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We study theoretically and numerically the kinetics of the coefficient of friction of an elastomer due to
abrupt changes of sliding velocity. Numerical simulations reveal the same qualitative behavior which has
been observed experimentally on different classes of materials: the coefficient of friction first jumps and then
relaxes to a new stationary value. The elastomer is modeled as a simple Kelvin body and the surface as a
self-affine fractal with a Hurst exponent in the range from 0 to 1. Parameters of the jump of the coefficient of
friction and the relaxation time are determined as functions of material and loading parameters. Depending
on velocity and the Hurst exponent, relaxation of friction with characteristic length or characteristic time is
observed.

D
ry friction plays a decisive role in a great variety of physical processes and applications1,2. Very often the
simplest friction ‘‘law’’ (Amontons’ law3) is used to describe dry friction. It states that the force of friction,
F, is proportional to the normal force, FN: F 5 mFN, the proportionality coefficient m being called

coefficient of friction. It is common understanding that Amontons’ ‘‘law’’ is only a very rough ‘‘zeroth-order
approximation’’. Already Coulomb4 knew that the coefficient of sliding friction depends on sliding velocity and
normal force and that static friction depends approximately logarithmically on time1. The explicit dependence of
the coefficient of friction on time became a hot topic in the 1970s in the context of earthquake dynamics. Based on
the experimental work on rocks by Dieterich5,6, Rice and Ruina7 have formulated a kinetic equation for friction,
which became one of the most influential generalized ‘‘rate-state models’’. Similar kinetic behavior of the
coefficient of friction was observed on a variety of different materials including metals, paper and polymers8–12.
Most physical interpretations of rate-state friction are based on the concept by Bowden and Tabor13 emphasizing
the influence of the interaction of rough surfaces; they include direct observations of the contacting surfaces14 as
well as theoretical analysis15,16. Other models for the kinetics of the friction coefficient were proposed based on the
development of surface topography due to wear (Ostermeyer17,18) or shear melting of thin surface layers19. Heslot
et. al.20 provided a very detailed experimental analysis of the dynamics of systems obeying the rate-state law of
friction. The kinetics of the coefficient of friction is an essential factor for the stability of systems with friction21–23,
the break-out instabilities24 as well as for the design of feedback control systems25–27 and remains a topic of high
scientific and technological interest. Most rate-state formulations of frictional laws contain a characteristic length
scale, at which a transition from sticking to sliding occurs. The existence of this length is typically associated with a
characteristic size of asperities or with other structural peculiarities at the micro scale28,29.

In spite of the intensive research in the field of generalized laws of friction, both the form of the rate-state
friction equations and their parameters can still only be determined empirically. In the present paper, we provide
a theoretical analysis of the kinetics of the friction coefficient for one class of materials – elastomers. For these
materials, parameters of the kinetic law of the coefficient of friction are connected with material, loading and
surface parameters. We simulate the standard type of loading used to experimentally determine the parameters of
the rate-state laws: one of the bodies in contact first slides with a constant velocity; at some moment of time, the
sliding velocity changes abruptly, and the jump of friction as well as the subsequent relaxation is observed. From
these simulations we derive closed-form relations for the jump of friction and the characteristic time of the
following relaxation.

In studying the friction of elastomers we are going from the concept of Greenwood and Tabor about the
rheological nature of elastomer friction30 which became widely accepted after the classical work by Grosch31. To
arrive at a basic understanding of the dynamic behavior of the coefficient of friction, we use the one-dimensional
model described in the reference32: (a) the elastomer is modeled as a simple Kelvin body, which is completely
characterized by its static shear modulus G and viscosity g, (b) the non-disturbed surface of the elastomer is plane
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and frictionless, (c) the rigid counter body is assumed to have a
randomly rough, self-affine fractal surface without long wave cut-
off, (d) no adhesion or capillarity effects are taken into account, (e)
thermal effects in micro contacts are neglected.

