of 
background signals (signal-to-background ratio: 8.7 ±​ 1.2; Supplementary Figure 5). The clustering evaluation 
results are presented as pq-values and the negative BICs for the 1967 cells and the 21 marker genes against the 
number of clusters (k). The curves of the pq-values exhibit a clear peak at k =​ 2 (pq-value =​ 53.8%), which indi-
cates the most probable number of clusters, whereas the negative BIC curves exhibit no clear peak (Fig. 5(c)). We 
also evaluated the pq-values when the amounts of measurement noise were varied by multiplying the experimen-
tal noise by different factors. Although it was impossible to determine the positions of the microchambers into 
which PMA-induced cells were absorbed when the solution dispensed on the chip was a mixture of both types 
of cells, it was possible to determine whether the cell was PMA-positive or -negative by VFAC ID (6 of the 34 
chips received PMA-positive or -negative cells, while the other 28 received cell mixtures; Supplementary Table 1). 
Because the cells from the PMA-positive and -negative chips were divided purely by clustering, we were able to 
identify the clusters composed of differentiated cells (Supplementary Figure 7). Figure 5(d) presents a visualiza-
tion of the obtained clusters in two-dimensional space based on PCA, where red dots indicate differentiated cells. 
Based on cell typing, the differentiation efficiency was estimated to be 58.7%.

Figure 4.  Validation of the statistical method for generated data. (a–c) Distribution of the generated data 
with various distances between the clusters; the distances are 2, 4, and 8 times the standard deviation of the 
cluster. There are 1000 total data points. CS =​ 0.9, Σ​ms =​ 0.5 SD, and dimensions =​ 2. The definition of the 
position of the cluster is shown in Supplemental Figure 1. (d–f) negative BIC, silhouette and pq-values for the 
three generated data sets against predetermined numbers of clusters. The pq-value results for a different set of 
parameters are shown in Supplementary Figure 3. (g) The pq-values for various cluster distances. The maximum 
pq-value occurs for K =​ 2 when the distance between the clusters is larger than 3 SD. (h) The standard deviation 
of the pq-values decreases as the number of cells increases. (i) An increase in measurement noise reduces the 
resolution of the clustering and reduces the optimum number of clusters from K =​ 2 to K =​ 1. The red curve 
represents K =​ 2, and the blue curve represents K =​ 1.
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Increased measurement noise reduces the pq-values, indicating a negative impact of the low precision of gene 
expression on cell typing. Therefore, the reduction of measurement noise by highly efficient sample preparation 
was effective for cell typing with high reliability.

Finally, although the pq-value for the 21 genes exhibited a peak at two clusters, the selection of the marker 
genes to reduce the number of markers according to the expression ratio of PMA(+​) to PMA(−​) destabilized and 
changed the position of the peak of the pq-values to k =​ 3 (Supplementary Figure 8). This change in the position 
of the peak based on the selection of marker genes may indicate expansion of the clustering capability at higher 
resolution. Because the pq-values enable quantitative comparison between the results of clustering for different 
numbers of genes, the analysis of pq-values for a large number of cells with VFACs can be effective for the selec-
tion of markers, depending on the overall purpose of an analysis.

Discussion
We have demonstrated a method for reliable cell typing based on single-cell gene expression analysis. Our 
approach constitutes a highly efficient and high-throughput sample preparation method on VFACs and a statisti-
cal method for evaluating the pq-values of clusters to compare clustering from different data sets, especially with 
different degrees of measurement noise.

The flow-cell device with the VFACs employs a batch reaction system that reduces the amount of reagents 
required for sample preparation for single-cell analysis. The system satisfies both the high-density alignment of 
the reaction chamber for reduced running costs and for highly efficient data acquisition by flowing the solution 
perpendicular to the chip surface through the porous structure. This vertical flow system enables the removal 
of potential inhibitors for 1st-strand synthesis in cell suspensions. Furthermore, the multiple flows through the 
microchambers reduce the time required to isolate cells and extract mRNA to below 10 minutes, thus decreasing 
the potential for variation in gene expression profiles during cell handling.

The number of cells used in a single flow-cell device easily permits scaling to up to as many as 100 chips 
(10,000 cells) through the use of chip identification tags during PCR amplification. Furthermore, gene expression 
analysis of all genes can be performed on the VFAC platform by modifying the sample preparation process to 
introduce poly-A tails on the 5′​ ends of the cDNAs.

