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Abstract: Enhancing the biochemical supply chain towards sustainable development requires more
efforts to boost technology innovation at early design phases and avoid delays in industrial biotech-
nology growth. Such a transformation requires a comprehensive step-wise procedure to guide
bioprocess development from laboratory protocols to commercialization. This study introduces a
process design framework to guide research and development (R&D) through this journey, bearing in
mind the particular challenges of bioprocess modeling. The method combines sustainability assess-
ment and process optimization based on process efficiency indicators, technical indicators, Life Cycle
Assessment (LCA), and process optimization via Water Regeneration Networks (WRN). Since many
bioprocesses remain at low Technology Readiness Levels (TRLs), the process simulation module was
examined in detail to account for uncertainties, providing strategies for successful guidance. The sus-
tainability assessment was performed using the geometric mean-based sustainability footprint metric.
A case study based on Chitosan production from shrimp exoskeletons was evaluated to demonstrate
the method’s applicability and its advantages in product optimization. An optimized scenario was
generated through a WRN to improve water management, then compared with the case study. The
results confirm the existence of a possible configuration with better sustainability performance for
the optimized case with a sustainability footprint of 0.33, compared with the performance of the base
case (1.00).

Keywords: bioprocess modeling; sustainability assessment; process optimization; chitosan; TRLs

1. Introduction

For the past decade, bio-based chemical production has grown globally [1]. Bio-based
innovations have offered potential alternatives to reduce the strong dependence on non-
renewable petrochemical sources, connected with environmental burdens [2]. Moreover,
the bio-based supply chain enhances the circular bioeconomy framework [3]. Research and
development (R&D) prevail as the foremost tasks for new bioprocesses to become financially
competitive. Economic competitiveness and scaling-up issues are persistent limitations
which have caused delays in the commercialization of many bio-based products [4]. In the
end, performing R&D tasks at different levels is advantageous for bioprocess technologies
emerging from laboratory protocols to reach commercialization [4]. Moreover, green
chemistry principles favor upgrading and tuning new technologies to orient solutions
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toward pollution prevention, energy efficiency design, or using renewable feedstock [5].
There is a low rate of success in new bio-based innovations, which is an indicator of the
inherent challenges of commercialization [6]. Henceforth, new methodologies that shorten
the gap between commercialization and research are required.

Traditional process design methodologies were formulated with a focus on the petro-
chemical and chemical industries [7]. However, bioprocessing involves particular features
that might not be covered by current methods. The differences between bioprocesses
and chemical processes rely on many aspects, for example, the reaction mechanisms
(chemistry vs. biochemistry) involving microorganisms and biocatalysts in the conversion
pathways [8]. In addition, purification techniques (downstream processing) can be highly
specific in bioprocesses, where the traditional unit operations like absorption, stripping, or
distillation might not be appropriate [9]. Furthermore, feedstock in bioprocess is inherently
biomass, while in traditional chemical systems it might vary from process to process [10]. To
guarantee true sustainability, selecting the best feedstock and processing routes is essential
for decision-makers (e.g., first, second, and third-generation biofuels) [11].

Whereas new bio-products are being developed at laboratory scale, comparing their
sustainability performance to existing materials must be prioritized. The LCA can assist
in the sustainability evaluation of a novel technology [12]. Applying optimization strate-
gies and considering scaling effects result in improved technologies. As described, there
are some challenges in modeling bioprocesses that increase the difficulty of simulating
these systems at an industrial scale. Some progress is reported on scaling up techniques
applied to bioprocesses under the sustainable design approach [5]. Different scaling rules
based on empirical information for energy equipment were proposed [13]. A detailed
work on bioprocessing scaling up was presented by Ruiz-Ruiz et al. [14] for modeling
B-phycoerythrin production downstream from bench scale to the pilot plant. More re-
cently, Piccino et al. [15] presented a framework for assisting the scale-up of chemical
production systems for performing LCA for immature processes, testing the method with a
nanocellulose production process [16]. With the growth of the biochemical industry, more
efforts have been made toward scaling bioprocesses which have focused more on empirical
data/methods for specific technologies [17]. Additionally, mathematical modeling schemes
and thermodynamics are crucial in comprehending bioprocesses, given the absence of
reliable and generalized frameworks [18]. Previous efforts have applied computer-aided
process engineering (CAPE) to model these systems [19].