Based on the contact mechanics of both rotationally symmetric
profiles33 and self-affine fractal surfaces34, it was recently suggested
that the results obtained with one-dimensional foundations may
have a broad area of applicability if the rules of the method of dimen-
sionality reduction (MDR)35–37 are observed. The MDR was criticized
by Lyashenko et. al. in the comment38. Counterarguments are pre-
sented in the reply39 as well as in the sections devoted to the areas of
application of the MDR of the review paper35 and the monograph36.
Here we only note that the one-dimensional MDR model conserves
all essential characteristics of the original three-dimensional model
such as rms surface roughness, gradient and curvature, self-similarity
properties (Hurst exponent), normal stiffness and relaxation prop-
erties (in the case of the Kelvin body the relaxation time) and thus is
suitable for at least qualitative analysis of the underlying three-
dimensional friction model.

Results
One-dimensional model. According to the MDR, the Kelvin body
can be modeled as a series of parallel springs with stiffness Dkz and
dash pots with damping constant Dc, where

Dkz~4GDx,Dc~4gDx ð1Þ

The counter body is modeled as a rough line having the power
spectral density C1D / q22H21, where q is the wave vector and H
the Hurst exponent. This power spectrum corresponds to the two-
dimensional roughness with the power spectrum C2D / q22H22 35,40.
The spectral density is defined in the interval from qmin 5 2p/L,
where L is the system size, to the upper cut-off wave vector qmax 5

p/Dx. The spacing Dx determines the upper cut-off wave vector and
is an essential physical parameter of the model. Surface topography is

characterized by the rms roughness h~

ðqmax

qmin

C1D qð Þdq

 !1=2

, which

is dominated by the long wavelength components of the power
spectrum, and the rms gradient of the surface

+z~
ðqmax

qmin

C1D qð Þq2dq

 !1=2

, which is dominated by the short

wavelength part of the spectrum. The rigid surface was generated
according to the rules described in reference34, and periodic
boundary conditions were used. The rigid surface was pressed
against the elastomer with a normal force FN and moved
tangentially with a constant velocity v (Figure 1).

The model is described in detail in reference32. Here we reproduce
for convenience only the basic equations. If the rigid profile is given
by z 5 z(x 2 vt), and the profile of the elastomer by u 5 u(x,t), then
the normal force in each particular element of the viscoelastic
foundation is given by

f ~{4Dx Gu(x)zg _u(x,t)½ �: ð2Þ

For the elements in contact with the rigid surface, this means that

f ~4Dx G d{z(x)ð Þzgvz’(x)½ � ð3Þ

where d is the indentation depth, and z9(x) denotes a derivative
with respect to x. For these elements, the condition of remaining in
contact, f . 0, is checked in each time step. Elements out of contact
are relaxed according to the equation f 5 0: Gu(x) 1 gu?(x,t) 5 0, and
the non-contact condition u , z is checked. The indentation depth d
is determined to satisfy the condition of the constant normal force

FN~{4
Ð

real contð Þ G d{z(x)ð Þzgvz’(x)½ �dx, ð4Þ

where the integration is only over points in contact. A typical con-
figuration of the contact is shown in Figure 1. The tangential force is
calculated by multiplying the local normal force in each single ele-
ment with the local surface gradient and subsequently summing over
all elements in contact:

Fx~{4
ð

real contð Þ
z’ xð Þ G d{z xð Þð Þzgvz’(x)½ �dx ð5Þ

The coefficient of friction m was calculated as the ratio of the tangen-
tial and normal force.

Figure 1 | Contact of an elastomer and a rigid rough indenter which is
moving with velocity v.

Figure 2 | The kinetics of the coefficient of friction after a positive (a) v2 5 1.2v1 and negative (b) v2 5 0.8v1 velocity jump for the parameters: FN 5
0.1 N, v1 5 0.1 m/s, L 5 0.01 m, h 5 1025 m, G 5 107 Pa, t 5 1023 s and H 5 0.7.
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Due to the independence of the degrees of freedom, the algorithm
is not iterative and there are no convergence problems. The length of
the system was L 5 0.01 m and the number of elements N 5 L/Dx
was typically 5000. The shear modulus was G 5 107 Pa. Instead of
viscosity, the relaxation time t 5 g/G 5 1023 s was used. The fol-
lowing ranges of parameters were covered in the present study: 11
values of the Hurst exponent ranging from 0 to 1; Normal forces FN

ranging from 1022 to 102 N; Dx ranging from 1027 to 1025 m; rough-
ness ranging from 1026 to 1024 m; velocities v1 from 1024 to 101 m/s;
velocity jumps Dv from 20.2v1 to 0.3v1. All values shown below were
obtained by averaging over 200 realizations of the rough surface for
each set of parameters.

