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Abstract: Animal cloning is of great importance to the production of transgenic and genome-edited
livestock. Especially for multiple gene-editing operations, recloning is one of the most feasible
methods for livestock. In addition, a multiple-round cloning method is practically necessary for
animal molecular breeding. However, cloning efficiency remains extremely low, especially for serial
cloning, which seriously impedes the development of livestock breeding based on genome editing
technology. The incomplete reprogramming and failure in oocyte activation of some pluripotent
factors were deemed to be the main reason for the low efficiency of animal recloning. Here, to
overcome this issue, which occurred frequently in the process of animal recloning, we established a
reporter system in which fluorescent proteins were driven by pig OCT4 or SOX2 promoter to monitor
the reprogramming process in cloned and recloned pig embryos. We studied the effect of different
histone deacetylase (HDAC) inhibitors on incomplete reprogramming. Our results showed that
Trichostatin A (TSA) could activate pluripotent factors and significantly enhance the development
competence of recloned pig embryos, while the other two inhibitors, valproic acid (VPA) and Scriptaid,
had little effect on that. Furthermore, we found no difference in OCT4 mRNA abundance between
TSA-treated and untreated embryos. These findings suggest that TSA remarkably improves the
reprogramming state of pig recloned embryos by restoring the expression of incompletely activated
pluripotent genes OCT4 and SOX2.

Keywords: reclone; pigs; OCT4/SOX2 reporter

1. Introduction

Livestock breeding based on genome editing and animal cloning technologies could
assign multiple desirable economic traits to one animal using less time. Compared to
traditional breeding, this method shows a greater application prospect. Genome editing is
highly efficient, thanks to the application of Clustered Regularly Interspaced Short Palin-
dromic Repeats (CRISPR) and CRISPR-associated (Cas) technology [1–4]. Otherwise, due
to the lack of high-quality porcine pluripotent stem cells that are capable of supporting
multiple-rounds genome editing, methods of multiple-round cloning are frequently used
in animal breeding. But the efficiency of animal cloning remains low, especially for serial
recloning. The activation failure of key pluripotent genes is a major problem in repro-
gramming mediated by Yamanaka factors (induced pluripotent stem cells technology) [5,6]
or by mammal oocytes (animal cloning) [7,8]. To improve reprogramming efficiency, the
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effect of histone deacetylase (HDAC) inhibitors on reprogramming efficiency has been
studied intensively in induced pluripotent stem cells (iPSCs). Previous results showed
that HDAC inhibitors, such as Trichostatin A (TSA) and valproic acid (VPA), could be
used to benefit the generation of iPSCs [9,10]. However, similar studies were difficult to
carry out in cloned embryos, because quite a few cells were present in early developmental
embryos, especially in cloned embryos, which made it very difficult to detect translation
changes. Further, Macfarlan et al. suggested that key pluripotent genes were regulated
post-transcriptionally [11], and the data based on mRNA quantitation might not be able to
reflect the actual level of these proteins faithfully. Therefore, a reliable and real-time system
to monitor the dynamics of gene expression in protein-level synthesis will be a powerful
tool to resolve the problem.

EGFP linked with the OCT4 promoter (OCT4-EGFP) has been used as a reporter to
monitor the expression dynamics of OCT4 during early embryonic development and the
somatic reprogramming process in mice [12,13]. The expression profile of EGFP mimics
the expression of endogenous OCT4 in human embryonic stem cells (ESCs) carrying the
transgene OCT4-EGFP [14], and this reporter system has also been used in other mammals
to study various aspects of gene expression [15–19]. Therefore, a reporter system with
fluorescent protein driven by the promoter of a specific pluripotency gene, such as OCT4
or SOX2, is a convenient tool to study the real-time translational dynamics of these genes
and help reveal the reprogramming mechanism underlying early embryonic development
and cloning.

