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Objective: The development of obesity is inseparable from genetic and epigenetic

factors, and transcription factors (TFs) play an essential role in these two mechanisms.

This review analyzes the interaction of TFs with epigenetic modifications and the

epigenetic mechanisms underlying peroxisome proliferator-activated receptor (PPAR)γ,

an important transcription factor, in the development of obesity.

Methods: We describe the relationship between TFs and different epigenetic

modifications and illustrate the several mechanisms described. Next, we summarize the

epigenetic mechanisms of PPARs, an important class of transcription factors involved

in obesity, that induce obesity with different triggering factors. Finally, we discuss the

mechanisms of epigenetic modification of PPAR-related ligands in lipid metabolism and

propose future avenues of research.

Results: TFs participate in epigenetic modifications in different forms, causing changes

in gene expression. The interactions between the different epigenetic modifications

and PPARs are important biological developments that affect fat tissue differentiation,

lipogenesis, and lipid metabolism, thereby inducing or inhibiting the development of

obesity. We then highlight the need for more research to understand the role of epigenetic

modifications and PPARs.

Conclusions: Epigenetic mechanisms involved in the regulation of PPARs may be

excellent therapeutic targets for obesity treatment. However, there is a need for a deeper

understanding of how PPARs and other obesity-related transcription factors interact with

epigenetic modifications.

Keywords: obesity, transcription factors, epigenetics, DNA methylation, histone modifications, chromatin

remodeling, non-coding RNA, interaction
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INTRODUCTION

Obesity is currently the world’s most conspicuous nutritional
disease. It is currently considered a serious threat to human
health because of its high prevalence (1). The expansion of
fat mass, adipocyte size increase, and to a lesser extent cell
proliferation (hyperplasia) are important features of obesity (2).
The increase in adipose tissue corresponds to increase in size
and number of adipocytes (3), i.e., lipogenesis and differentiation.
Factors that regulate fat tissue differentiation such as insulin,
growth hormone, and glucocorticoids promote differentiation of
pre-adipocytes (4, 5) and genetic and transcriptional regulation
(6, 7). Among regulatory factors, transcription factors (TFs)
play a critical role in the regulation of adipocyte differentiation.
Studies have shown that lipogenesis and differentiation are
regulated coordinately by several TFs, mainly including the
peroxisome proliferator-activated receptor γ (PPARγ), CCAAT
enhancer binding proteins (C/EBPs), and the transcription
factor sterol regulatory element binding protein-1 (SREBP-
1) (8, 9). PPARγ is the most critical TF for the regulation
of adipocyte differentiation, being a necessary and sufficient
condition for the differentiation of adipose tissue (10). The
CAAT/enhancer family has the function of activating CAAT
repeats of specific gene DNA enhancers. Its family members,
C/EBPα, C/EBPβ, and C/EBPδ, are considered important factors
in adipocyte differentiation. C/EBPδ and C/EBPα can induce
the expression of the PPARγ gene (11), which is probably
achieved through a transcriptional effect of the C/EBP binding
site in the PPARγ promoter (12). Activated PPARγ, in turn,
increases the expression of the C/EBPα gene. In the absence
of C/EBPα, cells can only express PPARγ at low levels and
cannot form adipocytes (13). In mammals, SREBP is classified
into two types: SREBP1 and SREBP2. SREBP1 is also known as
adipocyte determination and differentiation-dependent factor 1
(ADDl), and can act independently as a TF to regulate adipocyte
differentiation and transcription of genes related to cholesterol
metabolism (14). Studies have shown that SREBP promotes the
synthesis of triglycerides by up-regulating the expression of genes
such as fatty acid synthase and lipoprotein lipase (14). SREBP
can also activate PPAR expression or induce the expression
of an endogenous ligand of PPAR to increase its lipogenic
activity and promote adipocyte differentiation (15). In addition
to the above TFs, cyclic AMP response element binding protein
(CREB), nuclear factor of activated T cells (NFAT), kruppel-
like factor (KLF) family, and forkhead transcription factor
(FOX) proteins have been demonstrated to affect adipogenesis
(16, 17).

However, the complex mechanisms of adipocyte
differentiation remain to be further elucidated (18). Epigenetics
is a likely candidate to elucidate the missing links that
lead to obesity. Specific dietary behavior leads to change in
epigenetic patterns and regulates gene expression via epigenetic
modifications (19, 20). These changes interfere with metabolic
homeostasis and result in body adiposity (21, 22). Epigenetic
changes in chromatin also occur during adipocyte differentiation
(23, 24). Some studies indicated that the epigenetic changes at
the gene locus of a specific TF correlate with the body-mass index

(BMI) in humans (25, 26). This suggests that the development
of obesity may be inseparable from the interaction between
TFs and epigenetic modification. However, it is still mostly
unclear how cells establish the connection between TFs and
epigenetic modifications and how it leads to regulation of gene
expression. Several specific mechanisms in biological processes,
from epigenetic changes to gene regulation, are still not fully
understood. A systematic investigation of the link between
TFs and epigenetics will provide a deeper understanding
of pathogenesis in the metabolism and thereby provide a
basis for more appropriate treatment regimens. This review
describes the critical link between epigenetic modifications
and TFs and their contribution to the development of
obesity.

