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Bacterial species in the genus Xanthomonas infect virtually all 

crop plants. Although many genes involved in Xanthomonas 
virulence have been identified through molecular and cellular 

studies, the elucidation of virulence-associated regulatory 

circuits is still far from complete. Functional gene networks 

have proven useful in generating hypotheses for genetic fac-

tors of biological processes in various species. Here, we pre-

sent a genome-scale co-functional network of Xanthomonas 
oryze pv. oryzae (Xoo) genes, XooNet (www.inetbio.org/ 

xoonet/), constructed by integrating heterogeneous types of 

genomics data derived from Xoo and other bacterial species. 

XooNet contains 106,000 functional links, which cover ap-

proximately 83% of the coding genome. XooNet is highly 

predictive for diverse biological processes in Xoo and can 

accurately reconstruct cellular pathways regulated by two-

component signaling transduction systems (TCS). XooNet will 

be a useful in silico research platform for genetic dissection of 

virulence pathways in Xoo. 
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INTRODUCTION 
 

Xanthomonas is a large genus of Gram-negative plant path-

ogenic bacteria comprised of more than 30 species that 

collectively infect approximately 400 plants (Hayward, 1993; 

Parkinson et al., 2007). Xanthomonas species cause serious 

diseases in diverse hosts including many economically im-

portant crops such as rice, tomato, citrus and banana (Boch 

and Bonas, 2010). An important goal of bacterial research is 

to identify genes and networks that facilitate infection. For 

example, it is now well known that bacteria sense and re-

spond to dynamic environmental changes using two-

component signaling transduction systems (TCSs) (Bae et al., 

2017; Kofoid and Parkinson, 1988). TCSs consist of two 

proteins: a membrane-bound histidine kinase (HK) that rec-

ognizes a specific stimulus and a corresponding response 

regulator (RR) that is phosphorylated by a HK and transcrip-

tionally regulates the downstream gene expression (Hoch, 

2000). Xanthomonas genomes encode a large number of 

TCSs (>100) (Barakat et al., 2009). 
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TCSs control diverse aspects of biological function in bacte-

ria. For example, RpfC and RpfG (regulation of pathogenicity 

factors C and G) are well characterized TCSs in Xanthomo-
nas (Slater et al., 2002). At high cell density, RpfC perceives 

the quorum sensing diffusible signal factor and RpfG trans-

duces the signal to activate gene expression (Slater et al., 

2002). The RpfC/RpfG system has been associated with 

biofilm formation, motility, extracellular enzyme and extra-

cellular polysaccharide production, and virulence (He and 

Zhang, 2008). 

Although many genes involved in bacterial virulence have 

been identified through molecular and cellular studies, elu-

cidation of virulence-associated processes of Xanthomonas 
is still far from complete. For example, we recently demon-

strated that Xanthomonas oryzae pv. oryzae (Xoo) carries a 

set of “rax” genes that are required for activation of XA21-

mediated immunity and also for virulence (Pruitt et al., 2017; 

Pruitt et al., 2015). These genes include raxX, which encodes 

a small sulfated protein that activates XA21 immune recep-

tor (Pruitt et al., 2015; Song et al., 1995). RaxX is sulfated by 

the tyrosine sulfotransferase RaxST (da Silva et al., 2004; 

Han et al., 2012; Pruitt et al., 2015) and secreted by the 

RaxABC type I secretion system that consists of a membrane 

fusion protein RaxA, an ATP-binding cassette (ABC) trans-

porter RaxB, and an outer membrane protein RaxC (da Silva 

et al., 2004; Luu et al., 2018). Xoo strains carrying a single 

knockout in any of these genes compromise the ability of 

Xoo to activate rice XA21-mediated immunity (da Silva et al., 

2004; Dee et al., 2018; Pruitt et al., 2015; Song et al., 1995). 

Despite detailed knowledge on the genes controlling the 

biosynthesis, processing and secretion of the active form of 

RaxX, the regulatory circuits controlling gene expression 

have not yet been identified. 

A comprehensive understanding of regulatory circuits con-

trolling bacterial virulence requires insight into the collabora-

tive and regulatory interactions among multiple genes. Mo-

lecular interaction networks have proven useful in such en-

deavors (Cowen et al., 2017). Large-scale molecular net-

works have been constructed for many organisms, spanning 

from unicellular microbes to human and crops, by both ex-

perimental and computational approaches. However, exper-

imental mapping of molecular interactions has been con-

ducted in only limited number of species. 