Here, we aimed to determine whether inhibitors of HDACs could activate pluripo-
tent factors during the reprogramming mediated by pig oocytes. Our results based on
the OCT4-EGFP/SOX2-tdTomato reporter systems suggest that, after the TSA treatment,
pluripotent gene expression and development competence could be enhanced, especially
for recloned embryos. Furthermore, no variation could be detected in mRNA abundance,
which suggests that the reprogramming enhancement effect by TSA could be carried out
through the post-transcriptional regulation mechanism.

2. Materials and Methods

All chemicals were purchased from Sigma Co. (St. Louis, MO, USA), unless otherwise
stated. Animal experiments in this study were approved by the Animal Welfare Committee
of China Agricultural University (SKLAB-2012-11).

2.1. Construction of Reporter Vectors

The genomic DNA extracted from mini pigs with a DNA extraction kit (Takara Bio,
no. 9762, Tokyo, Japan) was used as template for PCR amplification of OCT4 and SOX2
promoters by Herculase DNA polymerase (Agilent, no. 600675, Santa Clara, CA, USA).
The cycling conditions were: 2 min at 94 ◦C, 28 cycles of 94 ◦C for 20 s 58 ◦C for 20 s, 72 ◦C
for 4 min, and 72 ◦C for 5 min. The primers used are listed in Table S1. The DNA fragment
of promoters was subcloned to the pZGs/pZTs vector [20] to obtain pPB-pOCT4-EGFP and
pPB-pSOX2-tdTomato vectors. The fragments of pOCT4-EGFP and pSOX2-tdTomato were
isolated and subcloned into a non-transposon vector pNP-EF1aEGFP-SV40puro to produce
pNP-OCT4-EGFP (OCT4-EGFP) and SOX2-tdTomato (SOX2-tdTomato) by Spe I/BsrG I.
Both of the vectors were linearized by Asc I before nucleofection.

2.2. Generation of Porcine Embryonic Fibroblasts (PEFs) Carrying the OCT4-EGFP or
SOX2-tdTomato Reporter

The porcine embryonic fibroblasts (PEFs) used here were isolated and preserved by
our laboratory. The PFFs were isolated from day-28 porcine embryos of Bama mini pigs.
After passaging 1–2 times, 4 × 104 PEFs were seeded into one well of a 6-well dish. The
procedure of transfection was performed on Amaxa Nucleofector (Lonza, no. VCA1003,
Basel, Switzerland) using program A-024 and transfected cells were placed in 100-mm
dishes. After two days of culture, selective media with 1 µg/mL puromycin (Invitrogen,
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no. A1113803, Carlsbad, CA, USA) were used to get drug-resistant cell colonies for an
additional 8–10 days. Drug-resistant cell colonies were picked with the cloning ring
and propagated in a 48-well culture plate. When reaching 90% confluence, cells were
trypsinized (0.05% trypsin) and passaged into a 24-well plate, and then to 12-well dishes
to be cryopreserved and screened for transgene by PCR immediately. For PCR screening,
30% cells of each clone were put in 20 µL of HotShot lysis buffer, boiled at 90 ◦C for 15 min,
and neutralized with 20 µL of 40 mM Tris-Cl [21]. After vortexed thoroughly, the mixture
was used as the template for PCR. The PCR conditions were specified as follows: 4 min at
95 ◦C; 30 cycles of 95 ◦C for 30 s, 58 ◦C for 50 s, and 72 ◦C for 30 s; and 72 ◦C for 5 min.