INTERACTION BETWEEN EPIGENETIC
MODIFICATIONS AND TFS

Epigenetics can be described as reversible and heritable changes
to the DNA that regulates chromatin structure and gene
expression without altering the DNA sequence (27). The genome
of each organism contains both DNA sequence information
and epigenetic information. The interaction between the two
specific factors maintains the function of organs and cells.
Research has confirmed that there are specific genes in the
body that can confer different susceptibilities to disease.
However, owing to the stability of the genomic structure,
most environmental factors cannot cause gene mutations or
DNA sequence changes (28, 29). Therefore, some authors
speculate that the changes in gene expression mediated by
epigenetic modifications cause genomic abnormalities in the
body during development, or result in increased susceptibility
to certain diseases (30, 31). However, this process requires the
participation of TFs. The currently most studied epigenetic
modifications are DNA methylation, histone modification,
chromatin remodeling, and non-coding RNA. The relationship
between epigenetic modifications and TFs are described
below.

DNA METHYLATION AND TFS

DNA methylation is a process in which cytosine is converted to
5-methylcytosine (5-mC) by DNA methyltransferases (DNMTs)
with S-adenosylmethionine (SAM) as a methyl donor (32, 33).
In mammals, DNMTs comprise three active enzymes, DNMT1,
DNMT3A, and DNMT3B, and one related regulatory protein,
DNMT3L (33). DNMTs can promote DNA methylation and
cause gene silencing. In contrast, the ten-eleven translocation
(TET) enzyme is associated with DNA demethylation by
reactivating the expression of the silenced gene (34). In most
vertebrates, DNA methylation occurs predominantly at highly
aggregated CpG dinucleotides, termed CpG islands (CGI), which
overlap with gene promoter regions and can be bound by
ubiquitous TFs (35). The association between methylation and
TFs can be described in the following four ways.

Frontiers in Endocrinology | www.frontiersin.org 2 July 2018 | Volume 9 | Article 370

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Huang et al. Transcription Factors and Epigenetic Modification

DNA Methylation Interferes With the
Binding of TF to Target Genes
DNA methylation prevents the binding of TFs to their binding
sites and influences gene transcription (36, 37). Studies showed
that CpG methylation of the cAMP-responsive element (CRE)
leads to loss of the binding site and of transcriptional activity
of some TFs in vitro and in vivo (38). However, the methylation
of the CRE sequence, which is often associated with promoters
of cell type-specific genes, creates a TF binding site for C/EBPα,
thereby activating transcription during adipocyte differentiation
(39, 40) (Figure 1A).

Competition Between TFs and
Transcriptional Repressors for mCpG Sites
Transcriptional repressors compete with TFs for binding to
methyl-CpG sites in the DNA sequence and block transcription.
In mammals, one of the main transcriptional repressors are the
methyl-CpG-binding domain (MBD) proteins, which comprise
eleven known proteins containing the MBD domain (41, 42).
These proteins are recruited to a specific sequence containing
methylated cytosines, and prevent TFs and RNA polymerase
from forming the initial complex at the corresponding methyl-
CpG site (43, 44), thereby inhibiting gene transcription
(Figure 1B).

Association of (de)Methylation Enzymes
and TFs in DNA Methylation
The expression of DNMT and demethylase genes are affected
by TFs. TFs modulate promoter methylation levels by recruiting
and forming complexes with DNMTs (45). Knocking out some
TFs can reduce the recruitment of DNMTs and reduce gene
methylation levels in the glioma cell line (46) (Figure 1C).

Methylation of TFs
DNA methylation can also modify TFs. Methylation of TFs
belongs to non-histone methylation. Previous studies have
indicated that non-histones can be methylated at lysine
residues (47). For example, the RelA (p65) subunit of nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-
κB) is methylated by lysine methyltransferase Set9 at lysine
residues 314 and 315 in cells. It inhibits the activity of NF-
κB and prevents it from binding to DNA, thereby causing
transcriptional repression (48). In contrast, nuclear receptor-
binding SET domain-containing protein 1 (NSD1, a lysine
methylase) can methylate RelA at K218 and K221 and active
NF-κB transcriptional activity in cell line (49) (Figure 1D).