The availability of data from functional genomics, compar-

ative genomics, and proteomics facilitates a genome-wide 

scale analysis of gene function. Because datasets from each 

technique are incomplete, error-prone, and limited in sensi-

tivity, a single dataset alone is insufficient to fully describe a 

particular biological process. However, such datasets can be 

integrated to generate a more accurate and comprehensive 

view of gene function than is contained in any single dataset. 

For example, genome-scale co-functional networks have 

enabled effective integration of heterogeneous genomics 

data, significantly enhancing both accuracy and comprehen-

siveness of the molecular network models (Shim et al., 

2017). These networks can then be utilized for prioritizing 

candidate genes for biological processes or complex traits of 

interest. For example, genome-scale co-functional networks 

for Pseudomonas aeruginosa, a human pathogenic bacte-

rium, were used to identify novel genes for virulence and 

antibiotic-resistance (Hwang et al., 2016). However, to the 

best of our knowledge, an experimentally validated ge-

nome-scale co-functional network for Xoo has not yet been 

reported. 

In this study, we present a genome-scale co-functional 

network of Xoo, XooNet, which was constructed by inte-

grating 10 distinct types of genomics data derived from Xoo 

as well as several other bacterial species. XooNet contains 

106,000 functional links among 3,615 Xoo genes, which 

covers approximately 83% of the coding genome. We 

found that XooNet is predictive for many biological process-

es and could reconstruct regulatory circuits that are con-

trolled by TCSs. Network information and network-based 

hypothesis generation tools are freely available from a web 

server (www.inetbio.org/xoonet/), which will be a useful 

resource for the research community. 

 

MATERIALS AND METHODS 
 

Xanthomonas oryzae pv. oryzae genome and functional 
annotation data 
The genome set of Xoo for the network construction was 

obtained from National Center for Biotechnology Infor-

mation genome database (ftp://ftp.ncbi.nlm.nih.gov/ge-

nomes/) as of April 2015. Xoo genome had a total of 4,798 

genes, of which 4,375 was protein coding genes. We used 

Gene Ontology (The Gene Ontology Consortium, 2015) terms 

for functional annotations of Xoo protein coding genes. 

 

Gold-standard co-functional gene pairs for network 
construction 
Co-functional gene networks were constructed by super-

vised machine learning processes, which require gold-

standard data for benchmarking inferred models. Gold-

standard data play critical roles in error-tolerant and unbi-

ased learning. We compiled 11,669 positive gold-standard 

co-functional gene pairs from Gene Ontology Biological 

Process (GOBP) annotations (http://www.jcvi.org/cms/re-

search/past-projects/cmr/overview/), by pairing genes anno-

tated for the same GOBP terms. Gold standard gene pairs 

were derived from all GOBP terms except five terms for 

broadly inclusive pathway concepts—biological process 

(GO:0008150), DNA-mediated transposition (GO:0006313), 

metabolic process (GO:0008152), transport (GO:0006810), 

DNA-dependent regulation of transcription (GO:0006355)—

to avoid between-pathway gene pairs. In addition, we com-

piled 18,174 gene pairs from Kyoto Encyclopedia of Genes 

and Genomes (KEEG) pathway annotations (Kanehisa et al., 

2016) with exclusion of three KEGG pathways that are in-

clusive pathway concepts—metabolic pathway (xoo: 01100), 

biosynthesis of secondary metabolites (xoo: 01110), micro-

bial metabolism in diverse environments (xoo: 01120). We 

then combined these two sets of gold-standard gene pairs 

into a total of 27,250 positive gold-standard gene pairs. We 

also generated 1,167,035 negative gold-standard gene pairs 

by pairing the 1,546 annotated genes that have no shared 

GOBP or KEGG terms. These gold-standard gene pairs were 

used for machine learning processes to construct XooNet. 
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To evaluate the constructed network, we generated an-

other gold standard functional gene pairs based on MetaCyc 

pathway database (Caspi et al., 2016) independently. We 

generated 7457 and 250,664 gene pairs for positive and 

negative gold standard data sets, respectively. For the evalu-

ation of network capacity to retrieve known genes for each 

pathway, we used only 145 MetaCyc pathway terms that 

have no less than five member genes. 

