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Chordoma is a rare, but often malignant, bone cancer that preferentially affects the axial skeleton and the skull base. These tumors are
both sporadic and hereditary and appear to occur more frequently after the fourth decade oflife; however, modern technologies have
increased the detection of pediatric chordomas. Chordomas originate from remnants of the notochord, the main embryonic axial
structure that precedes the backbone, and share with notochord cells both histological features and the expression of characteristic
genes. One such gene is Brachyury, which encodes for a sequence-specific transcription factor. Known for decades as a main
regulator of notochord formation, Brachyury has recently gained interest as a biomarker and causative agent of chordoma, and
therefore as a promising therapeutic target. Here, we review the main characteristics of chordoma, the molecular markers, and the
clinical approaches currently available for the early detection and possible treatment of this cancer. In particular, we report on the
current knowledge of the role of Brachyury and of its possible mechanisms of action in both notochord formation and chordoma

etiogenesis.

1. Chordoma: Epidemiology, Classification,
and Histopathological Characteristics

Chordomas are very rare tumors that affect roughly one in
a million individuals; the incidence in the US is ~300 new
cases per year [1]. Yet, this rare neoplasm represents up to 4%
of primary malignant bone tumors [2] and 20% of primary
spine tumors [3].

Chordomas are classified on the basis of their location
along the spine and their histological type. Depending on
their location, chordomas are predominantly subdivided into
clival (or skull-base), sacrococcygeal, cervical, thoracic, and
lumbar. Even though historically the sacrococcygeal region
was regarded as the most frequently occurring site for the
formation of these tumors (e.g., [2]), recent studies have
shown their almost equal distribution in the skull base,
mobile spine, and sacrum [1].

Chordomas rarely occur in people below 40 years old;
however, numerous cases of pediatric chordomas have been
reported (e.g., [4, 5]) and generally were associated with
cranial locations [6]. While cranially located chordomas

affect both genders equally, sacrococcygeal tumors are more
frequent in males, with the male: female ratio being approx-
imately 2:1 ([7], and references therein). African-American
individuals have been reported to be less frequently affected
by chordoma [1], while Hispanic patients were found to have
a significantly higher survival rate [6].

In addition to the more frequent axial tumors, extra-
axial chordomas have also been reported. The location of
extra-axial chordomas ranges from wrist [8] to feet [9].
These tumors have traditionally been identified through
immunohistochemical studies [10, 11], and, more recently,
through the use of the Brachyury gene as a novel diag-
nostic marker that distinguishes chordomas from similar
lesions, such as myoepitheliomas and chondrosarcomas
[9,12].

Histologically, chordomas are categorized as classical (or
conventional), chondroid, and dedifferentiated (e.g., [3]).
The first microscopic characterization of chordomas dates
back to 1857, when Virchow first identified the cells typical
of this tumor and described them as “physaliferous” (Greek
for “bubble-bearing”) because of the foamy appearance
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of their cytoplasm that contains multiple vacuoles [13].
Ultrastructural studies have indicated that the vacuoles can
be divided into two subtypes, smooth-walled and villous,
based upon the absence or presence of microvilli, respectively
[14]. Physaliferous cells are typical of classical chordomas,
appearing as groups of gray-white large cells separated by
fibrous septa into lobules and surrounded by a basophilic
extracellular matrix rich in mucin and glycogen [7, 15].
This is the most frequent type of chordoma. Its distinctive
histological appearance led Miiller to hypothesize, in 1858,
that these tumors were of notochordal origin [16]; later,
in 1894, Ribbert first introduced the term “ecchordosis
physaliphora” [17], which is currently used to designate
hamartomatous lesions of notochordal origin. Notochordal
hamartomas are considered the benign counterparts of
chordomas and are usually asymptomatic [18, 19]. While
both ecchordosis physaliphora and chordoma are composed
mainly of physaliphorous cells, stain for vimentin, the S-100
protein, epithelial membrane antigen, and low molecular
weight cytokeratins, and are both negative for high molecular
weight keratins [20], it is still unclear whether ecchordosis
physaliphora can be a precursor of chordoma [19]; further
investigations are needed to address this open quest-
ion.

Chondroid chordomas show histological features resem-
bling both chordoma and chondrosarcoma, a malignant
tumor of the bone and soft tissue (e.g., [21]). This histological
variant accounts for 5%-15% of all chordomas and up to
33% of all cranial chordomas, being preferentially found on
the spheno-occipital side of the skull base [3]. Despite an
appearance that resembles hyaline cartilage, these tumors
retain an epithelial phenotype and express specific chor-
doma markers, including cytokeratin and S-100, which are
not found in cartilaginous tissue; this has suggested their
alternative, more appropriate classification as “hyalinized
chordomas” [22]. Dedifferentiated chordomas are also rare,
<10% of chordomas, and are characterized by sarcomatous
regions, which are comprised of spindle-shaped polygonal
cells (e.g., [23]). An important connection has been observed
between the histological category of a chordoma and its
ability to metastasize [24]: chondroid chordomas are the least
aggressive, while dedifferentiated chordomas are the fastest-
growing, more metastatic variety [3].