Relaxation of friction after a velocity jump. With the model
described previously, the following numerical experiments were
carried out: the rigid body was first moved with velocity v1, at the
time moment t0 the velocity was abruptly changed to a new value v2

which could be larger or smaller than the initial value. The typical
behavior of the coefficient of friction before, during and after the
velocity jump is shown in Figure 2.

The initial value of the coefficient of friction before the jump and
the final value after relaxation are of course just the values of the
coefficient of friction for stationary sliding which have been studied
in reference32 and are reproduced for one set of material and loading
parameters in Figure 3a. With the same parameters, Figure 3b shows
the kinetic coefficients of friction changing with time for several
velocities in the entire range used in Figure 3a where the sliding
velocity is increased by 20% at the moment t/t 5 10. In the present
paper, we studied the complete range of velocities: region I where the
friction coefficient increases approximately linearly with velocity, the
transition region II and the plateau III (Figure 3a).

The relaxation of the coefficient of friction after the jump can be
accurately fitted by an exponential function of the form

m �tð Þ~m�: exp {b:�tð Þzm2, ð6Þ

where

�t~ t{t0ð Þ=t: ð7Þ

An example fit is shown in Figure 4. According to equation (6), the
coefficient of friction at the moment t 5 t0 is equal to m(t0) 5 m*1m2

5 m1 1 Dm0, then we have

m�~m1{m2zDm0<{m’ vð Þ:DvzDm0: ð8Þ
The kinetic behavior is therefore completely determined by the value
Dm0 of the jump of the coefficient of friction and its relaxation time.

We firstly consider the value Dm0 at the time of jump t 5 t0. For
very small velocity jumps, both the immediate increase of the coef-
ficient of friction, Dm0, and the difference between the asymptotic
values m2 2 m1, are proportional to the velocity change:

Dm0

m1
~f

Dv
v1

,
m2{m1

m1
~j

Dv
v1
: ð9Þ

In the limit of small velocities, (region I, corresponding to the linear
dependence of the coefficient of friction on velocity), both f and j are
close to 1. It means that m jumps directly to the value m2, so that there
is practically no subsequent relaxation. This behavior can be clearly
observed in Figure 3b.

Figure 5 shows that the velocity dependence of Dm0 is similar to
that of the coefficient of friction m1 studied in the reference32. In
particular, Dm0 first increases linearly with velocity and then
approaches a plateau. The results from simulations with different
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Figure 3 | (a) Dependence of the coefficient of friction on the sliding velocity during stationary sliding; (b) kinetic coefficient of friction for the 30
velocities in Figure 3a with Dv 5 0.2v1. Other parameters: FN 5 0.1 N, L 5 0.01 m, h 5 1025 m, G 5 107 Pa, t 5 1023 s and H 5 0.7.
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Dv and different Hurst exponents prove that the linear part of this
dependency can be universally described by described by equation:

Dm0

+z
~

m1

+z
:Dv

v1
ð10Þ

while at the plateau the relation

Dm0

+z
~0:4:

Dv
v1

ð11Þ

is valid. These equations can be combined to the following interpola-
tion equation

D�m0~
Dv
v1

1
�m2

1
z

1
0:42

� �{1=2

, ð12Þ

where we introduced normalized quantities D�m0~Dm0=+z and
�m1~m1=+z. The quality of this approximation is illustrated in
Figure 6 by comparison with numerical results for 11 Hurst
exponents.

Let us now consider the relaxation behavior after the jump. We
found that the simulation results for the coefficient b in equation (6)
can be described accurately by the empirical equation

b~ v1tqmaxð Þa, ð13Þ

where a is a coefficient which depends only on the Hurst exponent.
Figure 7 shows the dependence of the coefficient b on the combina-
tion v1tqmax for different Hurst exponents. For v1tqmax , 1 (left part

in Figure 7), the coefficient a is practically constant: a < 1, while for
v1tqmax . 1 it can be approximated as a < 1 2 H (Figure 8).