Figure 5.  Application of the method to the cell typing of cultured cells. (a) Map of the microchambers in 
which molecular counts above a certain threshold were acquired. Here, 76% of cells in the dispensed solutions 
were processed successfully. (b) Average of molecular counts for the gene expression profiles from the PMA-
positive and -negative cells. The 21 marker genes differed in their expression levels. (c) A negative BIC and 
pq-values for 1967 single cells under various cluster number settings; pq-values for various measurement noises 
are also shown (CS =​ 0.9). A clear peak in the pq-values can be observed for 2 clusters when the measurement 
noise level is less than 2 times the experimental noise level. (d) Visualization of the 2 clusters as determined by 
pq-values in two dimensions by principal component analysis. Blue and red dots indicate undifferentiated and 
differentiated cells, respectively.
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Our statistical method, using the parameters of clustering resolution and cluster size, identifies the optimum 
number of clusters controlling the rate of false classification in the clusters. These parameters characterize the 
pq-values from conventional methods such as BIC and other clustering evaluation methods. This study is the first 
to quantitatively link the probabilistic quality of clustering to the measurement noise level arising from sample 
preparation. It is also important to control the false assignment rate because clustering in single-cell gene expres-
sion analyses should be performed as an initial analysis and following analyses, such as a comparison of gene 
expression levels among different clusters, in which homogeneity in clusters is assumed. This method represents 
a powerful approach to excluding low-quality data and identifying sets of genes by characterizing cluster discrim-
ination based on pq-values.

The combination of our statistical method and VFACs will be applied to identify unbiased cell types with a 
reliability that can be cross-validated between experiments with different conditions. It will also be applied to 
identify multiple gene markers that characterize both unknown and well-known cell types with high confidence.

Methods
Preparation of VFACs.  To prepare the VFAC, a 1-mm square chip with an array of microchambers was fab-
ricated by the injection molding (Fluidware Technologies, Inc. (Kasukabe-shi, Saitama-ken, Japan) of polydimeth-
ylpolysiloxane (PDMS). In the array, 75-μ​m diameter microchambers with a depth of 70 μ​m were aligned in 
square grids at 125-μ​m intervals. Laser ablation processing (L. P. S. Works Co. Ltd. (Ohta-ku, Tokyo, Japan)) was 
performed to produce through-holes with diameters of 5–7 μ​m in the bottoms of the microchambers for cell cap-
ture. DNA probes with various types of cell tags were immobilized on magnetic beads (Thermo Fisher Scientific, 
MyOne Streptavidin C1). An inkjet printer designed for biological applications (Microjet Corp. LabJet 500)  
was used to inject 9.6 nl of bead solution containing 1% glycerol, 1–2 ×​ 105 beads and 10 mM Tris HCl (pH 7.5) 
into each microchamber. The solvent of the injected solution was absorbed by a hydrophilic aluminum oxide 
porous membrane filter (GE Healthcare, Anopore (0.2-μ​m diameter pores)) at the bottom of the microchambers. 
The printer injected separately prepared bead solutions with different cell ID tags into predetermined micro-
chambers such that the VFAC contained 100 microchambers with 100 cell-ID tags. Each microchamber also 
featured a porous surface with 5–10 ×​ 109 high-density mRNA trapping probes per chamber.

Assembling the flow-cell device.  The flow-cell device consisted of upper and lower plates fabricated from 
polymethylmethacrylate (PMMA) (FUKOKU BUSSAN Co., Ltd. (Ohta-ku, Tokyo, Japan)), with the VFACs 
between the two plates. As shown in the schematic structure of the flow-cell device in Fig. 1, the upper plate 
contained chambers for each VFAC to hold various solutions, including the cellular solution and RT reagents. 
The lower plate was used to apply negative pressure to the rear side of the VFAC to aspirate the various solu-
tions through the VFACs and was aligned with vertical holes positioned on the VFACs and the corresponding 
chambers. We inserted a porous membrane (EMD Millipore, Isopore membrane ATTP 04700) to retain the 
DNA-immobilized beads in the microchambers between the VFACs and the bottom plate. We also used silicon 
rubber rings with a thickness of 0.05 mm to apply pressure and prevent leakage between the VFACs and the 
plates. Additionally, we embedded another type of porous membrane (SPG technology Co. Ltd., SPG membrane, 
2 and 10 μ​m pore diameter, 0.7 mm thickness, hydrophilic surface) to equalize the negative pressure in the VFAC 
to capture individual cells. Finally, the 2 plates were clamped using three screws to ensure tight contact between 
the pieces.