2.3. Somatic Cell Nuclear Transfer

Porcine ovaries were obtained from a local slaughterhouse and transported to the
laboratory in 0.9% NaCl at 35–38 ◦C within 2.5 h. Follicular fluid was aspirated from
medium-sized (3–6 mm) follicles by using a 12-gauge needle attached to a vacuum pumping
system. Cumulus oocyte complexes (COCs) with several layers of cumulus cells were
selected and washed two times in the in vitro maturation (IVM) medium, which contained
780 mL TCM-199 (M-2154), 20,000 IU PMSG (Ningbo Second Hormone Factory, no. 160310,
Ningbo, China), 10,000 IU hCG (Ningbo Second Hormone Factory, no. 160119, China),
40 mg Glutamine (G8540), 146 mg Gentamicin (G1264), 10% (v/v) follicular fluid, and 10%
(v/v) cow serum with an adjusted osmotic pressure of 280 ± 8 mOsm, and then 50–70 COCs
were cultured in 500 µL IVM covered with mineral oil (M5904), which was pre-equilibrated
at 38.5 ◦C, 5% CO2 for more than 4 h. After 42–43 h of culture, cumulus cells were removed
by pipetting COCs for about 1 min in 0.1% hyaluronidase (H3506). Oocytes with an intact
plasma membrane were selected and enucleation was performed by using a pipette with a
20–25 µm internal diameter under an inverted microscope (Nikon, SMZ800, Tokyo, Japan)
equipped with a micromanipulator (Narishige, NT88-V3, Tokyo, Japan). A single donor
cell was injected into the perivitelline space of an enucleated oocyte. The fusion of donor
cell with recipient oocyte and activation of reconstructed embryos was carried out by two
direct current pulses of 150 V/mm for 100 µs in F/A buffer (0.25 M mannitol, 0.1 mM CaCl2
2H2O, 0.1 mM MgCl2-6H2O, 0.5 mM Hepes, 0.01 g/100 mL polyvinyl alcohol) using an
electrical transfection instrument (BLS, CF-150B, Budapest, Hungary). Fused embryos were
cultured in 5 µg/mL cytochalasin B and 10 µg/mL cyclohexane-supplemented PZM-3 for
4 h. Then, 50–80 embryos were transferred to 500 µL PZM-3 in 4-well dish and covered
with mineral oil. The embryos were cultured at 38.5 ◦C in 5% O2, 5% CO2, and 90% N2
with maximum humidity. Blastocyst formation was evaluated six days after SCNT.

2.4. Embryo Transfer

About 600 one-cell embryos were surgically transferred into two surrogate gilts one
day after the start of estrus, and the pregnancy status of the surrogates was diagnosed by
ultrasonography one month later.

2.5. Establishment of PEFs

Thirty days after embryo transfer, pregnant surrogate mothers were euthanized and
fetuses were collected by using an aseptic procedure. After removal of the head, viscera,
and extremities, the fetuses were thoroughly rinsed three times with phosphate-buffered
saline (PBS). Then the tissues were minced into pieces using an ophthalmic scissor and
incubated in 10 mL 0.1% trypsin-EDTA solution with shaking at 38 ◦C for 5 min. The
cell pellets were suspended with 20 mL DMEM (Gibco, no. 11960, Carlsbad, CA, USA)
plus 15% FBS (Gibco, 16141, Carlsbad, CA, USA), centrifuged at 1000 rpm for 5 min, and
resuspended in DMEM supplemented with 15% FBS, 0.5 mM GlutaMAX (Gibco, no. 35030,
Carlsbad, CA, USA), penicillin/streptomycin (Gibco, no. 15140, Carlsbad, CA, USA), and
nonessential amino acid (Gibco, no. 11140, Carlsbad, CA, USA). When PEFs reached 90%
confluence, they were trypsinized into single cells and then cryopreserved in cryovials,
with about two vials for each fetus. After cooling to −80 ◦C at 1 ◦C/min using Nalgene
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Mr. FrostyTM freezing container (Thermo Fisher, Waltham, MA, USA), the vials were then
stored in liquid nitrogen.