2. Therapeutic Approaches: Past and Present

Since the late 1970s, treatment of chordoma has traditionally
relied on en bloc surgical removal [25]; this technique has
been very effective for sacral chordomas, although its appli-
cability is obviously limited in the case of clival chordomas.
Radical resection of the tumors and their capsules has proven
to be considerably more effective than subtotal excision
because it reduces the extent of cell seeding and, conse-
quently, the risk of recurrence [26-28]. Advanced imaging
techniques, including CT and MRI scans, allow for early
detection of small intraosseous tumors and their complete
resection [29, 30]. Since chordomas are radioresistant tumors,
radiation therapy is usually employed in combination with
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surgery and mainly relies upon high-dose proton beam [31]
and, to a more limited extent, on either helium- or carbon-ion
therapy [32, 33].

Unfortunately, as slow-growing tumors, chordomas are
resistant to conventional chemotherapies [34], and the use
of alkylating agents, alkaloids, and related treatments has
been reported to be modestly effective mostly on dediffer-
entiated chordomas [35]. However, increasing knowledge of
the genetic markers of chordomas has led recently to the
use of molecularly targeted therapies. The finding that chor-
domas display overexpression of constitutively active phos-
phorylated forms of platelet-derived growth factor receptor-
(PDGFR)-b and of KIT receptors [36] prompted the use in
chordoma patients of imatinib, a tyrosine-kinase inhibitor
(TKI) drug with specificity for the kinase domains of these
receptors. Imatinib was used with some success in clinical tri-
als [37] alone or in combination with the immunosuppressant
sirolimus (a.k.a. rapamycin) [38]. Another TKI, sunitinib,
which targets multiple receptor tyrosine kinases and is used
mainly for the treatment of gastrointestinal stromal tumors,
has shown therapeutic efficacy against chordomas (e.g., [39]).
It seems likely that the effects of TKI drugs may extend
to other phosphorylated receptors found to be altered in
chordomas, such as PDGFR-a [40], and to kinases that partic-
ipate in additional pathways, such as Akt and mTOR, whose
targets, TSC2 and the translation initiation factor binding
protein EIF4EBPI, are found in a phosphorylated state in
chordoma cells [41]. Other signaling pathways distinctive of
chordomas that have been targeted are those linked to the
epidermal growth factor receptor (EGFR); inhibitor drugs,
such as cetuximab, gefitinib, and erlotinib, have been used
in a small number of patients [42, 43]. The use of 9-nitro-
camptothecin (9-NC), an inhibitor of topoisomerase I, was
also limited to a small group of patients and seemed to delay
cancer progression [44].

The development of chordoma cell lines in the past
decade has also greatly widened the knowledge of the
chordoma-specific molecular profile and has accelerated the
identification of novel therapeutic targets. The first human
chordoma cell line, U-CHI, was developed in 2001 [45] and
has been used recently to test the efficiency of the various
treatments described above [46]. Following the establishment
of U-CH], other cell lines were developed, including CH22
[47] and a cell line derived from a rare extra-axial chordoma,
originally located in the scapula [48]. Other chordoma cell
lines, CH 8 and GP 60, have also been generated successfully
and tested for their ability to grow in different media [49].
Studies on these cell lines have identified new potential
therapeutic agents, such as inhibitors of the transcription
factor STAT3 [49]. In addition, work in chordoma cell lines,
and parallel studies of familial chordomas, have revealed the
role of another transcription factor, Brachyury, in the for-
mation of this tumor. Short-hairpin RNA (shRNA)-mediated
silencing of Brachyury in the cell line JHC7, derived from
primary sacral chordoma, has shown that the downregulation
of this transcriptional regulator leads to growth arrest [50].
Chromosomal gain at the Brachyury locus, seen in the MUG-
Chorl cell line, is found in a subset of familial chordomas [51]
and is described in detail below.
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3. Genetic and Cytogenetic
Hallmarks of Chordoma

As described above, chordomas were classically identified on
the basis of their histological features and their immunore-
activity for S-100 and markers such as epithelial membrane
antigen (MUCI) and cytokeratins. However, the immunore-
activity for S-100, which is shared among chordomas and
chondrosarcomas, made the assignment of tumors to either
category quite challenging. This was particularly true when
only small biopsies could be obtained, as in the case of clival
chordomas (e.g., [52]). Another genetic marker of chordomas
is chondroitin sulfate proteoglycan 4 (CSPG4), which has also
been targeted for immunotherapy; however, this antigen is
expressed only by a fraction (~62%) of these tumors [53]
and could therefore produce false negative diagnoses. These
limitations prompted a widening of the search for distinctive
chordoma markers to transcription factors. The Sry-type
HMG-box transcription factor Sox9, which is required for
the maintenance of notochord integrity [54], was found to
be expressed in both kinds of tumors [55]. Conversely, the
detection of Brachyury, a member of the T-box family, used
in combination with cytokeratin, provided a considerably
accurate distinction of chordomas from chondrosarcomas
[55]. Further studies revealed specific expression of Brachyury
in >90% of the chordomas analyzed, and validated its use as
a specific marker of this tumor [52, 53, 56]. Nevertheless, it is
noteworthy that Brachyury is overexpressed in a number of
tumor types, including lung cancer, and is a potent mediator
of epithelial-mesenchymal transition (EMT) [57, 58], one of
the main mechanisms responsible for metastasis (e.g., [59]).