Cell culture and induced macrophage differentiation.  To induce macrophage differentiation, approx-
imately 2 ×​ 106 THP1 cells were seeded in 25 cm2 flasks (SUMILON) and cultured in 5 ml of RPMI 1640 supple-
mented with 10% fetal bovine serum (FBS) containing 160 nM phorbol-12-myristate-13-acetate (PMA) under 
5% CO2 at 37 °C for 48 hours. As a control, 2 ×​ 106 THP1 cells were seeded in 25-cm2 flasks and cultured in 5 ml 
of RPMI 1640 supplemented with 10% FBS under 5% CO2 at 37 °C for 48 hours. After rinsing once with PBS, the 
PMA-treated THP1 macrophages were incubated at 37 °C for 5 minutes with 0.75 ml of Accumax (Funakoshi). 
Then, 2 ml of medium was added to deactivate the enzymes, and the cell suspension was centrifuged at 700 rpm 
for 3 minutes at 4 °C in a 50-ml tube. The control THP1 cell suspension was also centrifuged at 700 rpm for 
3 minutes at 4 °C in a separate tube. The supernatants were removed from both tubes, and the cell pellets were 
resuspended in serum-free RPMI 1640.

Then, 5 μ​l of Vybrant DiO cell-labeling solution (Thermo Fisher) was added to both cell suspensions contain-
ing 106 cells and mixed thoroughly. After incubation for 20 minutes at 37 °C, the suspensions were centrifuged at 
700 rpm for 2 minutes at 4 °C. The supernatants were removed from both tubes, and the cells were washed with 
1 ml of PBS. The washing processes were repeated two more times. After removal of the supernatants, the cells 
were diluted with PBS to produce cell suspensions (70–100 cells/μ​l).

Capturing cells and cDNA synthesis on VFACs.  A schematic diagram of the procedures from cell cap-
ture to PCR amplification is shown in Supplementary Figure 9. The steps from cell capture to cDNA synthesis 
were performed in the flow-cell device. The remaining steps were performed after placing the VFAC in a tube. 
Prior to cell capture, 1.0 μ​l of PBS buffer was added to each VFAC assembled in the flow-cell device. The device 
was prepared for cell capture by adding 1.0 μ​l of cell suspension (70–100 THP1 cells) with PBS to each VFAC. 
The cells were labeled with a fluorescent agent (Thermo Fisher Scientific, Vybrant DiO cell-labeling solution, 
excitation: 494 nm, emission: 520 nm). The flow-cell device was connected to a diaphragm pump (Ulback KOKI, 
Inc., DMA-015) to apply negative pressure for 2 minutes to the rear side of the VFACs, to immobilize the cells in 
the cell-capture holes. The cell-capture process was observed using a fluorescence microscope (Olympus, BX51N-
34-FLD-1) and CCD camera (Andor Technology, iXon +​ DU-888E). We added 2.0 μ​l of PBS buffer to each VFAC 
and allowed the PBS buffer to adsorb for 3 minutes to remove residual cells from the chips. We also added 0.5 μ​l of 
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cell-lysis solution (mixture of 0.475 μ​l of lysis buffer (Roche, Real Time Ready Cell Lysis Kit) and 0.025 μ​l of RNase 
inhibitor (Roche)) to the VFACs and continued pumping for 5 minutes at room temperature.

After cell lysis, 5.0 μ​l of reverse transcription reagent (a mixture of 0.68 μ​l of D.W. (Ambion), 1.0 μ​l of 5x FS 
buffer, 1.0 μ​l of 10 mM dNTPs, 0.66 μ​l of RNase OUT (Thermo Fisher) and 0.66 μ​l of Super Script III (Thermo 
Fisher)) was added to each VFAC in the flow-cell device. After sealing the inlets of the flow-cell device with 
adhesive film (Optical Adhesive Film, Thermo Fisher Scientific), the device was incubated for 5 minutes at 37 °C 
followed by 50 minutes at 50 °C in a thermostatic incubator (Titec, M.BR-022UP). The VFACs were then removed 
from the device and placed on a cover glass (0.12–0.17 mm thickness, Matsunami glass). We then placed silicon 
rubber rings (4 mm inner diameter, 1 mm thickness) around the individual VFACs and another cover glass on the 
rings to cover the VFACs. The rings and cover glasses were treated with RNase ZAP (Thermo Fisher Scientific) 
and washed with sterilized water before use. After deactivating the enzymes for reverse transcription by heating 
the glass for 90 seconds at 85 °C (Applied Biosystems, Gene Amp System 9700), we added 1.0 μ​l of reagent (a mix-
ture of 0.5 μ​l of RNase buffer and 0.5 μ​l of RNase H) to the individual VFACs. The VFACs were then incubated for 
30 minutes at 37 °C in a thermostatic incubator.