HISTONE MODIFICATION AND TFS

Histone modifications are another essential component of
epigenetics. Histones comprise core histones (H3, H4, H2A,
and H2B) and linker histones, H1/H5. Two copies of the
four core histones are wrapped around ∼165 bp of DNA to
constitute nucleosomes and form eukaryotic chromatin with
the linker histone H1 (50, 51). In histones, flexible charged
tails extend from the core region as N- or C-terminal ends

and can be covalently modified by various enzymes. This
modification is termed post-translational modification (PTM)
and may lead to changes in chromatin structure and further
genome regulation. Known modifications of N-terminal tails
of histones include methylation, acetylation, phosphorylation,
ubiquitination, ADP ribosylation, and sumoylation (52).
Histone acetylation and deacetylation are the most studied
(52, 53), and are considered reversible processes controlled by
histone acetyltransferases (HATs) (54) and histone deacetylases
(HDAC) (55), respectively. In addition, histone methylation
and demethylation are catalyzed by histone methyltransferases
(HMTs) and histone demethylases (HDMs), respectively.
The modification on histone tails occurs sequentially or
in combination, termed “histone code” (56). This code
is read by binding of specific TFs. Associations between
histone modifications and TFs are divided into the following
categories.

Histone Modification Enzymes Interact
With TFs
TFs act as a “porter” to recruit histone modification enzymes
to regulate gene expression. For example, during histone
acetylation, specific TFs repress or activate gene expression
through HDAC or HAT recruitment, respectively (57). The
activator or repressor role of these TFs on the promoter
may depend on its binding site or time on DNA in the
nuclear extracts of murine L929 cells (58) (Figure 2A). In
some cases, TF recruits HATs or HDACs and then binds to
these enzymes to form a complex that increases the enzymatic
activity and further regulates the expression of related genes
(59, 60). Changes in expression of these genes may result from
changes in chromatin structure caused by histone modifications
(56). The condensed state of chromatin leads to an inability
of TFs to bind to target genes when histone is acetylated
(61). Coincidentally, HATs may also act on TFs and induce
acetylation of these proteins (62–64). Expression of related genes
is regulated by the acetylation levels of these TFs (62, 65, 66)
(Figure 2B).

Crosstalk of TFs With Histone
Modifications and PTMs
Modification of the histone code widely occurs in PTM of
histone tails. A modification may either enhance or inhibit
another (67–69). For instance, the phosphorylation of H3S10
leads to acetylation of H3K14 (67) but blocks acetylation of
H3K9 in cell cycle progression (68). Similarly, this modification
pattern may occur in TFs. For example, phosphorylation at
serine residues 276 and 536 of the P65 subunit of NF-
κB facilitates P65 acetylation at lysine 310 in a mammalian
one-hybrid system (70, 71) (Figure 2C). On the other hand,
phosphorylation of P65 also promotes P65 ubiquitination
and leads to the degradation of P65 and repression of
transcription in cells. However, this process may require
the participation of GCN5 (a HAT) (72) (Figure 2D). Post-
translational modifications of NF-κB were reviewed previously
(73).

Frontiers in Endocrinology | www.frontiersin.org 3 July 2018 | Volume 9 | Article 370

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Huang et al. Transcription Factors and Epigenetic Modification

FIGURE 1 | Interaction between DNA methylation and transcription factors (TFs). (A) Methylated DNA inhibits the binding of TFs to DNA but also creates binding sites

for some specific TFs and activates transcription. (B) Transcriptional repressors occupy an mCpG site, thereby blocking transcription. (C) TFs recruit DNA

methyltransferases to form a complex and repress transcription. (D) Methylase acts on TF and regulates its activity and transcription.

FIGURE 2 | Interaction between histone modification and transcription factors (TFs). (A) TFs recruit histone deacetylases (HDACs) or histone acetyltransferases (HATs)

and regulate gene expression by promoting histone deacetylation or acetylation, respectively. (B) HDACs or HATs can act on TFs and interfere with binding to DNA.

(C) Phosphorylation at some sites of p65 by related enzymes facilitates the acetylation of other sites, thereby promoting transcription of NF-κB. (D) Phosphorylation of

P65 recruits HATs to promote P65 ubiquitination and block transcription.

CHROMATIN REMODELING AND TFS

Chromatin remodeling is a dynamic modification of chromatin
architecture, which opens the access for regulatory transcription

machinery proteins and condenses DNA to control gene
expression. Remodeling is accomplished in three ways: (1)
covalent histone modifications by enzymes such as HATs,
HDACs, and HMTs; (2) ATP-dependent chromatin-remodeling
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complexes (74), such as the SWI/SNF family (BAF60a, BAF250,
and BAF57), the ISWI family, the Mi-2/CHD family, and
the INO80 family; and (3) utilization of histone variants
(75). Histone modifications loosen or tighten the DNA
wrapped around histones, and thereby allow or prevent
binding of TFs to the DNA (75). In contrast, ATP-dependent
chromatin-remodeling complexes have a common ATPase
domain and utilize the energy of ATP hydrolysis to mobilize
nucleosomes along DNA. These complexes can expel histones
from DNA or facilitate the exchange of histone variants, which
modulate DNA accessibility and alter nucleosome structure (76).
From these mechanisms, the connection between chromatin
remodeling and TFs is probably reflected in the following
aspects.