2.6. HDAC Inhibitors Treatment

Immediately following activation, embryos were treated with one of the histone
deacetylase (HDAC) inhibitors: 40 nM Trichostatin A (TSA), 1 mM valproic acid (VPA)
or 500 nM Scriptaid for 4 h, in PZM-3 supplemented with 5 µg/mL cytochalasin B and
10 µg/mL cyclohexane, and were incubated in PZM-3 supplemented with 5 µg/mL cy-
tochalasin B and 10 µg/mL cyclohexane for 4 h. Then, embryos were transferred into
PZM-3 containing TSA, VPA, or Scriptaid at the same concentrations as previously de-
scribed for 20 h. Activated embryos were cultured for 4 h in PZM-3 supplemented with
5 µg/mL cytochalasin B, 10 µg/mL cyclohexane and the same volume of dimethylsul-
foxide (DMSO, D2650) as used in treatment groups to serve as a control. After these
treatments, the embryos were washed twice in PZM medium and cultured in PZM-3 for
further development.

2.7. Immunostaining

Embryos were rinsed in PBS supplemented with 1% (W/V) BSA, fixed in freshly
prepared 4% paraformaldehyde for 5 min at room temperature (RT), and permeabilized in
PBS containing 0.2% Triton X-100 for 15 min at RT. Embryos were then blocked with PBS
containing 1% BSA (blocking buffer) for 1 h and incubated with primary antibodies diluted
1:100 in blocking buffer overnight at 4 ◦C (OCT4 antibody, SC 5729, Santa Cruz Biotechnol-
ogy, Dallas, TX, USA). After overnight incubation, embryos were washed with blocking
buffer three times and then incubated with secondary IgG antibodies conjugated with Cy5
(Jackson Immuno Research, AAT-16855, West Grove, PA, USA). Nuclei were counterstained
with 4’,6-diamidino-2-phenylindole (DAPI) before mounting onto the slides. The slides
were observed under a fluorescence microscope (Leica, DM IL LED, Wetzlar, German).

2.8. Quantitative Real-Time PCR (q-PCR)

For each group, total RNA was extracted from 50 Day 4 (E4) cloned or recloned em-
bryos using Cell-to-cDNATM II Cell Lysis Buffer (Thermo Fisher, AM8723, Waltham, MA,
USA). cDNA was generated directly using M-MLV reverse transcriptase (Promega, M530B,
USA) following the manufacturer’s instruction. qPCR was carried out on LightCycler®®®

480 (Roche, Basel, Switzerland) using LightCycler 480 SYBR Green I Master (Roche,
no. 4887352001, USA) with the program: 94 ◦C for 2 min, 30 cycles of 94 ◦C for 30 s;
60 ◦C for 30 s; 72 ◦C for 30 s; and 72 ◦C for 5 min. The primers used are listed in Table S1.
Gene expression was normalized to the corresponding housekeeping gene GAPDH [22,23].

2.9. Bisulfite Sequencing

Bisulfite treatment of genomic DNA was carried out by using MethylDetectorTM

Bisulfite Modification Kit (Active Motif, no. 55001, Carlsbad, CA, USA) according to the
manufacturer’s instruction. Briefly, the genomic DNA was treated with sodium bisulfite
to perform conversion of unmethylated cytosines to uracils with conversion buffer. Then,
nested PCR (primers seen in Table S1) was carried out to amplify the converted DNA by
using Hot Start TaqTM Polymerase (Takara Bio, R028A, Tokyo, Japan) with a program of
94 ◦C (5 min) and 45 cycles of 94 ◦C (30 s), 55 ◦C (30 s), 72 ◦C (1 min), and 72 ◦C (10 min).
The PCR products were purified with an Agarose Gel DNA Purification Kit (Takara Bio,
DV805A, Tokyo, Japan). The purified fragments were then cloned into pMD18-T Vector
(Takara Bio, no. 6011, Tokyo, Japan) for sequence analysis.

2.10. Statistical Analysis

All experiments were repeated at least three times. Data for blastocyst rate and
EGFP-blastocyst rate were presented as mean ± standard deviation (SD) and analyzed by
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chi-square test with SPSS(Version 19.0, IBM, Armonk, NY, USA). p values smaller than 5%
were considered to be statistically significant.