We prepared 50 μ​l of 10 mM Tris buffer (pH 8.0) with 0.1% Tween 20 in 200 μ​l tubes and then placed the 
VFACs in individual tubes. An NdFeB magnet (Hitachi Metals) was placed on the side wall of the tube to remove 
the cDNA-immobilized beads from the VFACs, and the beads were resuspended. The supernatant was removed 
while the beads were immobilized on the side of the tube by the magnet. After spinning down the chip and the 
beads, the remaining supernatant was removed again. Then, we added 1.0 μ​l of solution buffer (0.1% Tween 20 
and 10 mM Tris-HCl (pH 8.0)) and resuspended the beads.

Second cDNA synthesis.  We dispensed 10.0 μ​l of the second cDNA synthesis reagent (a mixture of 2.5 μ​l of 
D.W., 1.0 μ​l of 10 ×​ HF PCR buffer, 1.0 μ​l of 2.5 mM dNTPs, 0.4 μ​l of 50 mM MgSO4, 5 μ​l of a 47-plex primer mix-
ture (each 2.5 μ​M) and 0.1 μ​l of Platinum Taq DNA polymerase High Fidelity (Thermo Fisher)) on ice and then 
resuspended the beads. Next, second-strand synthesis was performed using cycles of 10 seconds at 98 °C, 60 sec-
onds at 43 °C, and 3 minutes at 68 °C, followed by incubation at 10 °C in a thermal cycler (ABI 9700, ramp rate: 
9600 mode). The supernatant was removed while the beads were kept on the surface of the tube by the magnet, 
on ice. The cDNA-immobilized beads were then washed twice with 50 μ​l of washing buffer (0.1% Tween 20 and 
10 mM Tris-HCl (pH 8.0)). After the washing buffer was removed, the cDNA-immobilized beads were dispersed 
in 1.0 μ​l of resuspension buffer (10 mM Tris-HCl (pH 8.0)).

PCR amplification.  We added PCR reaction reagent (mixture of 7.0 μ​l of 2 ×​ Gflex buffer, 2 μ​l of the 5′​ side of 
the PA primer (10 μ​M), 2.0 μ​l of the 5′​ side of the P1 primer (10 μ​M), 0.3 μ​l of Gflex DNA polymerase (Takara Bio) 
and 3.0 μ​l of distilled water). PCR amplification was performed using the following thermal cycling parameters: 
98 °C for 10 seconds, followed by 3 cycles of 98 °C for 10 seconds, 61 °C for 15 seconds, and 68 °C for 15 seconds; 
3 cycles of 98 °C for 10 seconds, 59 °C for 15 seconds, and 68 °C for 15 seconds; 3 cycles of 98 °C for 10 seconds, 
57 °C for 15 seconds, and 68 °C for 15 seconds; and 15 cycles of 98 °C for 10 seconds, 55 °C for 15 seconds, and 
68 °C for 15 seconds, followed by 68 °C for 3 minutes and incubation at 4 °C. We used touchdown PCR conditions 
to increase specificity. After PCR amplification, 15 μ​l of the supernatant containing the target amplicons was 
transferred to a 1.5-ml tube using the magnet. After adding 35 μ​l of washing buffer (0.1% Tween 20 and 10 mM 
Tris-HCl (pH 8.0)) to the original PCR tube, we washed the beads and tube surface and again added the superna-
tant to the 1.5-ml tube (50 μ​l total).

Purification of PCR products.  Residual enzymes, primers and amplified short fragments were removed 
using a PCR Purification kit (Qiagen), and the purified PCR product was eluted in 50 μ​l of washing buffer (0.1% 
Tween 20 and 10 mM Tris-HCl (pH 8.0)). We also used 55% guanidinium chloride after DNA immobilization to 
improve the efficiency of purification. We used 60 μ​l of Ampure bead solution (Beckman Coulter) to remove short 
fragments of DNA with lengths below 100 bp.

Preparation of diluted mRNA.  Total RNA (30 μ​g) was extracted from 2 ×​ 106 THP1 cells using an RNeasy 
mini kit (QIAGEN). After DNase treatment, the mRNA was purified using an Oligotex-dT30 kit (TaKaRa Bio), 
and phenol/chloroform extraction was performed again. After ethanol precipitation, the concentrations of mRNA 
were estimated based on UV absorption. The extracted mRNA was diluted to 0.5 pg/μ​l, and 1 μ​l of this solution 
was used to compare RT-qPCR with our method.