 

Benchmarking and integrating co-functional networks 
We benchmarked inferred co-functional gene pairs for given 

genomics data (D) for likelihood of being involved in the 

same process using log-likelihood score (LLS) scheme, which 

is based on Bayesian statistics (Lee et al., 2004). 

 

Where P(L┃D) and P(￢L┃D) represent the frequencies of 

positive and negative gold-standard gene pairs for the given 

evidence of genomics data such as protein-protein interac-

tion and co-expression, respectively. P(L) and P(￢L) repre-

sent the total frequencies of positive and negative gold-

standard gene pairs, respectively. 

If there was no data intrinsic score associated with the in-

ferred gene pairs, the calculated LLS for the entire set of gene 

pairs was assigned to each of them. For data sets in which 

each gene pair is associated with a continuous score (e.g., 

correlation coefficient, mutual information, etc.), we calcu-

lated LLS scores for bins containing equal numbers of gene 

pairs. Those LLS scores and their corresponding data intrinsic 

scores (as the mean data scores for a bin) were used to find 

regression models, which were then used to map individual 

data intrinsic scores to LLS scores in a continuous manner. 

Inferred co-functional links with assigned LLS were then 

integrated by a weighted sum (WS) scheme (Lee et al., 

2004), a variant of naïve Bayesian integration approach that 

can handle data correlation to some extend by integrating 

data with differential weights. 

 

where L0 represents the highest LLS for the given link, i is 

rank order index for the remained LLSs, and W is a free pa-

rameter accounting for the relative degree of independence 

among the data sets. T indicates the threshold of minimum 

LLS to be considered for integration. The free parameter W 

ranges from 1 to +∞, and is optimized to maximize overall 

performance (measured by the area under a precision-recall 

curve) of the integrated network. 

 

Co-functional links inferred from co-expression in 
Xoo (XO-CX) 
Co-expressed genes across various biological conditions are 

likely to be co-regulated genes for a process. We inferred co-

functional links from co-expression across Xoo microarray 

samples deposited in Gene Expression Omnibus (GEO) 

(Barrett et al., 2013). We analyzed eight GEO series and 

could infer gene pairs that are highly likely to be co-

functional by co-expression pattern from three GEO series 

comprising 60 expression samples in total: GSE9640, 

GSE12099, and GSE24989. These three co-expression net-

works for each data sets were then integrated in a single 

network for co-expression analysis. 

 

Co-functional links inferred from domain profile 
associations (XO-DP) 
Protein domain is a structural and functional unit of protein. 

Therefore, proteins for similar function tend to have similar 

domain composition. We constructed domain profiles for 

coding genes of Xoo using InterPro database (Mitchell et al., 

2015). We previously developed weighted mutual infor-

mation (WMI) measure, which robustly infers co-functional 

links based on domain profile associations by giving more 

weights to the rarer domains during mutual information 

(MI) computation (Shim and Lee, 2016). The WMI measure 

takes more weight for rarer domains on the assumption that 

rarer domains are likely to have higher pathway specificity. 

 

Co-functional links inferred from gene neighborhood 
(XO-GN) 
In prokaryotic genomes, genes operating for the same pro-

cess are often encoded as a co-transcriptional gene cluster, 

called operon. Therefore, we may infer co-functional gene 

pairs by their genomic proximity across prokaryotic genomes 

(Dandekar et al., 1998). We previously found that two 

measures of gene neighborhood, distance-based gene 

neighborhood (DGN) and probability-based gene neighbor-

hood (PGN), are complementary and their integration can 

increase coverage and accuracy of co-functional network 

based on gene neighborhood (Shin et al., 2014). We in-

ferred two co-functional networks by DGN and PGN across 

1,626 prokaryotic genomes as described in our previous 

work (Shin et al., 2014), then integrated them into a single 

network for gene neighborhood. 

 

Co-functional links inferred from phylogenetic profile 
associations (XO-PG) 
Functionally coupled genes are often gained and lost during 

speciation by their functional constraints. Therefore, we may 

infer co-functional links by similarity of phylogenetic profiles 

which are patterns of presence and absence of homologous 

genes in many other species genomes (Kensche et al., 2008). 