3. Results
3.1. Monitoring the Reprogramming Process in Pig SCNT Embryos by a Novel
OCT4-GFP/SOX2-tdTomato Reporter Systems

To monitor the status of pluripotent genes during the early development stage, we
first established two reporter systems (OCT4-EGFP, SOX2-tdTomato). OCT4 promoter
fragments were amplified from the pig genomic DNA (primers listed in Table S1), and then
cloned into pNP-OCT4-EGFP/SOX2-tdTomato (OCT4-EGFP, pOG; SOX2-tdTomato, pST)
vector (Figure 1A). PEFs were electro-transfected with pOG and pST vectors, selected with
puromycin, and cultured for 10 days. Then, SCNT was carried out to derive embryos from
transgene positive PEFs. EGFP/tdTomato fluorescence was monitored from one-cell stage
to blastocysts. We found that both OCT4-EGFP and SOX2-tdTomato were successfully
activated in the cloned embryos but not in non-transgenic control embryos or transgenic
PEFs (Figure 1B).
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Figure 1. Expression of the OCT4-EGFP and SOX2-tdTomato reporters in the cloned embryos.
(A) Schematic representation of the OCT4-EGFP and SOX2-tdTomato vectors construction. (B) The
reporter vectors expressed in SCNT embryos. (C) Detection of OCT4 protein in the EGFP positive
cloned embryos harboring the pOG vector. PEFs and parthenogenetic (PA) embryos were used as the
negative and positive controls. The scale bar represents 100 µm, 50 µm in (B,C), respectively.

To confirm the expression of endogenous OCT4 in transgenic reporter-embryos when
OCT4-GFP or SOX2-tdTomato was activated, immunostaining for endogenous OCT4 was
conducted. The results showed that endogenous OCT4 was turned on in reporter lines
after SCNT as well as in parthenogenetic embryos (Figure 1C). The results indicated that
the reporter system works well in monitoring pluripotent gene expression after SCNT.
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3.2. Identification of TSA as an Enhancer of Reprogramming Efficiency

We transferred cloned embryos containing pOG vector into surrogate mothers, and
15 PEF cell lines were established from 30-days fetuses. The transgenic cell lines were used
as donors for recloning.

In the second-round cloning, we observed a remarkable reduction in the number of
EGFP fluorescent blastocysts (Figure 2A,B), delayed activation of OCT4-EGFP in most
embryos, and a higher level of methylation of CpG islands of OCT4 promoter compared to
that of the first-round cloning (Figure 2C). To determine the effect of HDAC inhibitors on
the expression of the OCT4 gene in recloned embryos, we treated the recloned embryos
with TSA, VPA, and Scriptaid. The results show that TSA treatment significantly activated
the expression of OCT4, while VPA and Scriptaid had only a slight improvement on that
(Figure 2D). Furthermore, we tested the effect of TSA using cloned embryos labeled with
the pST reporter. The results suggest that TSA performed a similar effect on pluripotent
gene SOX2 (Figure 3A). These results suggest that TSA could rescue, at least partly, the
incomplete activation of pluripotent genes in pig cloned and recloned embryos.
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Figure 2. Identification of TSA as an enhancer of developmental efficiency. (A) Reporter pOG was
downregulated in recloned embryos. The scale bars represent 100 µm. (B) Comparison of the EGFP-
blastocyst rate between cloned and recloned embryos. Asterisks indicate significant differences (t-test,
p < 0.05). (C) Methylation status of the OCT4 promoter in PEFs (upper panel), cloned, and recloned
embryos (lower panel). (D) Effect of TSA, VPA, and Scriptaid on recloned embryos. The upper and
lower panels represent embryos in the bright and fluorescent fields, respectively. Recloned embryos
treated with equivalent DMSO were used as a negative control. The scale bar represents 100 µm.
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TSA 240 50 (20.9 ± 1.5) b 28 (57.0 ± 9.4) b 

Figure 3. TSA-activated pluripotent factors in pig SCNT-embryos. (A) Activation of SOX2 mediated
by TSA in cloned embryos. Cloned embryos were reconstructed by using PEFs harboring the
transgene pSOX2-tdTomato. Embryos treated with equivalent DMSO were used as controls. The
scale bar represents 100 µm. (B) Expression pattern of reporter pOG in recloned embryos with or
without TSA treatment. Embryos were observed at 4-/8-cell stage (E3), morula stage (E4), early
blastocyst stage (E5), and late blastocyst stage (E6). The cloned embryos treated with equivalent
DMSO were used as controls. The scale bar represents 50 µm.