A good example of emerging bio-based technology is chitosan production. This material
has gained a lot of attention mainly due to its properties and applications as a mucoadhesive,
anti-inflammatory, antioxidant, and antifungal, among others [20]. Yu et al. [21] described
chitosan as a low-cost polymer with multiple physicochemical and biological properties
for many applications in pharma, food, crop production, or biomedicine. As an emerging
process, chitosan production is still under investigation; recently, studies have modeled
its production process using simulation tools [22], environmental, techno-economic, and
exergy assessments [23–25]. Zuorro et al. [26] assessed the feasibility of a pilot-scale chitosan
biorefinery using TEA. Still, optimization strategies are yet to be applied in chitosan-based
biorefineries for their ongoing development to reach commercialization.

A comprehensive framework that combines feedstock and raw material selection,
scaling-up, bioprocessing modeling, sustainability assessment, and process improvement
to advance bioprocesses within R&D phases is still missing. Thus, the goal is to introduce
a new framework to optimize bioprocesses at the low- to mid-levels of maturity to boost
sustainability-driven technology innovations. The presented framework includes a pro-
cedure for scaling up lab-scale processes, green chemistry principles, and sustainability
assessment. A case study for the production of chitosan from shrimp exoskeletons is
applied to test the proposed method and illustrate the new possibilities of using this new
framework. It will guide the R&D of upcoming bio-based projects and initiatives, including
tasks to model, assess, and optimize bioprocesses. In addition to the value given by the
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proposed framework, this work also reports the application of optimization strategies using
WRN to boost the development of chitosan biorefineries.

2. Materials and Methods

Coupling process modeling and simulation with assessment phases is essential to aid
emerging technologies reaching higher levels of maturity. Hence, a unified framework is
necessary to reach the desired R&D phases of a specific process. Evaluating sustainability
performance and meeting stakeholders’ expectations is meant to assist decision-making.
This approach will inform if technical areas (or the overall process) require technical im-
provement, allowing further optimization in a feedback step. Figure 1 shows the proposed
framework to connect bioprocess modeling, simulation, and sustainability assessment to
support R&D in bioprocess development.
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Figure 1. A schematic sustainability assessment approach combining process modeling, simulation,
and optimization.

Some milestones have to be achieved in the presented methodology. The milestones
include rigorous modeling and simulation, data generation, sustainability assessment, and
process optimization. These are linked in a loop procedure with feedback provided by
assessment outcomes. Special attention must be taken in the process simulation step by
considering the bioprocess features that differ from traditional chemical processes. The
following sections explain how process simulation is featured and the interconnection
between sustainability assessment and process optimization.

2.1. General Procedure for Modeling Bioprocesses

Figure 2 displays a generalized method for modeling emerging topologies, consid-
ering the scaling-up from laboratory protocols to industrial-scale designs. The method
aims to channel data for the production processes at low maturity levels to boost R&D
phases to increase chances of attaining commercial success. Firstly, suitable processing path-
ways are screened based on available feedstock, yields, processing capacity, and potential
downstream units.

The second step is the generation of preliminary mass and energy balances. Here,
the scaling-up rules assist the process to new conditions (full-scale), bearing in mind its
variability and uncertainties, under its current performance (lab-scale). This transitional
procedure addresses the typical variations between lab-scale processes (low TRLs) and
full plant designs (high TRLs). For emerging processes for which industrial data is not yet
available, the method takes data from laboratory protocols, pilot-scale plants, and patents
to establish the inventory of chemicals [15].

The following phase is the rigorous simulation of the process technology using CAPE.
This stage requires data for process inventory, block diagrams, thermodynamic modeling,
and downstream units [27]. Specific sources of this data are process simulations, industrial
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reports, research articles, or chemical substances databases. Finally, process simulation
delivers informative data envisioning an operational, scaled-up technology, describing
parameters like the extended mass and energy balances, exergy flows, or CO2 emissions.
Process simulation also estimates thermodynamic properties, energy consumption, pro-
cess efficiency, and product yield. This information is crucial for assessing a technology
from a large-scale perspective, for planning, and for improving innovation early in the
R&D phases.
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Figure 2. A generalized scheme to generate process data of bioprocesses and emerging technologies
using process simulation.