We refer to these species used to construct the phylogenetic 

profiles as reference species. We previously found that this 

network inference could be more effective with phylogenet-

ic profiles for each domain of tree of life: Archaea, Bacteria, 

and Eukarya (Shin and Lee, 2015). Therefore, we construct-

ed phylogenetic profiles for each of the three domains based 

on the best BLASTP hit score of all Xoo coding genes in a 

given reference species. We measured association between 

phylogenetic profiles by mutual information (MI) analysis 

(Shin and Lee, 2017) and could infer co-functional networks 

that pass benchmarking analysis from two domains: Ar-

chaea comprising 122 species and Bacteria comprising 

1,626 species. The two co-functional networks were then 

integrated to a single functional gene network for phyloge-

netic profiles. 
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Co-functional links transferred from other species 
(Associalogs) 
As functional genes are evolutionarily conserved between 

species (orthologs), functional associations between genes 

can also be evolutionarily conserved between species (asso-

cialogs)(Kim et al., 2013). To identify orthology relationships, 

we used inparanoid (Sonnhammer and Ostlund, 2015) algo-

rithm which includes inparalogous relationships for gene 

pairs with similar functions. We then identified evolutionarily 

conserved co-functional links between two species with the 

following inparanoid weighted LLS (IWLLS): IWLLS (A-B) = 

LLS (A′-B′) + ln(inparanoid score of A-A′) + ln(inparanoid 

score of B-B′), where A and B are Xoo genes and A′ and B′ 
are orthologous genes in other species. Using associalog 

concept, we could transfer five co-functional networks from 

high-throughput protein-protein interactions for five bacte-

rial species: Escherichia coli (Kim et al., 2015), Campylobac-
ter jejuni (Parrish et al., 2007), Helicobacter pylori (Rain et al., 

2001), Mycoplasma pneumoniae (Kuhner et al., 2009), Syn-
echocystis sp. strain PCC6803 (Sato et al., 2007). These five 

networks were then integrated into a single network for 

bacterial high-throughput protein-protein interactions (BA-

HT). We transferred three co-functional networks between E. 
coli genes from our previously published EcoliNet (Kim et al., 

2015): co-citation (EC-CC), co-expression (EC-CX), literature 

curated protein-protein interaction (EC-LC). We also trans-

ferred two co-functional networks between Pseudomonas 
genes from our published PseudomonasNet (Hwang et al., 

2016): co-citation (PA-CC), co-expression (PA-CX). 

 

Bacterial culture and growth conditions 
Xoo Philippine strain PXO99, hereafter called Xoo, were 

grown on peptone sucrose agar (PSA) plates [1% peptone, 

1% sucrose, 0.1% sodium L-glutamate, 1.5% agar] at 28℃ 

with appropriate antibiotic(s) during 3 days before further 

assays. For the Xoo gene expression analysis, full grown Xoo 

strains were harvested from PSA plates and resuspended 

into Peptone sucrose broth (PSB) medium [1% peptone, 

1% sucrose, 0.1% sodium L(+)-glutamate] at a density of 

10
7
 CFU/ml. Xoo strains in 5 ml of liquid culture were incu-

bated for 24 hours at 28℃ with shaking at 230 rpm (≥10
8
 

CFU/ml). The antibiotics were used at the following concen-

trations (μg/ml): cephalexin, 20; spectinomycin, 50. 

 

Xoo mutation 
To generate a Xoo mutant, a partial gene fragment was 

amplified by Polymerase chain reaction (PCR) and cloned in 

to the suicide vector pJP5603 carrying a modified antibiotic 

resistance gene from Kan
R
 to Spec

R
 (Pruitt et al., 2015). Each 

construct was introduced in Philippine race 6 strain PXO99 

by electroporation for single crossover and the transformed 

cells were plated to PSA with spectinomycin. Colonies with 

spectinomycin-resistant were selected and validated by PCR. 

The primers used for these cloning are listed in Supplemen-

tary Table S1. 

 

Gene expression analysis by RT-qPCR 
To analyze the differential expression levels of PXO_RS05990 

(raxX), PXO_RS06005 (raxST ), PXO_RS06010 (raxA), 

PXO_RS06015 (raxB), PXO_RS20460 (raxC), and 

PXO_RS14825 (pctB) genes in Xoo PXO99 strains, quantita-

tive reverse transcription PCR (RT-qPCR) was carried out. 