Role of Pioneer Factors in Opening
Chromatin
Genes in eukaryotic cells are packaged in chromatin. TFs must
reorganize local nucleosome structure and create an open site
for successful interaction with genomic regulatory elements
during transcription. TFs with this characteristic are termed
“pioneer factors” (77). Examples include the forkhead box
(FOX) proteins and the glucocorticoid receptor (GR) (78–
80). These TFs recruit SWI/SNF and form a complex to
open chromatin (81). The resident time of the complex is
short, and the opened chromatin state is maintained for a
time (82). The site then becomes accessible to other adjacent
TFs to bind after dissociation of the complex (82, 83).
(Figure 3A).

Binding of TFs to Chromatin Remodeling
Complexes
TFs cannot induce chromatin remodeling independently
during transcriptional regulation, but need to recruit
chromatin remodeling complexes. The PRotein Interactions
by Structural Matching (PRISM) algorithm shows that GR
binds to several subunits of SWI/SNF such as BAF60a,
BAF250, and BAF57 (84). C/EBPα and/or C/EBPβ have
also been shown to recruit the SWI/SNF complex to target
promoters and regulate the differentiation of adipocytes,
neutrophil granulocytes, and hepatocytes in mice (85, 86)
(Figure 3B).

Histone Modification by TFs Induce
Chromatin Remodeling
Chromatin remodeling is closely related to modifications
of histone N-terminal tails, and these modifications affect
chromatin stability (87). During histone modification,
histone variants are inserted into nucleosomes that alter
their structure and function, which further affect the
highly ordered structure of chromatin (88). In addition,
activated TFs can mediate the acetylation of histones
and evict nucleosomes, which remodel chromatin and
induce transcription initiation or elongation in vitro (89)
(Figure 3C).

NON-CODING RNA AND TFS

It is well known that <2% of transcripts in the mammalian
genome have a protein-coding function, with the remaining
98% being non-coding RNA (ncRNA) (90). ncRNA are mainly
classified into two types: microRNA (miRNA) and long non-
coding RNA (lncRNA). Studies have found that the promoter
region of miRNA and lncRNA genes can contain different
epigenetic modifications and are involved in many biological
processes (91–94) through the interaction with TFs. Any
abnormality in these transcriptional processes can lead to disease
(95).

Interaction Between miRNA and TFs
TFs and miRNA play an important role in gene transcription
and post-transcriptional regulation. Studies found that genes
regulated by the same TF and miRNA present a significant co-
expressed pattern (96, 97). During regulation, TFs bind to the
upstream promoter region of the miRNA gene and exert an
influence on transcription. In addition, somemiRNAs conversely
affect translation of TFs (98). Therefore, TFs and miRNA make
up a complex regulatory network termed feed-forward loop
(96) in stabilizing gene regulation (9). Ten kinds of interactions
have been described between TFs, miRNA, and genes (9, 99)
(Figure 4A).

Interaction Between lncRNA and TFs
LncRNAs can alter the transcription of genes by interacting with
TFs, chromatin-modifying complexes, or mRNA (100, 101). The
interaction between lncRNA and TFs can be divided into the
following categories.

a LncRNAs act as co-factors or inhibitors to regulate the activity
of TFs and control NF-κB signaling (102). LncRNA-Cox2
promotes degradation of IkBa in the cytoplasm (102). Knock
out of lncRNA-Cox2 leads to reduced expression of NF-κB
(102). However, TFs can also affect lncRNA expression (103).
The roles of lncRNAs in cancer metabolism were identified as
energy stress-induced lncRNA by FoxO transcription factors
(104) (Figure 4B).

b TFs and lncRNAs form a binary network and combine with
genes to form a ternary complex (105, 106). In a recent study,
530 TF-lncRNA pairs were identified in the cell cycle (107).
In a trans-acting network, lncRNAs regulate TF-mediated
chromatin remodeling and transcription (108). In addition,
lncRNA can recruit one TF to the genomic loci of another
TF and inhibit gene transcription (109). The suppressed TF,
in turn, inhibits the expression of the lncRNA (109). The TF-
lncRNA-gene-network shows that 69 genes and lncRNA are
controlled by TFs (100) (Figure 4C).

c LncRNA can form complexes with TFs to regulate
transcription of target genes (110, 111). For example,
Lethe, a lncRNA, binds to RelA and prevents it from
binding to the NF-κB target promoter, thereby inhibiting
transcription of proinflammatory cytokine genes (112).
However, binding of lncRNA-p21 to HIF-1a, a key TF
that mediates the response to hypoxia, can disrupt the
interaction with the Von Hippel-Lindau (VHL) protein
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FIGURE 3 | Interaction between chromatin remodeling and transcription factors (TFs). (A) Pioneer factors bind to specific DNA sites and form a complex with

SWI/SNF to open chromatin. The complex then allows the binding of other TFs, thereby promoting transcription. (B) TFs recruit SWI/SNF to form complexes that lead

to chromatin remodeling. (C) Histone variants are inserted into nucleosomes, or nucleosomes are evicted from DNA after histone modification mediated by TFs,

ultimately causing chromatin remodeling.

and cause high levels of HIF-1a expression (113). This
is a positive feedback loop between TF and lncRNA
(Figure 4D).