2.2. A Step-Wise Framework for Simulating Bioprocesses

Thanks to the advance of computers, nowadays researchers can model systems using
in silico methods. In process design, it is a common practice to use process simulation soft-
ware like Aspen Plus (or Super Pro Design) to model chemical process systems. In this sense,
the methodology includes the use of these tools to model bioprocess systems. For the pur-
pose of this investigation, Aspen Plus v10 (Aspen Technology, Bedford, TX, USA) was used
to model the bioprocess systems. Many bioprocesses use biomass as feedstock for synthe-
sizing products, thus involving complex chemical reactions and mechanisms (biocatalysts,
microorganisms, and inhibitory effects). A comprehensive strategy for modeling and simu-
lating bio-based topologies is presented in order to perform rigorous simulations. Figure 3
shows the procedure proposed in this study for dealing with bioprocess simulation.
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Figure 3. An illustration of an implemented step-wise procedure in the simulation and modeling of
emerging bioprocesses.

The procedure acknowledges the relevance of understanding the particular character-
istics of bioprocess systems, since their attributes differ, in many ways, from the traditional
conception of conventional chemical processes. Reported data and laboratory experiments
reports are used as data about raw materials, their molecular structures, and chemical
compositions. Moreover, selecting suitable mathematical schemes and thermodynamic
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models that fit a system is crucial for its comprehension, given the absence of reliable and
generalized frameworks [18].

The second step is the definition and creation of active substances. Process simulation
tools commonly rely on a set of databases with properties of several compounds. In bio-
processes, carbohydrates, acetate, ash, and others are the primary constituent components
of biomass. Many of these substances do not exist in these databases. One could use
reported data on biomass processing to create those missing components [28]. The above
also depends on the requirements to search available components in databases, establishing
those that are not available and need to be created. It is advantageous to characterize the
components and to consider their molecular structure, component type, molecular formula,
and other features.

Defining biomass properties also can be performed using proximate, ultimate, and
sulfate analyses [29]. This approach helps simulate thermo-biochemical processes like
pyrolysis or gasification, allowing the system to be modeled based on the decomposition
of elemental constituents (H2, O2, C, N, and S) under the minimization of the Gibbs free
energy of formation [30]. Other aspects comprise data inclusion for particle size distribution
and other physical-chemical properties depending on the selected thermodynamic model.
Other models also include kinetics based approaches; extensively applied in gasification or
pyrolysis processes [31]. These initial stages might embrace additional features compared
to simulating well-established processes such as ethylene synthesis, methanol production,
and oil refining, making the modeling and simulation of bioprocesses a differential and
not-straightforward task [32].

Following the method, process flowsheets are drawn and simulation tuning are per-
formed. Flowsheets imply interconnecting process streams (mass, energy, or work) with
operating conditions and process inventory. Other features are the type of components han-
dled in the system. There could be conventional (fluids) and non-conventional compounds.
In the case of solids, particle size distribution could also be specified. Simulation tools deal
with streams generally featured as mixed global streams for simulating conventional fluids
associated with traditional chemical processing as a standard parameter. The following
steps focus on bio-reaction modeling, downstream processing, setting operating conditions,
and interconnecting mass, work, and energy streams with selected elements.

In the simulation tuning stage, the outcomes are checked to verify overall numeric
convergence. If needed, some changes can be made to reach higher accuracy. This step
tunes the process flowsheet by fixing the operating variable in separation systems and
other units. The final step is the process simulation verification. The evaluated technologies
are simulated at different TRLs. Thus, numerical verification might be challenging due
to the absence of reliable data. The methodology includes a forward-backward step that
provides feedback on simulation accuracy based on available data. Some sources of these
data are experiments, analytical characterizations, research articles, property databases, or
industrial reports. This procedure is developed from two perspectives: (i) comparison of
simulated properties for a key component with experimental data, and (ii) comparison of
the overall production yield compared with lab-scale or pilot plant data (low to mid TRLs)
and industrial production (high TRL). Therefore, if the evaluated accuracy is unsatisfactory,
the operating variables and selected models (including thermodynamics-based) must be
revised and adjusted until the simulation reaches the required accuracy levels.

2.3. Sustainability Assessment

Sustainability assessment is a tool to strategically examine emerging and bioprocesses
at different TRLs. This framework finds optimization hotspots at early R&D phases. In
sustainability evaluation and process optimization, there are associated tradeoffs that
must be faced [33]. As a result, making decisions toward global sustainability is not a
straightforward task. Different ways to avoid ambiguous conclusions involve Pareto-based
methods [34], spider diagrams [35], or aggregation for single indicators [36]. This work
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uses the approach employed by Sikdar et al. [37,38]. The carbon footprint is represented in
Equation (1) [38].