Xoo strains were cultured in the indicated liquid media and 

harvested by centrifugation. RNA was extracted from the cell 

pellets using TRIzol Max bacterial RNA isolation kit fol-

lowing the manufacturer’s instructions (Invitrogen Corp., 

USA). The RNA samples were reverse-transcribed to cDNA 

using a cDNA synthesis kit (Invitrogen Corp.). For quantita-

tive PCRs, cDNA was analyzed using the Bio-Rad SsoFast 

EvaGreen Supermix. All primer pairs (Supplementary Table 

S1) were run using the same cycling parameters: initial dena-

turation at 95℃ for 3 min, followed by 40 cycles with an-

nealing and amplification at 62℃ for 20 s and denaturation 

at 95℃ for 5 s. The expression levels of Xoo genes were 

normalized to PXO_RS14730 gene expression levels. 

 

Rice growth and Xoo inoculation 
Oryza sativa ssp. Japonica rice variety Taipei309 (TP309) and 

transgenic line of TP309 carrying XA21 driven by its own 

promoter (XA21-TP309) were used for rice inoculations. 

Rice seeds were germinated in the germination paper (Nas-

co, USA) with distilled water at 28℃ for 1 week. The seed-

lings were transplanted into 5.5-inch square pots with sandy 

soil (80% sand and 20% peat (Redi-Gro)) in a greenhouse. 

Plants were grown in tubs filled with fertilizer water [N, 58 

ppm (parts per million); P, 15 ppm; K, 55 ppm; Ca, 20 ppm; 

Mg, 13 ppm; S, 49 ppm; Fe, 1 ppm; Cu, 0.06 ppm; Mn, 0.4 

ppm; Mo, 0.02 ppm; Zn, 0.1 ppm; B, 0.4 ppm] for 4 weeks, 

followed by water for 2 weeks. Six weeks old plants were 

transferred to a growth chamber (28℃/24℃, 80%/85% 

humidity, and 14/10-hour lighting for the day/night cycle) 

for Xoo inoculation. 

Plants were inoculated by Xoo strains using the scissors 

clipping method. Xoo strains from PSA plates were resus-

pended into water at a density of 10
8
 CFU/ml. Water-soaked 

lesions were measured 14 days after inoculation. 

 

RESULTS AND DISCUSSION 
 

Construction of co-functional networks for Xoo 
The workflow of the construction of XooNet is summarized 

in Fig. 1A and described in detail in the Material and Meth-

ods section. We constructed four component networks from 

Xoo-specific genomics sources that reflect functional associ-

ation between genes: co-expression in Xoo (XO-CX), do-

main profile associations between Xoo coding genes (XO-

DP), gene neighborhood (XO-GN), and phylogenetic profile 

associations between Xoo genes (XO-PG). To enhance accu-

racy and coverage of the network, we also utilized ortholo-

gy-based transferred associalogs from other bacteria: high 

throughput protein-protein interactions in five bacterial spe-

cies (BA-HT), co-citation of Escherichia coli (E. coli) gene 

names in Pubmed articles (EC-CC), co-expression of E. coli 
genes (EC-CX), literature-curated protein-protein interac-

tions in E. coli (EC-LC), co-citation of P. aeruginosa gene 

names in Pubmed articles (PA-CC), co-expression of P. aeru-
ginosa genes (PA-CX). We then benchmarked all ten com-

ponent networks using Bayes statistics framework (Lee et al., 



A Genome-Scale Co-Functional Network of Xanthomonas Genes 
Hanhae Kim et al. 
 
 

170  Mol. Cells 2019; 42(2): 166-174 

 
 

Fig. 1. The construction and quality assessment 

of XooNet. (A) Schematic overview of the con-

struction process of XooNet. The functional 

associations are inferred from the ten distinct 

data types and integrated into the XooNet. (B) 

XooNet was assessed against test gene pairs 

based on MetaCyc pathway annotation. The 

graph represents the fold enrichment for the 

test gene pairs compared with random gene 

pairs and its corresponding coding genome 

coverage for every 1,000 links. (C) Area under 

ROC curve (AUC) was measured to evaluate 

retrieval efficacy of known genes for each of 

MetaCyc pathway terms or random gene sets 

using XooNet. We used only 145 MetaCyc 

pathway terms that have no less than five 

member genes. 