Preparation of RT probe-immobilized beads.  Streptavidin-coated beads (2 ×​ 109 beads; φ​ =​ 1 μ​m, 
Dynal, MyOne C1) were suspended in 200 μ​l of binding buffer after being washed three times with 200 μ​l of buffer. 
A solution containing an RT probe (5′​-modification: dual biotin; spacer: C6; Integrated DNA Technologies) was 
diluted with binding buffer to obtain 200 μ​l of RT probe solution (5 ×​ 1011 molecules/μ​l). The RT probe solution 
was then added to the same volume of streptavidin-coated beads and mixed at 750 rpm at 37 °C for 1 hour. After 
being washed three times with 200 μ​l of binding buffer, the beads were transferred to a new tube (because some 
amount of the RT probe adsorbs on the inner wall of the tube). Then, the beads were washed three more times 
with 200 μ​l of washing buffer. After the buffer was removed, the beads were suspended in 200 μ​l of washing buffer. 
We confirmed that nearly all input RT probes were immobilized on the beads by qPCR measurement of the unre-
acted probes in the washing buffer.

RT-qPCR of diluted mRNA in tubes for copy-number references.  All processes for producing 
the cDNA library (RT) were performed in one tube to minimize sample loss. First, we dispensed 1.5 μ​l of RT 
probe-immobilized beads (107 beads/μ​l, 5 ×​ 104 RT probes immobilized per bead); then, 1 μ​l of mRNA (100 pg/
μ​l, equivalent to a single-cell) was added to the tube and mixed with the beads. We added 5.0 μ​l of reverse 
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transcription reagent (mixture of 0.68 μ​l of distilled water (Ambion), 1.0 μ​l of 5 ×​ FS buffer, 1.0 μ​l of 10 mM 
dNTPs, 0.66 μ​l of RNase OUT (Thermo Fisher) and 0.66 μ​l of Super Script III (Thermo Fisher)), mixed well, 
and incubated the tube for 5 minutes at 37 °C and for 50 minutes at 50 °C in a thermostatic incubator (Titec, 
M.BR-022UP). After cDNA synthesis, the tube was heated for 90 seconds at 85 °C (Applied Biosystems, Gene 
Amp System 9700) to deactivate the enzymes. The cDNA-immobilized beads were then washed with 50 μ​l of 
washing buffer (0.1% Tween 20 and 10 mM Tris-HCl (pH 8.0)). After the washing buffer was removed, the 
cDNA-immobilized beads were dispersed in 2 μ​l of washing buffer. The expression levels of the 20 housekeeping 
genes were analyzed using a qPCR system (Applied Biosystems ABI PRISM 7500). The qPCR analysis was per-
formed with a 20-μ​l solution containing 1 ×​ Premix Ex Taq, (Takara-bio), 1 μ​M of each primer pair, and 0.25 μ​
M MGB fluorogenic probe. The standard DNA templates and a cDNA library were analyzed simultaneously by 
measuring the fluorescence during thermal cycling (95 °C for 20 seconds, followed by 40 cycles of 95 °C for 5 sec-
onds and 60 °C for 30 seconds) to obtain amplification plots. The number of target molecules in the cDNA library 
was estimated from the standard curves. The sequences of the PCR primers and MGB fluorescence probes and 
the sizes of the products are presented in Supplementary Table 4.

RT-qPCR of mRNA on VFACs.  We injected 40-nl droplets of dilute mRNA (2 ng/ml) into the microcham-
bers on the VFACs. Because a single droplet contains 0.1 pg of mRNA, we varied the number of droplets injected 
into the microchambers to control the amount of mRNA injected, ranging from 0.1 to 5 pg. The cDNA synthesis 
and subsequent procedures were performed as previously described.

Preparation of standard DNA templates for qPCR.  Twenty types of biotinylated PCR products were 
produced using the primers listed in Table 6. Streptavidin-coated beads (5 ×​ 108 beads, Dynal, MyOne C1) were 
suspended in 50 μ​l of binding buffer (20 mM Tris-HCl (pH 8.0), 0.5 mM EDTA, 1 M NaCl) after washing with 50 μ​l  
of this buffer three times. The biotinylated PCR products were diluted with binding buffer and mixed to obtain a 
solution containing 106/μ​l of each of the product molecules. The PCR products were immobilized on the beads by 
adding 50 μ​l of the PCR solution to the same volume of streptavidin-coated beads and then mixing them at 750 rpm 
in a microincubator (Titec, M.BR-022UP) at 37 °C for 1 hour. The immobilization efficiency (approximately 95%)  
was estimated using qPCR to measure the amounts of DNA in the solution before and after immobilization. The 
DNA-immobilized beads were washed three times with 100 μ​l of binding buffer. After removal of the buffer, the 
beads were also washed three times with 100 μ​l of washing buffer (0.1% Tween 20 and 10 mM Tris-HCl (pH 8.0)).  
The amount of each type of dsDNA immobilized on the beads was estimated to be 9.5 ×​ 105 molecules per 107 
beads. A ten-fold dilution series (a sequence of mixtures of DNA-immobilized beads and intact beads) was pro-
duced by repeatedly diluting the sample with washed intact beads. We prepared bead solutions containing the 
same number of beads (107 beads) with different amounts of the standard DNA templates (immobilized on the 
beads) at concentrations ranging from 9.5 molecules to 9.5 ×​ 105 molecules per 107 beads.