ROLE OF TFS IN EPIGENETIC
REGULATION IN THE DEVELOPMENT OF
OBESITY

Role of PPARγ in Obesity
PPARγ is a critical transcriptional regulator of adipogenesis
in mammals, is closely related to regulation of lipids and
glucose metabolism, and is associated with the control of
obesity and related diseases (114, 115). Siersbaek et al. analyzed
the PPARγ and C/EBPα binding sites and found that PPARγ

and C/EBPα regulate the expression of most genes associated
with adipogenesis (116). The BPro12Ala and 6CAC478CAT
exon polymorphisms of the PPARγ gene are significantly
related to the incidence of severe obesity (117). In the USA,
mutations in the PPARγ gene can severely cause certain
types of sexual obesity in women (118). Animal studies
also provide more direct evidence for research in this area.
For example, Japanese researchers reported that, in high-fat
diets, mice lacking PPARγ exhibited significant dysplasia of
adipocytes, smaller cell morphology, and lower fat content,

causing pathological features such as obesity and severe insulin
resistance (119). PPARγ not only promotes the proliferation and
differentiation of adipocytes but also confers insulin sensitivity
to adipocytes (120). An increase in insulin sensitivity can in
turn promote the expression of the PPARγ gene in adipose
tissue, thereby positively accelerating the differentiation of
adipocytes. Both these aspects greatly increase the efficiency of
adipocyte synthesis and storage and are important factors for
obesity.

In addition, PPARs also play an important role in lipid

metabolism. After feeding, carbohydrates and fats are
converted into glucose and chylomicrons, respectively, and

enter circulation. Most of the glucose is absorbed by the liver.
If hepatic glucose storage capacity is reached, the remaining

glucose is used for lipogenesis. Studies have shown that rats in

the fed state increase the amount of SREBP1, which promotes
the conversion of glucose to acetyl-CoA, followed by synthesis

of fatty acids. Fatty acids are further converted into triglycerides

and very low-density lipoproteins and are stored in the body
(120, 121). This may result from the fact that PPARγ is a target
gene for SREBP1 (122), which is involved in the production
of endogenous PPARγ ligands (possibly fatty acids). SREBP1
stimulates the uptake of glucose and fatty acids, which are
subsequently converted to triglycerides (14, 15).
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FIGURE 4 | Interaction between non-coding RNA and transcription factors (TFs). (A) TF and miRNA present a feed-forward loop pattern. There are 10 modes of

interaction between TF, miRNA, and genes. (B) LncRNAs act as co-factors or inhibitors to control some transcription factor-related signaling pathways. (C) LncRNAs

and TFs interact with each other to regulate transcription by forming a binary network. In addition, lncRNA recruits TF to other gene loci and blocks transcription.

Conversely the suppressed TF inhibits the expression of the lncRNA. (D). LncRNA forms a complex with TF to suppress gene transcription. Additionally, lncRNA

disrupts the interaction between TF and the VHL protein and forms a complex with TF to reduce the levels of TF ubiquitination, thus increasing the expression of TF

and promoting gene transcription.

ROLE OF PPARγ IN EPIGENETIC FACTORS
IN ADIPOSE TISSUE

DNA Methylation and PPARγ

Studies have shown that DNA methylation regulates the
expression of PPARγ. Two studies examined the CpG
methylation of the PPARγ gene in 9–year–old overweight
children (123, 124), and both confirmed the presence of different
levels of methylation. In addition, one group pointed out that
the level of CpG methylation is negatively correlated with the
expression of PPARγ (124), whereas the other group suggested
that PPARγ methylation levels may be related to child body size,
with an upward trend with age (123).

Studies on PPARγ in animals have revealed that the PPARγ2
gene promoter is highly methylated in mouse 3T3-L1 pre-
adipocytes (125). However, with the differentiation of 3T3-L1
pre-adipocytes, the PPARγ2 promoter is gradually demethylated,
and the expression of PPARγ2 mRNA is gradually increased. The

DNA methylation inhibitor 5-aza-2
′
-deoxycytidine interferes

with the normal differentiation of 3T3-L1 pre-adipocytes and
inhibits lipid accumulation in adipocytes (125). Compared with
wild-type mice, methylation levels of the PPARγ2 promoter
in visceral adipocytes increase, whereas PPARγ2 mRNA levels
decrease in obese diabetic mice (125). This suggests that DNA
methylation of the PPARγ promoter can inhibit the expression of
the PPARγ gene and is associated with the occurrence of obesity
and diabetes. However, no studies mentioning the involvement
of DNMT or demethylase in the regulation of PPAR gene during
fat differentiation or obesity were found.