A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B                             C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Table 1. Component networks from ten distinct data type in XooNet 

Code Description #links 

XO-CX Inferred co-functional network from co-expression in Xoo 12,269 

XO-DP Inferred co-functional network from similarity of domain profiles between two Xoo coding genes 3,078 

XO-GN Inferred co-functional network from gene neighborhood of Xoo orthologs across prokaryotic genomes 18,487 

XO-PG Inferred co-functional network from similarity of phylogenetic profiles between two Xoo genes 36,244 

BA-HT Associalogs transferred from high-throughput protein-protein interactions in five bacterial species 5,522 

EC-CC Associalogs transferred from co-citation of E. coli genes in Pubmed articles 19,210 

EC-CX Associalogs transferred from co-expression of E. coli genes 20,283 

EC-LC Associalogs transferred from literature-curated protein-protein interactions in E. coli 828 

PA-CC Associalogs transferred from co-citation of P. aeruginosa genes in Pubmed articles 10,929 

PA-CX Associalogs transferred from co-expression of P. aeruginosa genes 6,808 

XooNet An integrated co-functional network for Xoo 106,000 

 

 

 

2004) with gold-standard functional gene pairs as described 

in Material and Methods section. The unified scoring scheme 

enabled integration of the functional links from heterogene-

ous data, resulting in the final integrated co-functional net-

work, XooNet, which contains 106,000 links and 3,615 Xoo 
genes (~83% of all coding genes). The integrated XooNet 

and the ten component networks are summarized in Table 1. 

XooNet is highly predictive for cellular pathways 
To evaluate the quality of XooNet, we need to use another 

co-functional gene pairs as a test data set to avoid overfit-

ting models. For the network assessment, we compiled co-

functional gene pairs from MetaCyc pathway annotations, 

an independent annotation database from GOBP and KEGG 

that were used for generating co-functional gene pairs to 
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Fig. 2. XooNet can reconstruct regula-

tory circuits under control of two-

component systems in Xoo. XooNet 

with highlights for subnetworks of 

differentially expressed proteins (DEPs). 

XooNet links between down-regulated 

DEPs (blue nodes and edges) and 

those between up-regulated DEPs (red 

nodes and edges) in (A) ΔsreK and (B) 

ΔstoS are overlaid on the background 

of the whole XooNet (white nodes 

and edges). There were 55 and 53 

down-regulated DEPs for ΔsreK and 

ΔstoS, respectively, and 46 and 39 up-

regulated DEPs for ΔsreK and ΔstoS, 

respectively. 

train XooNet. Consistent with their independent origin, the 

test gene pairs based on MetaCyc pathway annotations 

overlap with only 9% of the gold-standard gene pairs used 

for network training. We observed a 20-fold enrichment of 

MetaCyc pathway gene pairs for the integrated XooNet 

compared with random gene pairs. This result indicates that 

integration of diverse genomics data effectively improved 

the quality of XooNet (Fig. 1B). 

Next, we assessed the capability of XooNet to predict 

pathways in Xoo by measuring the retrieval efficacy of 

known genes for each pathway using the “guilt-by-

association” approach. The underlying logic of this approach 

is that if genes known for a specific biological process are 

effectively retrieved by network connections to other mem-

ber genes of the same pathway, novel genes for the path-

way are also likely to be retrieved by connections to the 

known genes for the pathway. We therefore measured the 

retrieval rate of known genes for each of 145 MetaCyc 

pathway terms that have no less than five member genes, 

using receiver operating characteristic (ROC) analysis. The 

ROC curve behavior can be summarized as a simple score, 

the area under the ROC curve (AUC), which would be close 

to 0.5 for a random predictor, and approaching 1 for a per-

fect predictor. We found that retrieval efficacy of XooNet for 

the MetaCyc pathway terms was significantly higher than 

that for random gene sets (P < 2.2e-16, Wilcoxon signed 

rank sum test) (Fig. 1C). These results indicate that XooNet 

accurately mapped co-functional links between genes and 

would also be able to predict novel genes for a pathway 

based on connections to the genes already known to func-

tion in the same pathway. 

 

XooNet can reconstruct pathways regulated by 
two-component systems in Xoo 
To survive in ever changing environment, bacteria have 

evolved regulatory circuits that coordinate expression of one 

set of genes in one environment and a different set of genes 

in another environment. These regulatory circuits are gener-

ally operated by TCSs. Perturbation of key regulators for TCSs 

can cause differential expression of other genes, providing 

clues for the cellular pathways regulated by those TCSs. For 

example, mutations of two TCS regulators, StoS and SreK, 

which positively regulate extracellular polysaccharide pro-

duction and swarming in Xoo, led to the identification of 

differentially expressed proteins (DEP)(Zheng et al., 2016). 