D =

∏
n

ci

yi −
(

xi,o − Co f f set

)
xi −

(
xi,o − Co f f set

)
1/n

(1)

D relates the aggregate sustainability metric based on index normalization and the

application of geometric mean for a process alternative,
yi−(xi,o−Co f f set)
xi−(xi,o−Co f f set)

is the normalized in-

dicator, ci represents the weighting factor, and n is the number of indicators. D provides the

statistical variation between assessed scenarios. This factor
yi−(xi,o−Co f f set)
xi−(xi,o−Co f f set)

involves show-

ing normalizing indicators as a deviation of current (ij) and expected (ij, worst) performance,
divided by the difference between reference values [39].

The sustainability footprint requires setting reference values for targeting process
performance. Benchmarking techniques, direct comparison, or expectations of decision-
makers might be direct ways to establish these parameters [40]. This method evaluates
several indicators, being a flexible and straightforward way of assessing global sustainabil-
ity. Sikdar et al. [38] used the geometric mean approach to calculate a multidimensional
sustainability metric, showing how far an index forms the best performance. This metric
indicates how close a system is to reaching its highest sustainability performance. Lower D
values reflect an improved sustainability behavior.

2.3.1. Technical Indicators

A set of indicators is evaluated to determine process performance from different areas
to support sustainability assessment. This characterization of indicators follows specific
objectives: (i) identification of current performance, (ii) finding hotspots and bottlenecks
in the system, (iii) overview of improvement areas for optimization. Table 1 summarizes
the selected indicators for supporting sustainability assessment in this work. Different
technical indicators are chosen to assess sustainability, including energy, process efficiency,
water management, and economy [41].

Table 1. Set of technical indicators for assisting sustainability assessment.

Indicator Formula Area Description

Energy intensity
(kW/kg p.) Ei =

Energy consumed
kg o f product

Energy The amount of energy needed for production

Material intensity
(kg/kg p.) Mi =

Total input mass
kg o f product

Process efficiency The total input material for producing the product

Water consumption
(m3/kg p.) Wc = Water consumed Water management The total water consumed in production

Total liquid waste
(m3/kg p.) Ww = liquid waste f low Water management Total liquid waste flows in production

Treatment cost
($USD/kg p.) C f w + C f f + Crg Economy Total cost of water management in production

Environmental sustainability is measured using the LCA methodology to analyze the
production system’s performance more thoroughly [42]. Midpoint impact categories are
used to link the cause–effect chain of an impact category, deliver indicators, and reflect the
effects of emissions or extractions in the system. This selection is made to include more
improvement areas in the sustainability assessment.

2.3.2. Life Cycle Assessment

The LCA is directed by the ISO 14040 and ISO 14044 standards [43]. The LCA method-
ology involves four main stages: goal and scope, life cycle inventory modeling, impact
assessment, and interpretation. The LCA was performed using the computational tool
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SimaPro 9.2.0.2 (PRé Sustainability, Amersfoort, The Netherlands). The ReCiPe 2016 was
selected as the impact assessment, aiming to establish the environmental sustainability
of the evaluated alternatives [44]. ReCiPe is a problem-oriented method for performing
comprehensive impact assessment, simplifying the interpretation phase in the cause–effect
chain [45]. The plant is assumed to be located in the North Colombia region, a primary
shrimp production cluster. The advantage of locating the processing plant near the col-
lection centers minimizes the impacts of logistics and transportation [46]. The LCA was
evaluated through a cradle-to-gate boundary, quantifying environmental impacts over the
scoped life cycle stages. This means assessing the production system from the extraction of
raw materials to the factory (biorefinery) gate [47]. Figure 4 displays the life cycle stages
for the production of chitosan from shrimp exoskeletons.
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Figure 4. Cradle to gate boundary for chitosan production.

The goal and scope aim to assess and estimate environmental impacts for the base case
and an optimized process to evaluate the improvement on the environmental sustainability
performance [48]. The functional unit is set to be 1 kg of chitosan. This functional unit
was selected considering the system boundaries (cradle to biorefinery gate) and the main
goal of the methodology. That is, the assessment and improvement of a process technology
around the factory level. Therefore, this functional unit will define the mass/energy flows
and impacts in terms of chitosan.

The life cycle inventory (LCI) is a crucial phase of an LCA study. This section includes
input and output data of assessed processes. The LCI was also set according to the average
data collected from the Ecoinvent 3.4 database and the data generated in process simulation.
The inventory consisted of input and output flows (material and energy) around the
system boundaries. The data were normalized based on the functional unit. For low to
mid TRLs processes, a lack of industrial-scale data is expected. Scale-up procedures and
early optimization strategies are needed to screen, assess, and improve the production
system [49]. The above requires connecting process modeling, sustainability assessment,
and process optimization to improve new emerging technologies. In this sense, process
modeling and simulation are directly linked with the LCI to generate data and run the LCA.