Numerous cytogenetic abnormalities have been reported
in chordomas and have been used to aid in their classification,
the most common being the partial or complete loss of
chromosome arms 1p and 3p, and the partial or complete gain
of chromosomes 7 and 20 [60]. In particular, chromosomal
regions 1p36 (the RIZ locus, encoding a zinc-finger protein;
[61]), 1925 (encompassing the hereditary human prostate
cancer susceptibility locus HPCI, [62]), 2p13 (the TGF-alpha
locus), and 7q33 (the AKRIBIO locus, encoding an aldo-keto
reductase; [63]) display either deletions or amplifications in
primary chordomas [64]. Other frequent deletions reported
in chordoma occur in the CDKN2A and CDKN2B loci, both
on chromosome 9p21, which encode the cyclin-dependent
kinase inhibitors known as pl6 and pl5, respectively [65].
Of note, chordomas are among the cancers that display a
newly described mechanism of chromosomal disruption,
called chromothripsis, which is found in ~25% of bone
cancers and involves the massive fragmentation of one or
more chromosomes, followed by their imperfect reassembly
[66].

4. Duplications and Mutations of Brachyury
in Hereditary and Sporadic Chordomas

Some of the most relevant advancements in the search for
the molecular bases of chordoma are the result of systematic
studies of families affected with this cancer. The first of these

analyses showed genetic linkage to chromosome 7q33 [63],
which was corroborated by later research [67]; however, an
additional study on the same group of families revealed
that one of the individuals affected by chordoma had not
inherited the 7q33 haplotype, thus prompting the search for
additional susceptibility loci [68]. In turn, these efforts led
to the identification of a 6q haplotype shared by all affected
individuals in one of the families and defined a minimal
disease region spanning ~5Mb [68]. Through the analysis
of copy number variants (CNVs), this interval was found
to contain regions of 6q27 duplicated to various extents.
Eventually, the duplicated areas shared by all families were
narrowed to an ~100 kb interval that contains only one locus,
Brachyury [68, 69].

Subsequent work analyzed the frequency of Brachyury
amplifications in 181 sporadic chordoma samples: 7% of the
tumors displayed amplification of the Brachyury locus, 39%
of the tumors were polysomic for chromosome 6, and 4.5%
of primary tumors showed a minor allelic gain of Brachyury
[70]. No relationship was observed between the frequency of
amplifications in these sporadic chordomas and the region of
origin of the tumors [70]. Of note, no germline alteration of
the Brachyury locus was identified in non-neoplastic tissue
from 40 patients, indicating that the copy number gain is
somatic [70].

In sum, these studies demonstrated that chromosomal
aberrations resulting in copy number gain of Brachyury
are found in both sporadic [70] and hereditary chordomas
[68]. Consistently, the expression of this gene is critical for
the proliferation of chordoma cell lines in vitro, as shown
by the results of the silencing experiments reported above
[50]. Furthermore, the combination of traditional Sanger
sequencing with recently developed whole-exome sequenc-
ing methodologies allowed an extensive genotyping study of
germline DNA from 45 individuals with sporadic chordoma,
focused on the Brachyury coding region [71]. The results
revealed a recurring single nucleotide polymorphism (SNP),
rs2305089 that lies in exon 4, which encodes part of the DNA-
binding domain of Brachyury [71]. This mutation, therefore,
alters the DNA-binding properties of this transcription factor,
suggesting that the misregulation of some of the genes
controlled by Brachyury could be a mechanism underlying
the genesis of chordoma. Brachyury-downstream genes iden-
tified so far in various model organisms are discussed in detail
in a later section.

5. The Role of Brachyury in Notochord
Evolution and Development

Long before its identification as a marker and a possible
cause of chordoma, Brachyury was already well known as
a major regulator of notochord formation. The notochord
is the main defining feature of the chordate phylum, which
includes humans and all other vertebrates. This embryonic
structure provides crucial support to the developing embryo,
patterns the central nervous system, and ensures the proper
development of a variety of organs, from heart and aorta
to liver and pancreas [72]. As the ossification of the spine



proceeds and vertebral bodies form, the notochord regresses
and eventually its remnants become the nuclei pulposi (NP) of
the intervertebral discs. The histological identity of these cells
remained controversial, since cells of the NP were described
as either “chordoid,” that is, notochordal, or as “chondroid,”
that is, as chondrocytes [73]. It has recently been clarified,
through lineage-tracing experiments, that notochord cells are
the embryonic precursors to all NP cells and to the mature
intervertebral discs [74].

The Brachyury (Greek for “short tail”) mutation was
first identified in 1927 by Nadine Dobrovolskaia-Zavadskaia
through the observation of short-tailed mice, which were
later found to be heterozygous for a mutation in the
eponymous locus. Subsequent studies confirmed that the
mutation was dominant, attributable to a single factor, and
accompanied by abnormalities of the posterior skeleton [75],
particularly in the number of presacral vertebrae [76]. It was
also determined that homozygous Brachyury embryos die in
utero by gestation day 11 due to severe defects in the formation
of the allantois [77]. Interestingly, these embryos fail to form a
notochord and, as a consequence, show severe abnormalities
in the development of the neural tube and somites [78].