Such DEPs were divided into two classes: up-regulated DEPs 

and down-regulated DEPs. If positive regulators have loss-of-

function mutation, down-regulated DEPs are likely to be 

their directly regulated targets, which are often associated 

with the same pathway. In contrast, up-regulated DEPs 

might be genes of which expressions were affected by the 

regulators in an indirect manner. We hypothesized that if 

XooNet is highly predictive for pathways regulated by TCSs, 

it would effectively retrieve pathways regulated by StoS and 

SreK as well-connected networks of the down-regulated 

DEP (i.e., directly regulated targets). To test the hypothesis, 

we measure significance of within-group-connectivity of 

both up-regulated DEPs and down-regulated DEPs using 

1,000 random permutations. Consistent with our hypothesis, 

we found that down-regulated DEPs were significantly con-

nected to one another by XooNet (blue edges; P < 0.001 

and P < 0.001 for ΔsreK and ΔstoS, respectively) whereas 

up-regulated DEPs were not (red edges; P = 0.261 and P = 

0.139 for ΔstoS and ΔsreK, respectively) (Figs. 2A and 2B). 

These results demonstrate the utility of XooNet for the study 

of cellular pathways under control of TCS regulators with 

expression profiles in their mutant lines. 

 

XooNet-based web tools for the prediction of novel 
pathway genes 
We implemented two network-based algorithms for gener-

ating functional hypotheses, which can be accessed on the 

XooNet “network-search” page (https://www.inetbio.org/ 

xoonet/search.php). There are two network search options
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available in XooNet web server: (I) Find new members of a 

pathway and (II) Infer functions from network neighbors. 

For search option (I), users can initiate searching for new 

candidate genes for a pathway by submitting a set of 

known genes for the desired pathway. These submitted 

genes are used as “guide genes” to prioritize new candi-

date genes by total edge weight score to them. The result-

ing highly-ranked genes are good candidates to be new 

members of the same pathway. For search option (II), users 

are able to predict functions for a query gene by collecting 

all known functional annotations (e.g. GOBP terms) for 

each of the network neighbors for the query gene. The 

collected functional annotation terms then are listed by the 

order of enrichment score. 

 

XooNet-based search for novel regulators of rax 
As mentioned above, rax genes are required for activation of 

XA21-mediated immunity and virulence of Xoo. We next 

used the network guided prediction to identify regulators 

that govern expression of the rax genes raxX, raxST, raxA, 

raxB, raxC, as well as pctB. PctB is an ABC transporter, which 

serves as a functionally redundant homolog of RaxB (Dee et 

al., 2018; Luu et al., 2018). Given our observation that Xo-

oNet is useful for studying bacterial regulatory circuits, we 

hypothesized that XooNet could identify regulators that 

govern expression of rax genes as well. 

To identify such regulators, we submitted the five rax 

genes and pctB gene then launched the “Infer functions 

from network neighbors” tool of XooNet. Consistent with 

previous reports, all rax genes and pctB gene have either 

“protein secretion system” or “transport” as the most en-

riched GOBP terms among their neighbors (Supplementary 

Table S2). Next, we launched the “Find new members of a 

pathway” tool using the 5 rax genes and pctB gene as query 

genes. From this analysis we identified 273 Xoo genes as 

candidate network partners (Supplementary Table S3). Since 

we look for regulators of rax gene transcription, we focused 

on the genes annotated as “regulation of transcription, 

DNA-dependent” among the 273 candidate genes, as these 

were likely to be transcriptional regulators. In this subclass, 

we identified five candidate genes that have a sum of log 

likelihood score higher than 1.9: PXO_RS17440 (rank 19), 

PXO_RS18635 (soxR, rank 87), PXO_RS22160 (rank 103), 
PXO_RS18575 (oryR, rank 120), and PXO_RS20450 (rank 

127) (Supplementary Table S3). 