2.4. Process Optimization

The optimization of a bioprocess can be performed under different strategies with
different purposes and improvement areas. This optimization makes the process more
sustainable if a broader perspective is considered [50]. One cost-efficient way of reducing
freshwater consumption is through water recycling and regeneration networks. Waste wa-
ter streams are taken as inputs to manage water resources from outlet wastewater flows. The
water integration was performed by adapting the method proposed by Kamat et al. [51],
consisting of an optimization-oriented approach based on interceptor units and water
regeneration. The WRN was designed considering an optimization function by minimizing
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freshwater and the subsequent minimization of the total treatment cost. The economic min-
imization included freshwater, wastewater disposal, and regeneration costs. Figure S2 (in
the supplementary) shows a generic superstructure for minimizing water integration. More
details about the WRN synthesis algorithm are available in the Supplementary Materials.

3. Case Study: Chitosan Production from Shrimp Exoskeleton

This section presents process modeling of chitosan production from shrimp exoskele-
tons. The authors in [23] presented this process. Experimental data were used to scale up
and model this process topology to apply the proposed methodology. This data allowed
for the establishment of the preliminary mass and energy balances, production efficiency,
and the definition of interconnected units to synthesize the product. Then, we proceeded to
simulate the process using Aspen Plus software. Table S1, in the Supplementary Materials,
reports the inventory of chemical substances involved in this topology. This study chose
the “SOLIDS” model as the thermodynamic method for property estimation. The model
selection was made using the <Aspen Plus Property Estimation subroutine> and <Methods
Assistant option>, indicating the type of process and substances. This model was specific for
processes where solids are handled. This process comprises a pretreatment stage (wash-
ing, drying, and crushing), depigmentation, demineralization, protein rejection, and final
deacetylation. In the last unit, the chitin is transformed into chitosan. Figure 5 shows the
flow sheet diagram for the case study.
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Figure 5. Process diagram of chitosan production from shrimp shell waste.

Shrimp shells were directed to the washing unit for cleaning, then to dried and crushed
for particle size reduction. In a filter, treated shell wastes with particle-size higher than
0.5 mm were screened and extracted from the stream. The treated exoskeleton was sent
to depigmentation (with ethanol) and demineralization (hydrochloric acid). These stages
reject minerals and pigments (like astaxanthin) while preventing chitin hydrolysis [52]. The
treated material was deproteinized via sodium hydroxide, and thus converted into chitin.
This component is the primary precursor of chitosan. Partial deacetylation of chitin was
developed to obtain the product using sodium hydroxide [53].

A processing capacity of 64,000 MT/y was established, taking 10% of current shrimp
production for Colombia and adjacent countries that border the Pacific Ocean. Table S2
shows the chemical reactions for the primary process stages of the chitosan production
process [54]. Supplementary information (Figure S1) displays the process simulation
flowsheet for chitosan production from shrimp exoskeletons. Shrimp exoskeletons comprise
many components, including methyl palmitate, D-N-Acetylglucosamine, and water, as
summarized in Table S3. Table S4, in the Supplementary Materials, reports the material
flows of the main streams generated through simulations in Aspen Plus. This process
produces chitosan with a rate of 13,404 MT/y.

This case study assisted in testing the applicability of the method, considering the
absence of reported industrial data and that this process remains at low/mid TRLs. The
proposed strategy considers current limitations for emerging technologies to be scaled
up and compared to evaluate their performance for further optimization. The method
overcomes this condition by estimating the physical-chemical properties of key components
in the modeled topological pathway. The method compares properties with experimental
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data for chitosan (main product) in the case study. Table 2 shows the detailed validation of
the selected model for chitosan extraction from shrimp exoskeleton.

Table 2. Physical-chemical properties of chitosan provided by Aspen Plus® modeling.

Property Unit Simulation Experimental Accuracy (%)

Molecular weight g/mol 322.32 310.00 96.17
Heat capacity Cal/mol K 132.80 135.00 98.37

Production yield kg/kg 0.21 0.212 98.59

Table 2 indicates that molecular weight reaches high accuracy (>90%) compared
them with experimental values found in the literature [55]. This simulation shows an
accuracy of 98.37% for heat capacity, considering the experimental value reported by
Ibrahim et al. [56]. Furthermore, study [57] developed an extraction process of chitosan
from shrimp exoskeleton at the lab-scale, reaching a production yield of a 0.213 g/g shrimp
exoskeleton. This simulation shows accuracy for this variable of 99%.