Histone Modification and PPARγ

Histone methylation regulates PPARγ gene expression.
Several HMTs and HDMs are known to be involved in
the regulation of PPARγ expression and lipogenesis (126).
Myeloid/lymphoid or mixed-lineage leukemia protein 3 (MLL3)
and myeloid/lymphoid or mixed-lineage leukemia protein 4
(MLL4) are major H3K4 methyltransferases in mammalian cells
(126). Studies have shown that MLL4 can bind to the PPARγ
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locus and increase PPARγ gene expression and lipogenesis.
The early adipogenic TF C/EBPβ serves as a pioneer TF and
recruits MLL4 to the PPARγ gene loci and induces PPARγ and
C/EBPα expression. MLL4 is then recruited to cooperate with
other adipogenic TFs for adipocyte gene expression (126). In
3T3-L1 pre-adipocytes and mature adipocytes, the TF tonicity-
responsive enhancer binding protein (TonEBP) binds to the
PPARγ2 promoter directly, giving rise to H3K9me2 in the
PPARγ2 promoter, thereby inhibiting PPARγ2 activity (127).
PPARγ2 expression decreases, thereby inhibiting adipogenesis.
The binding of TonEBP to the PPARγ2 promoter is associated
with blocking C/EBPβ binding to H3K9m2 (127). In addition,
PPARγ is also regulated by SET domain family proteins (128).
Importantly, SET domain bifurcated 8 (SETD8) is a direct
target of PPARγ and is induced during adipocyte differentiation.
SETD8 regulates many target genes that depend on PPARγ

activation by increasing the monomethylation levels of H4K20
during adipogenesis (128).

Histone acetylation also regulates PPARγ expression. It was
found that the epigenetic modification of the PPARγ gene is
regulated by C/EBPs and GR in vitro in a lipogenic cell model
(129). The transient recruitment of GR and C/EBPβ by a complex
consisting of MED1 and p300 (HAT) in the enhancer region
of PPARγ2 causes a significant increase in the levels of H3K9
acetylation in this region, which enhances the expression of
PPARγ2 and becomes a major driver of adipogenesis (130).
Analysis at the genome level revealed that, during differentiation
of 3T3-L1 cells, H3K9 and H3K27 acetylation at the PPARγ

locus increases significantly, and both acetylation at both sites
are positively correlated with the expression of the PPARγ gene.
However, the roles of H3K9 and H3K27 acetylases in lipogenesis
and PPARγ expression have not been determined (131). In
contrast to the functions of HATs, HDACs repress PPARγ

expression by deacetylating histones (132). Several HDACs are
significantly downregulated during adipogenesis (133). SIRT1, a
class III NAD-dependent HDAC, is an inhibitor of PPARγ (134).
In vivo, fasting-induced SIRT1 binds to the PPARγ binding site of
a fat-specific gene, enhancing its inhibitory function and thereby

blocking adipogenesis (134). Studies have also confirmed that
SIRT1 plays a role in the browning of white adipose tissue (135).
This may be related to the deacetylation effect of SIRT1 on the
regulation of PPARγ, whereas PPARγ promotes the production
of brown fat by inducing the transcription-assisted regulator
PRDM16 (135).

Chromatin Remodeling and PPARγ

During lipogenesis, the chromatin environment at the PPARγ

locus also needs to be correctly remodeled to allow expression
of PPARγ target genes. Within a few hours after differentiation
of 3T3-L1 preadipocytes, chromatin remodeling occurs in the
PPARγ locus leading to an open state (129). This chromatin
opening may be related to histone modifications at the PPAR
locus and binding of pioneer TFs (127). Studies have shown that
remodeling and opening of the PPARγ2 promoter region are
dependent on protein kinase A (PKA). Knockout of the PKA gene
using shRNA results in decreased chromatin accessibility in the
PPARγ2 promoter region (136). In addition, studies have shown
that specific binding to and function of the PPARγ promoter
in adipocytes requires the participation of G-protein suppressor
2 (GPS2) (137). GPS2 primes a local chromatin environment
via inhibition of the ubiquitin ligase RNF8 and stabilization of
the H3K9 histone demethylase KDM4A/JMJD2 (137). Moreover,
the SWI/SNF chromatin remodeling complex regulates PPARγ2
expression during adipogenesis. PPARγ activity also depends
on components of a chromatin remodeling SWI/SNF complex
with ATPase BRG1 and BAF60c subunits (138). A dominant
mutant of Brg1 inhibits the transdifferentiation of fibroblasts
into adipocytes induced by PPARγ, C/EBPα, and C/EBPβ (139).
However, it remains unclear how Brg1 is recruited to the PPARγ

promoter.
Chromatin remodeling can be regulated by replacement

of canonical histones by histone variants. Genome-wide
localization studies have shown that the variant H2A.Z, which
is mainly involved in the regulation of gene expression, can
be preferentially located in the promoter and enhancer regions