Preparation of model cRNA samples for evaluating RT efficiency.  The PCR products (ϕX174) were 
amplified with a forward primer anchored to a T7 promoter sequence and a reverse primer anchored to an oli-
go(dT)30 sequence. The sequences of the PCR primers and the sizes of the products are listed in Supplementary 
Table 6.

After examining the products with a bioanalyzer (Agilent), the excess primers were removed from the prod-
ucts using the QIAquick PCR Purification Kit. After ethanol precipitation, the DNA concentrations were meas-
ured by UV absorption.

RNA was synthesized by incubating 500 ng of PCR product at 37 °C for 1 hour in a 10-μ​l reaction mixture 
containing 90 nmol of dATP, dCTP, dGTP, and dUTP; 10 nmol of DTT; 1 μ​l of AmpliScribe T7-Flash Enzyme 
(EPICENTRE Biotechnologies); and 1 ×​ AmpliScribe buffer. The RNA samples were purified by DNase and pro-
tease K treatments, followed by two extractions with phenol/chloroform according to the standard procedure. 
The residual dNTP in the purified RNA samples was then removed with an Oligotex-dT30 kit (TaKaRa Bio), and 
phenol/chloroform extraction was performed again. After ethanol precipitation, the pellets were resuspended in 
100 μ​l of RT-PCR grade water (Life Technologies), and the RNA concentrations were measured by UV absorp-
tion. The subsequent procedures were identical to the ones previously described except that the qPCR primers 
described in Supplementary Table 7 were used.

Selection of 21 marker genes by bead-Seq.  We prepared 5 cultured cells with different induction times 
of 0, 0.5, 2.0, 24, and 72 h by PMA from THP1 according to the previously described methods. We acquired 
whole-genome gene expression data at the single-cell level for 34 samples using the bead-Seq method41. Then, we 
evaluated the following differentiation marker indices for every gene, defined by the slopes of the regression lines 
from the data of fragments per kilobase of transcript per million fragments mapped (FPKMs) versus the induc-
tion time divided by the averages of the standard deviations of FPKMs at each induction time, and sorted the data 
in descending order of the indices. Supplementary Table 9 presents the indices for the selected 21 marker genes.

DNA sequencing.  An Ion PGM system (Thermo Fisher Scientific) was used to sequence the PCR ampli-
cons. Before sequencing, the PCR products were quantified by chip electrophoresis (Agilent Technology, Inc., 
Bioanalyzer 2100) to dilute the sample to an appropriate concentration of target fragments (26 pM). Emulsion 
PCR (Thermo Fisher Scientific, The Ion One Touch system 2) was performed separately for the samples from the 
VFACs to prepare them for sequencing. A 318 chip and 200-bp sequencing reagents were used for sequencing. 
The sample types (PMA(−​): without induction, PMA(+​): with induction, mixture of PMA(+​) and PMA(−​)) of 
the VFACs and the numbers of cells dispensed on the chips are listed in Supplementary Table 1.
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Data analysis.  The fastq files of the sequencing results were acquired using the accessory software of the 
Ion PGM system with recalibration set to “off ” and qualification filtering disabled. We created a program to 
categorize the acquired reads according to the tag sequences (cell-IDs and UMIs) and aligned them onto the 
sequences of the transcripts. The program categorizes all of the reads into various types (Supplementary Table 10) 
and extracts the read counts and molecular counts (number of UMIs) for each gene, cell and VFAC, as shown in 
Supplementary Figure 10.

The microchambers on the VFACs were discriminated by the molecular counts of the chambers in which the 
total molecular counts of the housekeeping genes were above a threshold determined from a histogram of the 
counts (Supplementary Figure 11). The remaining empty microchambers were used to estimate the background 
expression levels of the marker genes by averaging the levels over the empty chambers. The background pro-
file, shown in Supplementary Figure 12, was subtracted from the individual gene expression level for each gene. 
The average signal-to-background ratio for molecular counts of more than 15 counts/gene/microchamber was 
8.7 ±​ 1.2 (Supplementary Figure 6). Normalization was also performed for the cell-captured microchambers to 
ensure that the total expression counts were constant for each microchamber.