Discussion
We investigated the kinetics of the coefficient of friction after a jump
of sliding velocity for a model elastomer. We found a simple general
structure of the kinetics: the coefficient of friction first experiences a
jump, followed by relaxation according to an exponential law to the
new stationary value. The jump Dm0 of the coefficient of friction and
the relaxation time are thus the only quantities which describe com-
pletely the kinetics of the coefficient of friction. For the model elasto-
mer studied, we found closed form relations for both Dm0 and the
relaxation time as functions of material and loading parameters. The
character of the relaxation is governed by the quantity v1tqmax, which
can be considered as the ratio of two characteristic times of the
system: the relaxation time t of the elastomer and the typical time
of contact of micro asperities 1/(v1qmax). For v1tqmax , 1, the coef-
ficient b in equation (6) is approximately equal to b < v1tqmax, so the
relaxation of the coefficient of friction is given by the equation

m v1zDv,t{t0ð Þ~m v1ð Þz

Dv m’ v1ð Þz
1
v1

1
m2 v1ð Þ

z
1

0:4+zð Þ2

 !{1=2

{m’ v1ð Þ

2
4

3
5:e{v1qmax

: t{t0ð Þ

8<
:

9=
;,
ð14Þ

Note that in this region relaxation of the coefficient of friction occurs
at a characteristic length Dc 5 1/qmax, which has the same order of
magnitude as the size of micro contacts between the bodies, in
accordance with the initial concept of Dieterich et. al.14. For v1tqmax

. 1, the relaxation of the coefficient of friction is described as

m v1zDv,t{t0ð Þ~m v1ð Þz

Dv m’ v1ð Þz
1
v1

1
m2 v1ð Þ

z
1

0:4+zð Þ2

 !{1=2

{m’ v1ð Þ

2
4

3
5:e{ t{t0ð Þ

trelax

8<
:

9=
;

ð15Þ

with the characteristic relaxation time

trelax~tH vqmaxð ÞH{1: ð16Þ

Equation (15) covers the limiting cases of relaxation at a character-
istic length 1/qmax (in the limit H 5 0) and of relaxation at a char-
acteristic time t (in the limit H 5 1).

Methods
For construction of one-dimensional models, we used the Method of Dimensionality
Reduction (MDR). With this method a three-dimensional contact is mapped onto a
one-dimensional one with properly defined elastic or viscoelastic foundations. It
provides exact solutions for the normal contact problem of axially symmetric and
self-affine fractal surfaces as well as exact solutions for the tangential contact problem
with a constant coefficient of friction. All properties which depend on the force-
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Figure 6 | Approximation of equation (12) for 11 Hurst exponents from 0
to 1. Other parameters: FN 5 1.2 N, L 5 0.01 m, h 5 1025 m, G 5 107 Pa,

t 5 1023 s and Dv 5 0.2v1.

Figure 7 | Dependence of the coefficient b on v1tqmax for different Hurst
exponents with the data set: L 5 0.01 m, h 5 1025 m, G 5 107 Pa, 20
normal forces FN ranging from 1022 to 102 N, 20 velocities v1 ranging
from 1024 to 1021 m/s, 20 Dx ranging from 1027 to 1025 m.

Figure 8 | Dependence of the power a in equation (13) on the Hurst
exponent for v1tqmax . 1.
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displacement relationship such as contact stiffness, electrical resistance and thermal
conductivity, as well as frictional force for elastomers can be analyzed with this
method. The fundamentals and basic rules are described in detail in the paper35 and in
the book36,41. More descriptions related to viscoelastic contact can also be found in the
introduction and at the beginning of the Section Results. In Ref. 38, it was stated that
the MDR cannot correctly describe the effects of elastic interactions in the medium.
This is not correct: in reality, the MDR accurately takes into account long-range
interactions by changing the shape of the contacting bodies36. The MDR, however,
considers the sliding process to be quasi-static. While this assumption is satisfied for
elastomer friction at velocities much smaller than the velocity of sound, it may not
always be valid for dry friction, or for friction in the presence of adhesion42. As was
shown in Ref.42, for such systems, the interfacial dynamics may play an important
role. For the problem considered in this paper we conclude, however, that the all
essential interactions in the medium are correctly taken into account.
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37. Kürschner, S. & Popov, V. L. Penetration of self-affine fractal rough rigid bodies
into a model elastomer having a linear viscous rheology. Phys. Rev. E. 87, 042802
(2013).