The identification of the gene Brachyury (or “T; for “tail”),
which in mouse is part of the t-complex that spans 40 cM on
chromosome 17 [79], did not occur until 1990; the gene was
isolated by positional cloning [80] and found to be expressed
in notochord and primitive-streak mesodermal cells [81].
Three years later, the Brachyury protein was classified as
a novel sequence-specific transcription factor [82]. Parallel
studies identified Brachyury orthologs in Xenopus, zebrafish
and chick [83-86]. Of note, the immature NP cells of the
intervertebral discs were found to express both Brachyury
mRNA and protein [56, 87].

The discovery of Brachyury orthologs in basal chordates,
such as the ascidians Halocynthia and Ciona [88, 89] and
the amphioxus Branchiostoma [90], and the remarkable
conservation of their function underscored the paramount
role played by this developmental regulator in the appear-
ance of the notochord, the main event in the evolutionary
history of the phylum Chordata. However, the appearance of
Brachyury genes predates that of the notochord by several
million years. In fact, although Brachyury orthologs have
not been found in plants, genes related to Brachyury have
been identified recently in the fungus Spizellomyces punctatus
and in the amoeba Capsaspora owczarzaki [91], shifting the
long-standing paradigm that considered Brachyury and its
related genes as metazoan-specific innovations. Rather, it
has become evident that the expansion of the repertoire of
genes encoding transcription factors related to Brachyury
accompanied the evolution of multicellularity in the animal
kingdom. Indeed, Brachyury is the founding member of
a family of transcription factors that share related DNA-
binding domains and are therefore collectively designated as
T-box (Tbx) proteins [92]. The availability of full genomic
sequences for numerous animal species has confirmed the
nearly ubiquitous representation of Brachyury and other
Tbx genes throughout different phyla. For example, single-
copy Brachyury and Tbx2/3 orthologs have been reported
in the placozoan Trichoplax adhaerens [93] and Brachyury
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and other Thx genes have been described in sponges (e.g.,
[94]). Likewise, Brachyury and Tbx2/3 orthologs have been
reported in Pleurobrachia pileus, a member of Ctenophora
(comb jellies), one of the first metazoan phyla [95].

Placozoan Brachyury is expressed in scattered individual
cells that do not coincide with known anatomical struc-
tures [93], and its function in this simple organism is
still unknown. However, several lines of evidence suggest
that the ancestral function of Brachyury was the regulation
of morphogenetic movements [96]. Consistently, in the
sponge Suberites domuncula, Brachyury is expressed at the
time when cell-cell and cell-matrix interactions are being
established, suggesting that it might regulate cell adhesion
and migration. The ctenophore Mnemiopsis leidyi expressed
Brachyury (MIBra) in ectodermal cells around the site of
gastrulation as well as in cells deriving from the blastopore;
morpholino oligonucleotide-mediated knockdown supports
its involvement in gastrulation movements [97]. In the sea
anemone Nematostella vectensis, a basal cnidarian, expression
of Brachyury is restricted to a circle of cells surrounding the
blastopore [98].

In protostomes, a large division of animals including
arthropods, mollusks, annelids, and other less-known taxa,
the blastopore is the embryonic region that gives rise to
the mouth. Drosophila Brachyury, called brachyenteron, is
required for the formation of the hindgut and of the
midgut constrictions, and for the elongation of Malpighian
tubules [99]. This function in the formation of posterior
structures is conserved in other arthropods, including the
beetle Tribolium and the grasshopper Locusta [100]. Notably,
Brachyenteron synergizes with the winged-helix transcrip-
tion factor Forkhead to specify the caudal visceral mesoderm
of Drosophila, a remarkable parallelism with the roles played
in mesoderm formation by chordate Brachyury and Forkhead
(Fox) orthologs [101, 102].

Lastly, Brachyury orthologs have also been studied in
the two main phyla of non-chordate deuterostome animals,
echinoderms (e.g., sea urchins and sea stars) and hemi-
chordates (e.g., acorn worms). In the sea urchin Lytechinus
variegatus, microinjection of a dominant-negative form of
its Brachyury ortholog caused a block in gastrulation [103].
While there are as yet no functional studies of Brachyury in
hemichordates, it has been shown that in the acorn worm
Ptychodera flava, Brachyury is expressed in the blastopore
at the time of gastrulation, and later in the stomodeum, the
precursor of the mouth and anterior pituitary gland [104].