3.3. Development Enhancement Mediated by TSA in Recloned Embryos

To investigate the effect of TSA on the developmental competence of embryos in
the process of somatic nuclear reprogramming mediated by oocytes in pigs, cloned pig
embryos derived from transgene positive cell clone (#1) were treated with or without TSA.
Results show that the percentage of EGFP positive blastocysts in the TSA treatment group
was significantly higher than that of the control group (Table 1). Furthermore, results
from embryos with SOX2-tdTomato reporter showed that TSA treatment also significantly
activated SOX2 in cloned embryos (Figure 3A).

Table 1. Effect of TSA on the reprogramming efficiency of cloned embryos.

Treatment No. of SCNT-Embryos No. of Blastocysts (%) No. of EGFP-Blastocysts (%)

Control 337 47 (13.9 ± 1.3) a 16 (36.4 ± 2.4) a

TSA 240 50 (20.9 ± 1.5) b 28 (57.0 ± 9.4) b

Blastocyst rate: number of blastocysts/number of reconstructed embryos. EGFP-blastocyst rate: number of EGFP-
blastocysts/number of blastocysts. Within the same column, different superscripts show significant differences,
p < 0.05.

To investigate the effect of TSA on the development of recloned embryos, recloned
embryos were treated with or without TSA after fusion and activation. Similar to the
results in the first round of SCNT experiments, TSA was able to significantly promote
the development ability of recloned embryos, and the percentage of EGFP-blastocysts in
the TSA treatment group was about three times that of the control group (Table 2). In
control groups, the EGFP-blastocyst rate in second-round SCNT was lower than that of
first-round SCNT (Figure 2B, p < 0.05). However, data in Tables 1 and 2 showed that, after
TSA treatment, EGFP-blastocyst rates between first- and second-round cloning experiments
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were similar (57.0 ± 9.4% vs. 51.1 ± 4.3%). Specifically, the expression of OCT4-EGFP in
most TSA-untreated embryos was delayed until the morula stage. After TSA treatment,
there was no delay in the expression of OCT4-EGFP, and the EGFP expression was observed
in embryos as early as 4/8-cell stage (E3) (Figure 3B). These results indicated that TSA
treatment could activate pluripotent genes and enhance the developmental competence of
cloned and recloned pig embryos.

Table 2. Effect of TSA on the reprogramming efficiency in recloned embryos.

Treatment No. of SCNT-Embryos No. of Blastocysts (%) No. of EGFP-Blastocysts (%)

Control 350 46 (13.2 ± 0.9) a 8 (15.8 ± 4.1) a

TSA 366 93 (25.5 ± 4.2) b 47 (51.1 ± 4.3) b

Blastocyst rate: number of blastocysts/number of reconstructed embryos. EGFP-blastocyst rate: number of EGFP-
blastocysts/number of blastocysts. Within the same column, different superscripts show significant differences,
p < 0.05.

At last, to find out whether TSA could increase transcription of the two pluripotent
genes, q-PCR was performed in recloned embryos (E4) treated with or without TSA to
determine OCT4 and SOX2 expression levels. No differences were observed in either OCT4
or SOX2 expression in recloned embryos between the respective treatment group and its
untreated control (Figure 4). The results indicate that TSA treatment does not affect the
expression of endogenous genes OCT4 and SOX2 at the mRNA level.
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4. Discussion

Improvement of animal cloning efficiency is essential for the practical application of
animal breeding based on transgenic and genome editing technologies. In this study, we
investigated the effects of HDAC inhibitors on the reprogramming of PEFs after SCNT.
The results showed that (1) our reporter system could be used to faithfully monitor the
dynamic of pluripotent gene OCT4 and SOX2 during SCNT-mediated reprogramming
events, and (2) HDAC inhibitors TSA, other than Scriptaid and VPA, could rescue reduced
reprogramming efficiencies of recloned porcine embryos.