38. Lyashenko, I. A., Pastewka, L. & Persson, B. N. J. Comment on ‘‘Friction Between a
Viscoelastic Body and a Rigid Surface with Random Self-Affine Surface.’’Phys.
Rev. Lett. 111, 189401 (2013).

39. Li, Q. et al. Li et al. Reply. Phys. Rev. Lett. 111, 189402 (2013).
40. Scaraggi, M., Putignano, C. & Carbone, G. Elastic contact of rough surfaces: A

simple criterion to make 2D isotropic roughness equivalent to 1D one. Wear 297,
811–817 (2013).

41. Popov, V. L. & Heß, M. Method of Dimensionality Reduction in Contact Mechanics
and Friction. (Springer-Verlag, Berlin, 2014).

42. Braun, O. M., Barel, I. & Urbakh M. Dynamics of Transition from Static to Kinetic
Friction. Phys. Rev. Lett. 103, 194301 (2009).

Acknowledgments
This work was supported by the Federal Ministry of Economics and Technology (Germany)
under the contract 03EFT9BE55, the Ministry of Education of the Russian Federation, and
Deutsche Forschungsgemeinschaft (DFG), Q. Li was supported by a scholarship of China
Scholarship Council (CSC).

Author contributions
V.L.P. and S.G.P. conceived the research, Q.L. carried out the numerical simulation, A.D.
and M.P. designed the initial program code. V.L.P. and Q.L. discussed the results and
contributed to preparing the manuscript. All authors reviewed the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Li, Q., Dimaki, A., Popov, M., Psakhie, S.G. & Popov, V.L. Kinetics
of the coefficient of friction of elastomers. Sci. Rep. 4, 5795; DOI:10.1038/srep05795 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder
in order to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-sa/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5795 | DOI: 10.1038/srep05795 5

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	Title
	Figure 1 Contact of an elastomer and a rigid rough indenter which is moving with velocity v.
	Figure 2 The kinetics of the coefficient of friction after a positive (a) v2 = 1.2v1 and negative (b) v2 = 0.8v1 velocity jump for the parameters: FN = 0.1&emsp14;N, v1 = 0.1&emsp14;m/s, L = 0.01&emsp14;m, h = 10-5&emsp14;m, G = 107&emsp14;Pa, &tgr; = 10-3&emsp14;s and H = 0.7.
	Figure 3 (a) Dependence of the coefficient of friction on the sliding velocity during stationary sliding; (b) kinetic coefficient of friction for the 30 velocities in Figure 3a with Dv = 0.2v1.
	Figure 4 Fitting with an exponential function, equation (6) (b = 2.4), for the data set: FN = 1.2&emsp14;N, L = 0.01&emsp14;m, h = 10-5&emsp14;m, G = 107&emsp14;Pa, &tgr; = 10-3&emsp14;s, Dv = 0.2v1, v1 = 0.05&emsp14;m/s and H = 0.7.
	Figure 5 $${{{\mu _1}} \over {\nabla z}}$$ and $${{{{\rDelta {\mu _0}} \over {\nabla z}}} \mathord{\left/ {\vphantom {{{{\rDelta {\mu _0}} \over {\nabla z}}} {{{\rDelta v} \over {{v_1}}}}}} \right. \kern-\nulldelimiterspace} {{{\rDelta v} \over {{v_1}}}}}$$ as functions of velocity for 20 exponentially increasing normal forces FN from 10-2 to 102&emsp14;N.
	Figure 6 Approximation of equation (12) for 11 Hurst exponents from 0 to 1.
	Figure 7 Dependence of the coefficient b on v1&tgr;qmax for different Hurst exponents with the data set: L = 0.01&emsp14;m, h = 10-5&emsp14;m, G = 107&emsp14;Pa, 20 normal forces FN ranging from 10-2 to 102&emsp14;N, 20 velocities v1 ranging from 10-4 to 10-1&emsp14;m/s, 20 Dx ranging from 10-7 to 10-5&emsp14;m.
	References