Supplementary Figure 10 presents the proportions of the types of reads and molecular counts, according to 
the definitions described in Supplementary Table 6. The proportion of targeted genes in all molecular counts was 
no less than 20%, which is quite low. Supplementary Figure 13 presents the proportion of read-types for the same 
sequencing library using a different sequencing platform. The proportion of the targeted reads obtained with 
MiSeq (Illumina Inc.) was approximately 80%, 2.5-fold greater than the value obtained using Ion PGM. Therefore, 
the quality of the PCR products was sufficient to obtain a large proportion of targeted reads.

The molecular counts for the housekeeping genes were correlated to the copy numbers of the cDNA and PCR 
products by bead-based qPCR to evaluate the distortion of the gene expression profiles of the molecular counts 
by this method (Fig. 2(a), Supplementary Figure 14).

Evaluation of sample preparation efficiency.  To evaluate the copy numbers of the housekeeping genes 
in the mRNA injected into the microchambers of the VFAC, we evaluated the copy numbers of the cDNAs of the 
housekeeping genes from a diluted mRNA sample and the RT efficiencies from the previously described cRNA 
sample using the highly efficient bead-based RT-qPCR method28. We evaluated the copy numbers of the cDNAs 
for 20 housekeeping genes in 100 pg of pooled mRNA using RT probe-immobilized beads (107 beads/μ​l, 5 ×​ 104 
RT probes immobilized per bead) in a tube. By varying the ratio of cRNA to cDNA with the same amount of RT 
probes, we were able to determine the copy numbers of 20 house-keeping genes in the 100 pg diluted mRNA 
sample. In Supplementary Figure 5, the cRNA data (blue diamond) are plotted against the amount of input RNA 
to determine the experimental RT efficiencies from cRNA. The regression line was calculated from these data. 
The mRNA data in Supplementary Figure 5 indicate the estimated RT efficiencies for the mRNAs of the 20 house-
keeping genes. The average estimated RT efficiency of the mRNA was 97.0 ±​ 16.7%. The regression line was used 
to estimate the copy number in a few pg of mRNA injected into the microchambers.

We also directly evaluated the RT efficiency from cRNA in the reaction on VFACs as previously described. We 
injected 40 nl (2 ×​ 104 copies) of each cRNA into 50 microchambers using the inkjet instrument. Before injection, 
the head of the inkjet used to dispense the cRNA droplets was washed with 70 μ​l of cRNA solution (same concen-
tration as the injected solution, 5 ×​ 105 copies/μ​l). The average RT efficiency was greater than 90% for one-sided 
84% confidence (1 SD C.I.) (Supplementary Table 11).

Algorithm for the statistical method.  Our clustering evaluation method evaluates the probabilistic 
validity of the division of data into clusters under the assumption of a multivariate Gaussian distribution for each 
cluster. The acquired data are represented as an n-column vector in Euclid space, where n is the number of genes. 
The definition of the pq-value for datum xi belonging to the kth cluster is
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In this formula, CS also determines the region of integration involving the clustering resolution around xi (CRR). 
The matrix ∑CR is the covariance matrix corresponding to the clustering resolution, which is defined later; ∑CR

1
2  

is the determinant of the covariance matrix; and (x − xi)T is the transposed vector of (x − xi). In this paper, CS was 
set to 0.9 (90%) except when we evaluated the dependence of the pq-values on CS. Therefore, ∩P B R x( ( ))k i  is 
evaluated as follows:
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The clustering resolution in one dimension should be the sum of the square of measurement noise and the 
square of intrinsic noise. Essentially, we cannot know the value of intrinsic noise because we do not know the 
correct results of clustering. From the above description of the noises, the clustering resolution should be larger 
than the experimental noise. Therefore, we can construct the clustering resolution (∑CR) as follows. If the meas-
urement noise (∑me) is larger than the variation of the kth cluster, that is, the variance of the expressions belonging 
to the kth cluster (∑ _trial k), then the clustering resolution (∑CR) should be equal to the measurement noise (∑me). 
If ∑me is not larger than ∑ _trial k, then Σ∑ = _CR trial k. In multiple dimensions, the covariance matrix of the clus-
tering resolution (∑CR) is constructed similarly, by comparing the eigenvalues of the covariance matrix of the 
measurement noise (∑me) with the corresponding eigenvalues of the covariance matrix of the total noise, that is, 
the covariance matrix of the kth trial cluster (∑ _trial k), according to the following procedure:

1.	 Calculation of the eigenvalues and eigenvectors of ∑ms and ∑ _trial k.
2.	 Sorting the eigenvalues of the two matrices in descending order.
3.	 After comparison of each element of the list of eigenvalues of the two matrices, if the ith element of the list 

from ∑ms is larger than the one from ∑ _trial k, then the ith element of the list from ∑ _trial k is replaced by the 
one from ∑ms.