Although injection of Cas9 protein and single-guide RNA (sgRNA) into fertilized
eggs has been successfully applied to produce gene-targeted animals, this method fre-
quently resulted in mosaicism of the targeted gene modification [24,25]. Further breeding
is necessary for the achievement of homozygotes with identical genotype and phenotype.
The SCNT method can address this issue. In practice, multiple rounds of cloning are
important to animal cloning, due to the lack of high-quality pluripotent stem cells in large
animals. But, currently, the efficiencies of serial cloning in large animals are extremely
low. Therefore, we established a reporter system to investigate the status of pluripotent
genes during SCNT. Both immunostaining and fluorescent reporting results showed that
OCT4 expression could be detected in both trophoblasts and inner cell mass (Figure 1C),
which is in contrast with the ICM-specific expression pattern of OCT4 in mice, but similar
to that in cattle [26]. In general, these results demonstrated that our reporter system could
be used to faithfully monitor the dynamic of pluripotent gene OCT4 and SOX2 during
SCNT-mediated reprogramming events.

The expression levels of pluripotent genes, especially OCT4 and SOX2, highly cor-
related with the efficiency of reprogramming. Our early studies suggested that a close
correlation exists between the partially reprogrammed state of porcine iPSCs and the inacti-
vation of endogenous OCT4 [27]. Previous reports showed that epigenetic errors are the
main reasons for developmental failures [28,29], and these errors could accumulate during
serial cloning [30]. Therefore, the recloning method provides us with a better model to
study incomplete reprogramming. Here, we performed cloning and recloning using pig
oocytes; the results showed that pluripotent factors OCT4 and SOX2 of most reconstructed
embryos were activated at the 4-cell stage during first-round cloning, but in second-round
cloning, their activation in most embryos was largely delayed until the morula stage. These
delays may be explained by the accumulation of epigenetic or genetic errors that occurred
during serial cloning. And these delays could be the main hindrance for blastocyst for-
mation or efficient recloning. Our data demonstrated that TSA could help to relieve this
hindrance, while VPA and Scriptaid had little effect on that.

Besides improving the expression delay of OCT4, we tested the effect of TSA treatment
on the expression of pluripotent genes OCT4 and SOX2. Our results of q-PCR show that TSA
treatment has no significant effect on the expression of OCT4 and SOX2 (Figure 4). Studies
of TSA mainly focused on its role in acetylation regulation. It has been proved that TSA
treatment could decrease the acetylation level of SCNT embryos [31–33]. As an epigenetic
modification, low-level acetylation facilitates gene expression and is considered to be the
main determinant for successful reprogramming. We failed to detect a significant difference
between TSA-treated embryos and controls, and this is consistent with previous results
in cloned mouse and pig blastocysts [31,34]. Given that the expression of pluripotency
genes OCT4 and SOX2 is regulated strictly and dynamically in early development [35],
those data do not support the conclusion that TSA does not affect the expression of OCT4
and SOX2. This is because results in this and other studies were obtained at a single time
point during the preliminary development of embryos (E4 or blastocyst stage) [31,34]. To
comprehensively investigate the effect of those HDAC inhibitors on the pluripotent gene
expression, samples at multiple time points should be collected to perform tests.

In this study, we established a reporter system to monitor the status of pluripotent
genes during SCNT and found that TSA promotes the development potential of cloned pig
embryos, especially for recloned embryos. These findings help us justify the potential of
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using small molecules like TSA to improve somatic cell reprogramming, especially in large
animals. All these results are beneficial for the development of livestock molecular breeding.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes13040649/s1, Table S1: Primer sets for the construction of reporter vectors, q-PCR and
bisulfite sequencing.
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