Together, these functional analyses in different represen-
tative organisms along the phylogenetic tree indicate that
the ancestral function of Brachyury was the promotion of
cell movement and adhesion, which are fundamental for
both morphogenesis and tumorigenesis. As the evolution
of multicellular organisms proceeded, this gene became
involved in the specification of an area of the blastopore
with distinctive properties in axis formation, and later on
turned into a driver of mesoderm specification (e.g., [105]).
Eventually, possibly through the synergistic interaction with
other transcription factors, such as members of the Fox
family, Brachyury acquired its crucial role in notochord
formation.
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6. Possible Mechanisms of Action of
Brachyury during Tumorigenesis:
The Brachyury-Downstream Gene Battery

Brachyury has been reported to act as a transcriptional
activator, although it possesses two repression domains in its
C-terminal region [106]. Crystallographic studies elucidated
the conformation of the DNA-binding domain (T-domain)
of Xenopus Brachyury (Xbra) bound to a 24-nucleotide
palindrome and revealed the peculiar interactions between
the C-terminus of the Xbra protein and the minor groove
of DNA [107]. Subsequent studies using electrophoretic
mobility shift assays (EMSA) have shown that Xbra and other
Brachyury orthologs can also bind sequences that correspond
to roughly half of the palindrome originally identified by
Kispert and Herrmann [82]. In fact, numerous functional
non-palindromic binding sites, also designated as “half-sites,”
with the minimal generic consensus sequence TNNCAC
[108], have been identified in different model systems (e.g.,
[109-111]). A longer, non-palindromic consensus binding
site, RWWNTNRCACYT, was also identified for Drosophila
Brachyenteron based on its interaction with the orthopedia
gene [112]. The orthopedia regulatory region contains mul-
tiple copies of this site, which are bound cooperatively by
Brachyenteron and are also recognized in vitro by mouse and
Xenopus Brachyury [112].

As the knowledge of Brachyury binding preferences
continued to accumulate, the quest to identify its downstream
genes gained momentum and led to the discovery of numer-
ous Brachyury targets in chordates, but also in nonchordate
model systems, such as the sea urchin [113]. In chordates,
Brachyury targets were first identified in Xenopus and the
invertebrate chordate Ciona intestinalis and, more recently, in
zebrafish, mouse stem cells, and chordoma.

Studies in Xenopus led to the identification of five putative
targets of Xbra: the signaling molecule Xwntll, the zinc-finger
transcription factor Xegr-1, a member of the BTG/Tob family
of antiproliferative proteins, Xbtgl, a protein of unknown
function, BIG3/1All, and the homeodomain transcription
factor Bixl [114, 115]. Follow-up studies on Xwntll indicated
that Xbra controls gastrulation movements through this
signaling molecule [116]. Additional work revealed that Xbra
binds the regulatory region of eFGF to regulate its expression
[109, 117]. Together, these results began to delineate the gene
regulatory network controlled by Brachyury, first during
gastrulation and later in mesoderm formation.

The identity of numerous notochord-specific targets of
Brachyury was later revealed by studies in Ciona intestinalis,
since in this and other tunicates the expression of Brachyury
(Ci-Bra) is confined to the notochord [89]. A subtractive
screen aimed at identifying Ci-Bra-downstream genes first
uncovered ~40 genes expressed in notochord cells [110, 118-
121]. Interestingly, in contrast to the earlier results in Xenopus,
most of the validated notochord Ci-Bra targets encode vari-
ous structural proteins, including a non-muscle tropomyosin,
fibrillar collagen, laminins, and thrombospondin [110, 122,
123]; however, components of the Wnt/planar cell polarity

pathway, such as Prickle, and mediators of TGF-beta and
NEF-kappaB signaling were also discovered [121]. Subsequent
studies expanded the number of possible components of
the Ci-Bra-downstream regulatory hierarchy [119, 122] and
recent genome-wide chromatin occupancy studies (ChIP-
chip assays) suggested that the number of loci directly bound
by Ci-Bra in early Ciona embryos is close to 2,000 [124]. In
addition, notochord transcription factors of the STAT, Fos,
AFF, Krippel-like (KIf), and NFAT5 families were recently
indicated as Ci-Bra targets, suggesting that the gene regula-
tory network controlling formation of the notochord in this
simple chordate is multitiered, and that these transcription
factors might have been reiteratively recruited for notochord
development by other chordates [125]. Of note, in vertebrates
NFAT5 was found to be expressed in the NP, where it is
required for the survival of the notochord cells in response
to hyperosmotic stress [126].

In zebrafish, a Brachyury ortholog, no tail (ntl), has been
found to control the expression of numerous target genes,
including transcription factors as well as genes that partic-
ipate in signaling and differentiation pathways [127]. These
genes are involved in a variety of cellular processes, including
morphogenetic movements (e.g., wntll, snailla, connexin
43.3, and tbx16), muscle specification (e.g., mesogeninl and
myoD), and generation of posterior identity (e.g., thx6, vent,
vox, fgfr4, and cdx genes) [127]. Among the Ntl target genes is
also floating head, the ortholog of the mammalian homeobox
transcription factor gene Noto, which is required for the
formation of the posterior notochord [128].

Putative target genes of mouse Brachyury, 396 in total,
have been recently identified in mouse differentiating stem
cells [129]. Similarly to zebrafish Ntl, mouse Brachyury con-
trols several transcription factors of the homeobox, winged-
helix, paired box, zinc-finger, and odd-paired families; it
also regulates components of the Wnt signaling pathway, the
growth factor Fgf8, cytoplasmic dyneins, and orthologs of
the transcriptional repressor Snail [129]. However, this study
also identified Brachyury targets that were not identified by
the zebrafish study: Axin2, a negative regulator of the Wnt
pathway, gamma-catenin/Jup, Fgf8, and Wnt3A; interestingly,
ChIP-qPCR experiments showed that these genes were also
bound by human Brachyury in hESC-derived mesoderm cells
[129].