TABLE 1 | Regulation of PPARγ by miRNAs during adipogenesis and obesity.

miRNA Function Species Experimental system References

miR-27a miR-27b ↓adipogenesis Obese mice 3T3-L1 pre-adipocytes (145, 146)

Human Human multipotent adipose-derived stem cells. (147)

miR-130 miR-130b ↓adipogenesis Human 3T3-L1 pre-adipocytes (148)

Obese mice Epididymal adipose tissue (149)

miR-301a ↓adipogenesis Obese mice 3T3-L1 pre-adipocytes (142)

miR-302a ↓adipogenesis Obese mice 3T3-L1 pre-adipocytes (150)

miR-548d-5p ↓adipogenesis Human Human bone marrow mesenchymal stem cells (151)

miR-103 ↑adipogenesis Obese mice 3T3-L1 pre-adipocytes (152)

miR-143 ↑adipogenesis Obese mice 3T3-L1 pre-adipocytes (152, 153)

miR-200a ↑adipogenesis Yak Separate cells from perirenal adipose tissue (154)

miR-335 ↑adipogenesis Obese mice 3T3-L1 adipocytes (155)

miR-375 ↑adipogenesis Obese mice 3T3-L1 pre-adipocytes (156)

↑ Promotes lipogenesism, ↓ Inhibits lipogenesis.
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(140). Studies have shown that, during adipogenesis, the E1A-
binding protein p400 complexed with subunit bromo-containing
protein 8, the p400/Brd8 complex, influences the expression of
PPARγ target genes by inserting the histone variant H2A.Z into
the transcriptional regulatory region (141). This is crucial for
differentiation of fat tissue.

Non-coding RNA and PPARγ

Non-coding RNA is an important post-transcriptional gene
expression regulator that modulates many physiological and
pathological processes (142). Multiple obesity-associated
miRNAs have been identified in adipose tissue in obese humans,
rats, and mice (143, 144). Several of these miRNAs can regulate
PPARγ, and are classified into two categories: inhibition and
stimulation of PPAR transcription (Table 1). Five miRNA can
bind to the 3

′
UTR of the PPARγ gene mRNA or interact with

PPARγ at the cellular level to inhibit PPARγ protein expression
and adipocyte differentiation (142, 145–151). In contrast, miR-
103, miR-143, miR-200a, miR-335, and miR-375 have a lipogenic
effect during adipocyte development resulting from elevated
PPARγ expression (152–156). The ectopic expression of miR-103
increases the accumulation of triglycerides in adipocytes and
up-regulates the expression of PPARγ2 (152). MiRNA, PPARγ

gene, PPARγ, and related transcription factors form a cyclic
network that regulates fat tissue formation.

In the process of 3T3-L1 cell differentiation, lncRNA can also
affect lipogenesis by affecting PPARγ transcription. It was found
that, in 3T3-L1 adipocytes, lncRNA U90926 inhibits the activity
of the PPARγ2 promoter, thereby inhibiting PPARγ expression
and lipogenesis (157). In contrast, lncRNA NEAT1 plays a
regulatory role in alternative splicing events of PPARγ during
differentiation of mouse 3T3-L1 cells. Interference with NEAT1
expression up-regulates PPARγ2 expression and promote fat
tissue differentiation (158). In addition, overexpression of
lncRNA HOTAIR promotes the expression of PPARγ and
the differentiation of pre-adipocytes into mature adipocytes,
although the mechanism remains unclear (159). The mechanism
underlying the role of lncRNA in lipogenesis and obesity still
needs to be further investigated.

PARTICIPATION OF PPARS IN EPIGENETIC
MODULATION OF LIPID METABOLISM

Fatty acids can be oxidized to CO2 and H2O in the presence of
oxygen, releasing large amounts of energy and becoming one of
the main energy sources for the body. Most of the fatty acids in
the human body are exogenous fatty acids derived from foods and
can be utilized through transformation and processing. The body
can also convert sugars and proteins into endogenous fatty acids
and triglycerides to store energy. Fatty acid synthase catalyzes the
first step in de novo lipogenesis.

PPARs are ligand-activated receptors that heterodimerize
with the retinoid X receptor (RXR), bind reactive elements in
target genes, and induce transcription. PPARγ can modulate
fatty acid metabolism, promote differentiation of adipocytes,
and regulate lipid storage through transcription of a series of