4. Sustainability Assessment

A sustainability assessment was performed for chitosan production (base case) from
shrimp exoskeletons based on the data generated in the previous step (process modeling
and simulation) and the sustainability footprint. This evaluation analyzed data from
economic, environmental, and energy perspectives. As different areas were assessed,
economic and environmental performance, and process efficiency data were needed. Two
process configurations were assessed under the described assessment, bearing in mind the
base case design performance and the possibility of optimizing it via WRN.

4.1. Base Design

The first alternative evaluated in this study was the baseline design using the configu-
ration described in the methods section. Process simulation provides data and performance
indicators for several technical areas of a production system. In this work, an improved
alternative and the base design were assessed and compared. The application of green
chemistry principles and water integration helped improve the system for a more sustain-
able design. Different metrics were selected, including energy intensity, material intensity,
water consumption, improvement cost, and CO2 emissions. Cost evaluation was mea-
sured, considering the total treatment/improvement cost that counts the freshwater (c f ),
regeneration (creg), and disposal of wastewater (cw) costs, as the goal was to improve the
sustainability performance of the system. These values were fixed at 1 USD/t, 0.5 USD/t,
and 0.5 USD/t, respectively [51]. For the base case, the economic cost corresponded to
the sum of the freshwater supply and wastewater disposal costs. Energy consumption
(intensity) was also measured in this approach. The cost of energy used per treated water in
water regeneration was estimated assuming these units were operating as stream strippers
and a corresponding energy consumption of 7.5 × 10−5 kW/kg of regenerated water was
considered [58].

4.2. Optimized Design: Including a WRN

Reduction in water consumption is one of the principles of green chemistry. Con-
sequently, the first alternative for optimizing this process was to design a WRN. The
installation of a WRN reduces used freshwater resources, material intensity, and offers a
better environmental profile from a global perspective [59]. Wastewater, identified with Si
(S1, S2, S3, S4, S5, S6), and freshwater, identified with Di (D1, D2, D3, D4, D5, D6, D7, D8,
D9, D10, D11, D12, D13, D14) were suitable for the WRN. More details of the WRN for
this case are described in the Supplementary Materials. Current freshwater demand is
1,123,034.2 kg/h, which indicates that water consumption in this process is extremely
high. Conversely, wastewater of the baseline design is 1,113,917.61 kg/h, which indicates
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a huge potential of reducing freshwater input. The minimum freshwater requirement is
zero (100% reduction). Figure 6 displays the optimized WRN for the chitosan process. To
design a WRN, pollutants are measured as a single group of contaminants, simplifying a
single-contaminant problem. So, Ci represents pollutants that might compromise product
purity if they were to re-enter the process. Table S5 summarizes the available streams
for the WRN with their corresponding mass flow, concentration of pollutants, and types
of streams.
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The WRN employs regeneration units to reject the pollutants in water and reduce
the concentration below the required value. In order to avoid compromising the product
integrity, this value was set as Creq ≤ 0.5%. If Ci ≤ Creq, the wastewater streams can be
directed to a source supply, bypassing the regeneration units. If the above condition was
not met, the wastewater stream was sent to a regeneration unit and then directed to a source
supply. The tradeoff of designing a WRN is that the system improves water consumption,
but installing regeneration units demands an economic effort. The WRN reached the
minimum freshwater target, regenerating 269,646.90 kg/h through two regeneration units
and generating a total directly recycled water mass flow of 853,387.29 kg/h. The optimized
design comprises six sources and fourteen demands, and employs two regeneration units
to achieve water-saving objectives. Table S6 summarizes water flows and interconnecting
streams for the optimized WRN.

5. Comparison of Alternatives

The sustainability footprint was estimated for the base and optimized designs to
check the tradeoffs and performance. This allows a genuine determination of whether
the improvement made in the design is worth the effort in terms of global sustainability.
Table 3 summarizes the results of the evaluated indicators for both designs. As expected,
there was a tradeoff between the current costs of disposal and fresh water in the water
management of the plant. These results provide evidence that improving water resources
through WRN might require an additional economic effort. However, the potential of
water recycling in this system is vast, and the inclusion of the WRN highly improved
the design’s environmental and efficiency performances. In addition to the clear tradeoff
between treatment cost and water-saving metrics, energy use is another variable that might
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be changed by the WRN. There is a duty to operate the water regeneration units, so a higher
energy consumption is obtained in the optimized design.