To access the function of the five candidate genes in regu-

lation of rax and pctB gene expression, we generated knock-

out mutants in Xoo, in which each candidate gene was dis-

rupted by single homologous recombination using the 

pJP5603 suicide vector (Penfold and Pemberton, 1992). We 

successfully generated knock-out mutants for PXO_RS18575, 

PXO_RS18635, PXO_RS20450, and PXO_RS22160. Despite 

many attempts, we were not able to isolate a PXO_RS17440 

mutant, suggesting that the designated crossing over 

between constructs and genomic DNA were hardly occured 

or that the lack of PXO_RS17440 is lethal for Xoo. We then 

analyzed transcript levels of raxX, raxST, raxC and pctB in the 

four mutant strains. For these experiments, Xoo cells grown 

on PSA plates were inoculated into liquid culture media, a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Gene expression analysis of rax genes in mutant strains for 

candidate rax regulators. The transcript levels of raxX, raxST, raxC, 

and pctB were analyzed in the indicated strains that were grown 

in PSB by qRT-PCR. Data shown here is normalized to the PXO99. 

Bars depict average expression level ± S.D of three technical 

replicates. This experiment was repeated at least twice with 

similar results. 

 

 

 

rich medium PSB (peptone-sucrose broth), at a density of 

10
7
 colony-forming units (CFU)/ml. The Xoo cells in liquid 

media were grown for 24 h until bacterial cell density 

reached at 10
8
 CFU/ml and then harvested by a centrifuga-

tion. Xoo RNA was isolated from the cell pellets then, tran-

script levels of raxX, raxST, raxC and pctB genes were ana-

lyzed by RT-qPCR. None of the knock-out strains for candi-

date genes showed significant changes in expression of any 

of the rax genes or pctB as compared with their expression 

in the wild-type Xoo (Fig. 3). 

We also tested if the four mutant strains produce func-

tionally active Rax/PctB proteins and activate the XA21 im-

mune receptor in rice. We inoculated the mutant strains on 

both TP309 and XA21-TP309 rice plants. All mutant strains 

are virulent on TP309 plant as much as the wild-type strain 

thus, formed long lesion (>13 cm) (Fig. 4A). On XA21-

TP309 plant, those mutants still induced the XA21-mediated 

immune response and formed a short lesion (6 cm<) like the 

wild-type strain (Fig. 4B) indicating that all Rax/PctB proteins 

are functional in the mutants.
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Fig. 4. Analysis of XA21-mediated immune response by 

Xoo inoculation assay. TP309 (A) and XA21-TP309 (B) 

were inoculated by clipping with scissors dipped in the 

indicated Xoo suspensions at a density of 10
8
 colony 

forming units (CFU) per mL. Bars indicate the mean 

lesion length ± standard error (SE) measured 14 days 

after inoculation (n ≥ 20). The ‘*’ indicates statistically 

significant difference from PXO99 within each plant 

genotype using Dunnett’s test (α = 0.01). Experiments 

were performed at least two times with similar results. 
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We have demonstrated XooNet’s ability to predict a wide 

variety of cellular pathways by high retrieval efficacy of 

known genes for the same MetaCyc pathways. In addition, 

we successfully showed that XooNet could reconstruct 

pathways regulated by two TCS regulators, StoS and SreK, 

which are for extracellular polysaccharide production and 

swarming in Xoo. Therefore, results of insignificant changes 

of rax genes in mutants for the rax regulator candidates may 

be attributable to the following reasons: (i) regulatory defect 

of the mutations were compensated by functional redun-

dancy by other regulators, (ii) we did not carry out the exper-

imental tests in appropriate biological environment in which 

significant expression changes of rax genes could be detect-

ed, (iii) candidate genes were pseudogenes, (iv) XooNet is 

highly predictive for peer-to-peer relationships between reg-

ulated targets but not for regulator-target relationship. 

 

CONCLUSIONS 
 

In this report, we present XooNet, a genome-scale co-

functional network of Xoo genes, constructed by integration 

of heterogeneous genomics data derived from Xoo and 

other bacterial species. We find that XooNet is highly predic-

tive for a wide variety of cellular pathways in Xoo and can 

reconstruct pathways directly regulated by TCSs involved in 

bacterial fitness and infection. Based on the network, we 

also developed web tools to identify novel genes for path-

ways and to predict cellular functions for query genes. Users 

can freely access to XooNet edge information and prediction 

tools from a public web server located at www.inetbio.org/ 

xoonet. Therefore, XooNet will be a useful in silico platform 

for the study of cellular pathways in Xoo. 

 

Note: Supplementary information is available on the Mole-
cules and Cells website (www.molcells.org). 
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