lipid-related proteins in the posterior segment (160). In animals,
it has been demonstrated that fatty acids act as ligands for
PPARs and activate the expression of genes involved in fatty
acid metabolisms such as the transmembrane proteins CD36,
lipoprotein lipase, fatty acid-binding protein 4, and long-chain
acyl-CoA synthetase 1 (161). Studies have found that multiple
miRNAs are involved in the regulation of fatty acids. MiR-
122 is the first miRNA confirmed to be involved in lipid
regulation and is the most abundant miRNA identified in liver
tissue (162). MiR-122 plays a prominent role in maintaining
the phenotype of liver cells and fatty acid metabolism (162). In
mice, inhibition of miR-122 expression can lead to a sustained
reduction in plasma cholesterol levels, increased hepatic fatty acid
oxidation, and decreased liver fatty acid and cholesterol synthesis
rates. Ultimately, high-density lipoprotein and apolipoprotein A1
levels increase, and low-density lipoprotein and apolipoprotein
B levels are reduced (163). In addition, inhibition of miR-205-
5p expression in genetically improved farmed tilapia liver can
increase fatty acid synthase and PPARα mRNA levels and thus
regulate hepatic lipid metabolism (164). Increased PPARα levels
have been shown to increase liver fatty acid oxidation and
reduce circulating triglyceride levels to regulate rodent obesity
(165). In addition to miRNA regulation, studies in rodents have
shown that decreased PPARα promoter methylation contributes
to enhanced expression of carnitine palmitoyl transferase-1,
a regulatory enzyme in fatty acid oxidation, and decreased
expression of fatty acid synthase (166). However, no PPAR-
mediated lipid metabolism modulation by mechanisms such
as histone modification and chromatin remodeling has been
described. Another important transcription factor, SREBP1, also
plays an important role in lipid metabolism. NAD-dependent
deacetylase sirtuin-1(SIRT1) can remove acetyl groups from
lysine at positions 289 and 309 of SREBP-1c, inhibiting SREBP-
1c activity, decreasing its stability, and reducing lipid production
(167).

POSSIBLE THERAPEUTIC DIRECTION IN
THE FUTURE

PPAR is a pivotal regulator of fat formation and metabolism.
Knocking out PPARγ in adipose tissue of mice can prevent
high-fat diet-induced obesity and insulin resistance (168).
Because of its complex and diverse biological functions, it
has grown up to be a therapeutic target for obesity-related
diseases (114). For example, PPARγ agonists have been applied
to treat hyperlipidemia, hyperglycemia, diabetes (114, 169).
However, these drugs, such as Thiazolidinedione (TZD), have
reduced insulin resistance but also increased lipid accumulation
in skeletal muscle by promoting adipocyte hypertrophy and
hyperplasia (170). Therefore, long-term use of PPARγ agonists
may trigger unexpected effects on systemic metabolism,
including insulin sensitivity. Other more appropriate treatments
are needed. With the development of epigenetics, epigenetic
markers have become a useful tool to assess the risk of obesity
and metabolic disorders (171). Perhaps, in the future, the
epigenetic modification of PPARγ may be intervened to
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FIGURE 5 | PPARs be involved in the mechanism of epigenetic modification leading to obesity. Methylation of the PPARγ promoter region inhibited PPARγ expression

to decrease adipogenesis. The pioneering transcription factor (e.g., C/EBPβ or GR) recruit histone acetyltransferases or histone methyltransferases in the vicinity of the

PPARγ promoter and cause histone methylation or acetylation, thereby regulating PPARγ expression. Under various factors such as histone modifications, histone

variants, and chromatin remodeling complexes, the chromatin remodeling in the PPARγ promoter induces changes in the expression of PPARγ. The miRNA and

lncRNA acting on the PPARγ promoter region also govern the expression of PPARγ. Inhibited expression of PPARγ reduces the production of adiposity. Conversely,

promoting the expression of PPARγ increases in adipogenesis and leads to obesity. In addition, methylation and miRNA modification of the PPARs promoter region

regulates the expression of fatty acid synthase and participate in lipid metabolism. Deacetylation of the transcription factor SREBP-1c is some other important way in

regulating lipid metabolism. Disorders of lipid metabolism can also induce obesity.

regulate the expression of genes involved in lipogenesis without
compromising metabolism in vivo, thereby reducing the
occurrence of obesity and obesity-related diseases (Figure 5).

CONCLUSION

A variety of physiological, biochemical, genetic, and behavioral
factors can cause obesity. To control the occurrence of this
disease, it is necessary to reasonably control the diet and
perform a moderate amount of exercise so as to reduce
the storage of residual energy within the body. In addition,
it is also necessary to control the excessive proliferation
and differentiation of adipocytes. Knowledge of epigenetic

modifications provides novel insights into the pathogenesis of
obesity. Owing to the importance of PPARγ in lipogenesis and
lipid metabolism in humans and other animals, the epigenetic
mechanisms underlying transcriptional regulation of PPARγ

will remain a research focus in the field of lipid biology and
medicine and may result in improved treatments for obesity.
Although much evidence for epigenetic regulation has been
reported in recent years, few studies have shed light on the
role of epigenetic modifications, transcription factors, and
upstream and downstream mechanisms involved in obesity.
In the future, a better understanding of the interrelationship
between regulation of obesity-related transcription factors and
epigenetics will be needed to explore effective therapeutic
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methods for the treatment of obesity using epigenetic
modifications.
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