It is noteworthy that one of the recurring targets of
Brachyury in different animals, including Ciona, zebrafish
and mouse, is the gene Snail [124, 127, 129]. Snail encodes
a transcriptional repressor that, along with transcription
factors of the ZEB, Slug, and Twist families, is a media-
tor of EMT [130, 131]. This suggests that in tumor cells
Brachyury might induce EMT through activation of Snail
and its downstream genes. Another conserved regulatory
interaction occurs between Brachyury and FGF factors, as
demonstrated by the Brachyury/FGF autoregulatory loops
seen in Xenopus and zebrafish [109, 132, 133] and by the
binding of human Brachyury to the FGF8 promoter region
[129]. A link between FGF and Brachyury has also been
found in ascidians; in H. roretzi, the FGF/MEK/MAPK/Ets



signaling pathway is required for the initial expression of Hr-
Bra through the binding of Ets to the 5'-flanking region of
this gene [134]. Similarly, in early Ciona embryos, FGF9/16/20
promotes the activation of Ci-Bra expression, while subse-
quently FGF8/17/18, together with FGF9/16/20, ensures its
maintenance [135].

The identity of Brachyury target genes in humans has
been recently revealed by transcriptome and ChIP-Seq anal-
yses in the chordoma cell line U-CHI [136]. This study
revealed that a large subset of Brachyury targets is involved
in cell cycle control, including NUSAP1 and BUBI, spindle
checkpoint genes involved in cell proliferation [137, 138].
Another major division of chordoma Brachyury targets is
represented by genes encoding extracellular matrix (ECM)
components, including laminin alpha2, collagen type VI
alpha3, and olfactomedin 4 [136]. Lastly, other Brachyury
targets of potential medical relevance are chemokines and
growth factors, including connective tissue growth factor
(CTGF), which has also been reported to control motility and
signaling in the notochord [139].

Somewhat surprisingly, a preliminary comparison of the
Brachyury targets identified in mouse differentiating stem
cells with those found in chordoma does not reveal numerous
commonalities. Among the shared Brachyury targets are the
Ets-family transcription factor ET'V1, which is translocated in
certain sarcomas [140], CIT (citron Rho-interacting kinase;
[141]), GABRA2 (GABA receptor alpha2), the zinc-finger
protein ZDHHCI7, which has been previously found to be
upregulated in leukemic cells over-expressing Gfi-1B [142],
PIGK (phosphatidylinositol glycan, class K), which was
found to be downregulated in colorectal cancer due to a
polymorphism in its 3’ -UTR [143], TNFRSF19 (tumor necro-
sis factor receptor superfamily, member 19, a.k.a. TROY),
previously found to be over-expressed in glial tumors [144],
VEPH], encoding a PH-domain protein expressed in the
developing central nervous system [145], PTN (pleiotrophin),
which is expressed in the canine notochord and NP [146],
SCRGI, encoding an ECM-localized protein involved in
chondrogenesis [147], and the cell proliferation activator
TGF-alpha, which has been shown to stimulate proliferation
of chondrocytes [148]. Interestingly, with the exception of
PTN, none of the other genes was previously reported as
a possible notochord marker, which likely reflects the fact
that cancerous hallmarks are chordoma-specific targets of
Brachyury.

7. Possible Mechanisms of Action of Brachyury
during Tumorigenesis: Interaction with
Other Factors

Brachyury proteins can homodimerize when contacting
DNA and bind either palindromic sequences or inverted
repeats in this form [82, 106, 107]; in addition, Brachyury
can also bind DNA and activate transcription as a monomer
[108-110]. The homodimerization of mouse Brachyury is
mediated by a short peptide, PESPNE, which was also found
to allow its interaction in vitro with Brachyury proteins from
other species, such as Drosophila Brachyenteron [112]. These
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findings have led to the hypothesis that Brachyury might
be able to form heterodimers with other T-box proteins
(149].

In terms of non-T-box proteins, Brachyury has been
shown to interact with Smadl, a component of the BMP
signaling pathway, through a short N-terminal peptide; this
region is found only in Brachyury proteins from bilaterian
animals [150, 151]. The interaction with Smadl was shown
to restrict the inductive ability of the bilaterian Brachyury
proteins to mesoderm formation in Xenopus animal cap
assays [150]. While the evolutionary significance of this
interaction has been clarified, it is still unknown whether
this and/or additional protein-protein interactions might also
modulate the oncogenic properties of Brachyury.

Another protein that interacts directly with Brachyury
is the homeodomain transcription factor Mixll. In vitro
studies revealed that these proteins were associated via their
respective DNA-binding domains [152]. In particular, the T-
domain, contained within the first 230 amino acids of the
N-terminal region of Brachyury, interacts with helix III of
the Mixll homeodomain, preferentially when Mixll is in its
homodimeric form [152]. This interaction with Brachyury
does not impede Mixll binding to DNA, suggesting that
Brachyury might be recruited to DNA by DNA-bound
Mixll and, thus, regulates some of its target genes without
directly binding DNA [152]. Interestingly, the same study
proposes that the interaction of the Brachyury N-terminal
region with Mixll might expose the C-terminal repression
domains of Brachyury, leaving them available for interaction
with transcriptional corepressors. A similar model has been
brought forth in a study of the Ripply proteins, which act
as adaptors and recruit the corepressor Groucho/TLE to T-
box proteins, shifting their transcriptional activity towards
repression [153]. Although a direct interaction with Ripplyl
has so far only been shown in the case of Tbx24, another T-
box transcription factor related to Brachyury, it is possible
that a similar interaction might occur with Brachyury as well.
Indeed, Ripplyl is able to suppress the activating ability of Nt
in zebrafish [153].