Table 3. Summary of technical indicators for design alternatives.

Process
Alternative

Energy Intensity
(kW/kg p.)

Material Intensity
(kg/h/kg p.)

Water
Consumption
(kg/h/kg p.)

Total Volume of
Liquid Waste

(m3/kg p.)

Treatment Cost
(USD/kg p.)

Base design 107.78 1175.05 809.60 805.88 704.60
Optimized design 128.71 369.17 3.72 0.00 913.82

LCA was used to evaluate the environmental performance of the chitosan production
process using a cradle-to-gate approach. Process simulations provided life cycle inventory
based on the defined system. Table S7 shows the LCI for the base case and the optimized
design. The Ecoinvent database was used as the primary source of background data. More
details are given in the supplementary file (Table S8). The plant location was assumed to
be in the Northern Colombia region (Bolivar, Colombia), where the availability of the raw
material is the highest in in Colombia [24]. In order to decrease the potential environmental
impacts of chitosan production derived from transportation, the plant was assumed to be a
centralized facility [46].

The environmental impacts of each chitosan process alternative assessed by LCA
are summarized in Table 4. Relative performances are also highlighted in Table 5, with
red indicating higher impacts and blue indicating lower impacts. The contribution of
the optimized process in most of the categories was slightly lower than in the base case.
Although the WRN improved the overall outcome at the process boundary, the difference
between both alternatives was not extraordinarily high from a life cycle perspective.

Table 4. Environmental impacts of chitosan process alternatives based on ReCiPe End-point 2016.

Impact Category Unit Base Case Optimized Case

Global warming, Human health DALY 7.13 × 10−4 7.12 × 10−4

Global warming, Terrestrial ecosystems species.yr 1.43 × 10−6 1.42 × 10−6

Global warming, Freshwater ecosystems species.yr 3.89 × 10−11 3.88 × 10−11

Stratospheric ozone depletion DALY 6.41 × 10−7 6.41 × 10−7

Ionizing radiation DALY 6.63 × 10−8 6.62 × 10−8

Ozone formation, Human health DALY 1.46 × 10−7 1.45 × 10−7

Fine particulate matter formation DALY 8.71 × 10−5 8.70 × 10−5

Ozone formation, Terrestrial ecosystems species.yr 2.10 × 10−8 2.10 × 10−8

Terrestrial acidification species.yr 1.17 × 10−7 1.1710−7

Freshwater eutrophication species.yr 1.13 × 10−8 1.13 × 10−8

Marine eutrophication species.yr 9.54 × 10−11 9.54 × 10−11

Terrestrial ecotoxicity species.yr 2.29 × 10−9 2.29 × 10−9

Freshwater ecotoxicity species.yr 1.92 × 10−9 1.91 × 10−9

Marine ecotoxicity species.yr 1.31 × 10−6 1.31 × 10−6

Human carcinogenic toxicity DALY 4.01 × 10−4 3.98 × 10−4

Human non-carcinogenic toxicity DALY 2.32 × 10−3 2.31 × 10−3

Land use species.yr 2.88 × 10−7 2.88 × 10−7

Mineral resource scarcity USD2013 0.07 0.07
Fossil resource scarcity USD2013 5.92 5.91

Water consumption, Human health DALY 1.37 × 10−6 1.40 × 10−6

Water consumption, Terrestrial
ecosystem species.yr 1.28 × 10−8 1.24 × 10−8

Water consumption, Aquatic ecosystems species.yr 8.17 × 10−12 6.97 × 10−12
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Table 5. Environmental impacts of damage categories for chitosan process alternatives.

Damage Category Unit Base Case Optimized Design

Human health DALY 3.52 × 10−3 3.51 × 10−3

Ecosystems species.yr 3.19 × 10−6 3.18 × 10−6

Resources USD2013 5.99 5.98

Significant differences in the resulting environmental performance were observed in
the water management categories, as expected. As the optimization focused on reducing
water resources, the assessment evidences an improvement in this area. In addition, the
damage categories were estimated and used for the sustainability evaluation since these
can be used as straightforward tools to better inform decision-makers about environmental
sustainability performance. Table 5 reports the results of the damage categories for the
assessed alternatives. For easier comparison, normalized impacts were used to show the
environmental performance of both alternatives based on the damage categories.