4.	 Generation of a diagonal matrix with diagonal elements using the list of eigenvalues in 3.
5.	 Calculation of the matrix of ∑CR by reverse transformation of the diagonal matrix in 4 by the block matrix of 

eigenvectors of ∑ _trial k.

In this paper, the model of measurement noise is determined by fitting the curve of standard deviation against 
the gene expression level. Therefore, the diagonal elements are equal to the square of the standard deviations. To 
treat the generated data, the measurement noise model is set to be constant in all directions.

To evaluate the integral in formula 6, we used the Monte Carlo algorithm, which generates virtual random 
data distributed on multiple Gaussian distributions with the covariance matrix ∑CR.

In addition, in the evaluation of formula 6, the overlap integral ∩P B R x( ( ))k i  decreases with the number of 
genes for geometrical reasons even if the clustering, clustering resolution, and Mahalanobis distance between the 
center of the cluster and the data point xi are fixed. Supplementary Figure 15 shows the overlap integral of 

∩P B R x( ( ))k i  against the dimensions of space with various cluster sizes and constant distance. To compensate 
for this geometrical bias, we replace the value of the cluster size with the effective cluster size to retain the overlap 
integral as a standard value in standard dimensions (default settings: standard dimension =​ 1 and clustering 
size =​ 0.9 (90%)).

The implementation of the method, which is available in the Supplementary files, was performed using R.

Validation of the statistical method.  We selected the k-means algorithm for the initial clustering in 
LICORS (R package). The implementation of the negative BIC34,37 for the validation also used MCLUST40 for R. 
The definition of the negative BIC is following:

θ ν≡ −


Negative BIC p x M N2 log ( , ) log( ), (8)i k k k

where xi is observed data points, θ


k is maximizing parameter for a model Mk, ν​k is the number of estimated 
parameter in the model Mk and N is the number of data points.

The other indices, including the silhouette index and the Calinski-Harabasz index, were evaluated using clus-
terCrit36 for R. Supplementary Figure 2 presents the pq-value behavior as a function of the number of cells (data) 
and number of dimensions (genes). Several features in the behavior of the pq-values were expected. The peaks 
of the pq-values against the number of clusters are very stable for changing dimensions and numbers of cells 
(Supplementary Figure 2). Meanwhile, as shown in Supplementary Figure 2, the negative BIC can provide 2 
clusters as the optimum number of clusters even when the pq-value cannot discriminate among clusters because 
of their short intervals. To clarify the situation in which the negative BIC shows better performance than the 
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pq-values, Supplementary Figure 3 shows the behavior of the optimum number of clusters in the negative BIC 
and pq-values against the distances between two clusters in one dimension as the simplest case. The figure also 
shows the fraction of overlap of the two distributions, which indicates the rate of error in assignments of the 
data-elements as a result of the clustering. The errors mean that a cluster includes a false data point element at 
the stated rate. When the value of CS is 0.1 in the pq-value, the pq-value can discriminate between two clus-
ters at shorter distance than the negative BIC. Thus, the discrimination performance depends on the error rate. 
Meanwhile, a low error rate in the clusters is very important for single cell analysis because sets of data discrim-
inated by clustering are used for further analysis, for example, gene marker analyses. In other words, simple 
discrimination of (the centers of) clusters is insufficient for clustering in single-cell analysis. In the pq-values, the 
rates of error were controlled by the value of the CS ( =​ 0.9).

The 3rd order of skewed Gaussian data was generated in the R package (fGARCH), where a skewness of 1.0 
indicates no skewness. Supplemental Figure 4 compares the robustness against the skewness between the method 
and the BIC. Although the pq-values were quite stable against the skewness, the number of clusters at maximum 
of the negative BIC varied for different skew values.

Evaluation of cell types for cultured cells.  We selected the hierarchical clustering algorithm for the ini-
tial clustering of hclust (R function). We evaluated the pq-values for various measurement noise models, among 
which the log-Poisson distribution was calculated using the continuous extension of the Poisson distribution by 
replacing the factorial with a gamma function.

Supplementary Figure 8 shows the pq-value curves as a function of the number of clusters determined by 
selecting genes using the descending list in Supplementary Table 9. The optimal number of clusters was desta-
bilized when the number of genes was less than 15. When the numbers of genes were 9, 11 and 13, the optimal 
number of clusters became 3. Our statistical method enables comparison among the optimal numbers of clusters 
for different numbers of genes.

Supplementary Figure 16 presents a heat map of the 21 marker expression levels for 1967 cells. Supplementary 
Figure 17 presents a visualization of the clusters for 10 and 15 marker genes based on PCA.
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