Even though a physical interaction between Brachyury
and members of the Fox subfamily of winged-helix transcrip-
tion factors has not been reported, it is noteworthy that these
transcription factors have been found to work synergistically
in different model systems. For example, in Xenopus, animal
caps from embryos coinjected with pintallavis, a member of
the Foxa4 class, and Xbra mRNAs give rise to mesoderm
and notochord [154]. In Drosophila, brachyenteron (byn)
and forkhead (fkh) cooperatively specify the caudal visceral
mesoderm, which is absent in byn/fkh double mutant flies
and is formed ectopically only when both genes are over-
expressed [101]. In the mouse embryo, both Brachyury and
Foxa2 have been reported to be upstream of the homeobox
gene Noto, based upon the evidence that this gene is down-
regulated in mutant embryos for either gene [155]. Finally,
studies in ascidians have identified a compact notochord cis-
regulatory module whose activity depends on both Ci-Bra
and Ci-FoxA2 binding sites, thus providing the first report
of a synergistic interaction between these factors within a
compact regulatory region [156].
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Together these studies suggest that the various interac-
tions of Brachyury with other proteins exert a considerable
influence on its function, suggesting that their impairment
could be both a cause and a consequence of tumorigenesis.

8. Possible Mechanisms of Action of
Brachyury during Tumorigenesis: Dosage-
Dependent Effects

We have previously discussed the duplication of the
Brachyury locus as a hallmark of hereditary chordoma. It is
important to note, however, that duplications of Brachyury
have occurred in various species along the phylogenetic tree
without negative consequences. For example, two Brachyury
genes have been identified in the cnidarian Hydra vulgaris.
Both genes are expressed in the hypostome, although HyBral
is expressed predominantly in endoderm, and HyBra2 in
ectoderm [157]. In Xenopus animal cap assays, only HyBral
is capable of inducing mesoderm formation, similarly to
vertebrate Brachyury proteins [157]. In basal chordates, there
is only one copy of Brachyury in Ciona and other tunicates
[89, 135], while the cephalochordate amphioxus has two
copies, likely the result of a lineage-specific duplication
[90]; both amphioxus genes are expressed in the mesoderm
and subsequently in the differentiating notochord [158].
In vertebrates, two Brachyury orthologs have been found
in zebrafish, the well-characterized no tail, and its paralog
Brachyury (recently renamed ntl-a and ntl-b, respectively);
combined inactivation of these genes exacerbates the ntl-a
mesodermal phenotype, indicating that these factors act
synergistically [159]. Also, in mouse, another Brachyury gene,
Brachyury the Second (T2), has been found and mapped to
the proximal region of chromosome 17 near Brachyury; a
mutation in this gene reportedly causes defects in notochord
formation, although not as severe as those seen in Brachyury
mutants [160]. T2 does not seem to be present in the human
genome.

Therefore, it appears that duplicated copies of Brachyury
genes can become functional paralogs, and either segre-
gate into different embryonic territories or continue to be
expressed within the same tissue; in the latter case, they
may act synergistically and likely control shared target genes.
Nevertheless, this partial or complete functional redundancy
is expected to require strict tissue-specific regulation in
order to prevent the damage that an excessive level of
Brachyury protein could cause. In fact, the increased dosage
of Brachyury has been shown to exert strong effects on
development, as seen in transgenic mouse embryos where
three copies of this gene resulted in an extension of the
anterior-posterior axis [161]. The main molecular mechanism
underlying this effect is likely represented by the dose-
dependent binding of Brachyury to the cis-regulatory regions
of its target genes. An example of this mechanism has been
documented in the case of the Drosophila gene orthopedia
that, as mentioned above, is controlled in a dose-dependent
fashion by Brachyenteron through multiple binding sites
[112]. It has recently been suggested that this mode of
gene regulation, whereby Brachyury proteins utilize modular

arrangements of canonical and noncanonical binding sites
to control some of their targets, might be employed by
mouse Brachyury as well [129]. In conclusion, the levels of
functional Brachyury protein modulate the function of this
transcription factor, most likely by altering the regulation of
its direct target genes.