The sustainability footprint was then calculated to minimize the existing tradeoffs,
giving a single number that embodies the overall sustainability. The technical indicators
(described in Table 3) and damage categories (human toxicity, ecosystems, and resources)
were used in the sustainability assessment to determine the sustainability footprint metric.
Figure 7 shows a radial chart with the normalized performance of the indicators evaluated
for both alternatives. In this case, the higher the normalized impact (between 0% to 100%),
the lower the environmental performance. The weighting factors were set equal to unity,
reflecting an egalitarian relevance of each parameter and Co f f set was fixed at 10. The
resulting D for the base case was 1.0 since it is the reference parameter for comparing the
alternatives, and the weighting factors were set to be 1.0. The sustainability footprint based
on the geometric mean would change if the weighting factors were different to unity. Any
design with higher values than the base case had a worse sustainability performance, while
magnitudes below the base case represent improved performance. The optimized design
showed D = 0.33, indicating better a sustainability performance than the base case. This
result indicates that the extra effort of installing the WRN was efficient and improved the
overall sustainability performance of the process.
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A second scenario was tested to analyze the variation in the sustainability footprint
if the weighting factors were changed to reflect another prioritization. In this case, the
analysis split the relevance grouping indicators into the following areas: energy, efficiency,
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water management, life cycle (environment), and economy. In this sense, water manage-
ment includes indicators for measuring water-recycling performance. Each main area
corresponded to a weighting factor of 1.0 (economy, energy, and efficiency), while water
management and life cycle split their weighting factors between their corresponding indi-
cators (0.5 for each water management indicator and 0.33 for each environmental impact
category). The results of this scenario reflect D = 0.55 for the base case and D = 0.18 for
the optimized case. In this scenario, the best choice based on sustainability performance
was still an optimized design. These outcomes enhance the conclusion given for the first
evaluated scenario, where the optimized design remains the best alternative and was
genuinely an improved version of the initial design.

6. Conclusions

Considering sustainability in the biochemical and bioprocess industries improves
the performance of new process technologies and bio-based products. Even though re-
searchers worldwide claim that bio-based production is intrinsically sustainable, R&D
must be guided to consider the challenges and tradeoffs to lead biochemical production
innovations toward commercialization. Consequently, performing process modeling, sus-
tainability assessment, and process optimization early in the design phases can accelerate
biochemical production. Considering this need, a generalized method to generate process
data in bioprocess systems was presented. The methodology described a particular strat-
egy for simulating bioprocesses using CAPE. Performing integrated methods based on
process simulation, sustainability assessment, and optimization would assist researchers in
foreseeing future bioprocess performance to meet resource conservation and sustainability
targets. The presented methodology was tested using chitosan production from shrimp
exoskeletons as an emerging bioproduct with applications in many sectors.

Two process alternatives were assessed: (1) the base case and (2) an optimized case
using WRN. The water regeneration network reduced water consumption in the system,
minimizing the used freshwater supply. This meant a decrease of 100% in freshwater flow
with a total quantity of regenerated water of 269,646.90 kg/h using two regeneration units
and a total directly recycled water mass flow of 853,387.29 kg/h. The optimization was
complemented with a sustainability assessment that included LCA and the evaluation of
efficiency indicators and water integration costs. The results showed that the optimized
design had better performance in water management and process efficiency from a multidi-
mensional perspective. Conversely, the costs were moderately higher in this alternative
due to the installation of the WRN. The optimized design was a better alternative with
lower impacts and higher performance based on the sustainability footprint results. For
future works, coupling the quantitative sustainability, process modeling, and optimization
with data-driven methodologies might be an innovative way to introduce novelty in R&D
phases, while improving the sustainability performance of emerging bioprocesses. Addi-
tionally, novel methodologies could be extended to the next level to address uncertainties,
reducing the lack of data and increasing the accuracy of bio-based production systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym14010025/s1. Table S1: Inventory for simulation of chitosan production from shrimp
exoskeleton, Table S2: Chemical reactions of chitosan extraction from shrimp exoskeleton, Table S3:
Raw material composition for chitosan production from shrimp exoskeleton, Table S4: Main mass
flows of chitosan production from shrimp exoskeleton, Table S5: Stream classification for applying
WRN, Table S6: Summary of interconnecting flows for the WRN in chitosan production, Table S7.
LCI for base case and optimized design, Table S8: Sources of background data, Figure S1: Simulation
flowsheet of chitosan production from shrimp exoskeleton, Figure S2: Generic superstructure for the
water regeneration network.

https://www.mdpi.com/article/10.3390/polym14010025/s1
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