9. Possible Mechanisms of Action of Brachyury
during Tumorigenesis: Upstream Regulators
of Brachyury Transcription

While the identities of Brachyury-downstream genes con-
tinue to be elucidated, in parallel, several groups have
studied the regulation of the expression of Brachyury itself
using different model systems. The emerging consensus
is that the essential signaling pathways that govern body
plan formation and mesoderm induction, Wnt/f-catenin,
TGF-p/Nodal/activin, BMP, and FGE, also act upstream of
Brachyury in concert with different combinations of early-
onset transcription factors. The involvement and cross-
interactions of each of these pathways vary among different
animals. In zebrafish, a Nodal morphogen gradient activates
expression of both Brachyury orthologs, ntl-a and ntl-b;
however, transcription of ntl-a is additionally regulated by
both Wnt and BMP signaling, while transcription of ntl-b is
not responsive to these pathways [162]. The BMP signaling
pathway and zygotic Wnt are also upstream of Xbra in
Xenopus [163,164]. In humans, BMP-4 has been indicated as a
regulator of Brachyury transcription, being able to induce its
expression in hES cells; the same study showed that activin-A
and Wnt3a also exhibited minor inducing ability [165].

In some instances, differences in the regulation of
Brachyury expression are observed between different regions
of the notochord in the same animal. For example, in the
ascidian Ciona, the first step leading to the activation of
Brachyury expression in the main notochord lineage (the 32
anterior notochord cells, or A-lineage) is the translocation of
cytoplasmic fB-catenin to the nuclei in vegetal blastomeres,
an event that activates transcription of FGF9/16/20 and of
the transcription factor FoxD [166]. In turn, FoxD activates
expression of the zinc-finger transcription factor ZicL that,
along with FoxD, binds the Brachyury notochord CRM
and activates transcription [167]. However, in the posterior-
most 8 notochord cells (secondary notochord, or B-lineage),
Brachyury expression is instead regulated by Nodal and
Delta-like [168].

Although the signaling pathways upstream of Brachyury
overall appear to be conserved across the phylogenetic tree,
the transcription factors that control expression of this gene
vary among different organisms. In Ciona, Ci-FoxA2 has
also been reported to activate Brachyury expression [169],
and this might be the case in other organisms where the
expression of Foxa2 precedes that of Brachyury genes. The
finding that the mouse Foxa2 promoter region is bound by
Brachyury suggests that the two genes might be regulating
each other [129]. In addition to mesoderm inducers, a factor
mainly known for its involvement in innate and adaptive
immune response, NF-kappaB, has been shown to modulate



the transcription of ntl-a in zebrafish and of Xbra in Xenopus
[170]. Furthermore, it seems reasonable to hypothesize that
after their transcription is initiated, by one or more of the
aforementioned pathways, Brachyury proteins can positively
regulate their own transcription, either directly or indirectly,
as is the case for other transcription factors. In fact, autoreg-
ulation has been reported in the case of Xbra [171], and ChIP-
Seq experiments have shown that human Brachyury binds its
own locus [136], although the existence of this autoregulatory
loop has been ruled out in mice [172].

Transcription of Brachyury is also modulated by repres-
sive interactions. In Ciona, expression of Ci-Bra is excluded
from muscle cells, and thus confined to the notochord, by the
zinc-finger transcriptional repressor Snail [173]; in Xenopus,
Xbra is actively silenced by another zinc-finger repressor,
Smad-interacting protein (SIP1) [174]. Also in Xenopus, Xbra
and the homeodomain protein goosecoid repress each other,
while transcription of both genes is stimulated by activin
[175]. This interaction is evolutionarily conserved, as shown
by the finding that Brachyury is repressed in goosecoid-
overexpressing mouse ES cells [176]. Repression can also
take place indirectly, as it is seen in the case of embryonic
stem cells, where the Smek/PP4c/HDACI complex binds the
Tcf/Lef binding site of the Brachyury promoter and causes
histone deacetylation, thus impeding transcription [177].

10. Concluding Remarks

From the studies that we have summarized above, it seems
that Brachyury-expressing cells have the potential to some-
how give rise to chordomas, possibly through one or more
of the mechanisms that we have outlined. If this is the
case, it remains to be determined whether and how nor-
mal Brachyury-expressing notochord cells turn into the
Brachyury-expressing cells found in chordomas. Possible
clues to the solution of this problem might come from
a recent gene expression study showing that chordomas
contain cancer stem-like cells [178]. In this study, some of
the chordoma cells from the U-CHI cell line were found to
express stem cell surface markers. These results provide the
first evidence that chordomas might contain cancer stem cells
(CSCs) and could open new avenues for research on possible
treatments. Intriguingly, recent studies carried out in adenoid
cystic carcinoma cell lines indicate that CSC characteristics
can be reversed by the knockdown of Brachyury, along
with the ability of these cells to undergo EMT [179]. Taken
together, these recent findings again point at Brachyury as a
possible therapeutic target. Within this context, the discovery
of the immunogenic properties of Brachyury and the sub-
sequent development of specific CD8" cytotoxic T-cells able
to destroy Brachyury-expressing tumor cells from various
cells lines in vitro [130, 180] represent an encouraging step
towards the development of Brachyury-targeted therapies.
More generally, therapeutic agents targeting Brachyury could
also be employed for cancer immunization strategies directed
against any cancer cell undergoing EMT that expresses
this marker [130]. Brachyury-targeted therapeutics could
possibly be implemented through adaptations of recently
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developed exosome-based nanodevices, which increase the
immunogenicity of tumor-associated antigens [181]. Lastly,
new treatments could be directed against one or more of the
numerous genes controlled by Brachyury, to increase their
specificity.
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