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Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion.There
is a positive correlation between the variables “number of blood donation” and “number of blood deferral”: as the number of return
for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to
donate, there is an extra zero frequency for both of the above-mentioned variables. In this study, in order to apply the correlation
and to explain the frequency of the excessive zero, the bivariate zero-inflated Poisson regression model was used for joint modeling
of the number of blood donation and number of blood deferral. The data was analyzed using the Bayesian approach applying
noninformative priors at the presence and absence of covariates. Estimating the parameters of the model, that is, correlation, zero-
inflation parameter, and regression coefficients, was done through MCMC simulation. Eventually double-Poisson model, bivariate
Poissonmodel, and bivariate zero-inflated Poissonmodel were fitted on the data andwere compared using the deviance information
criteria (DIC). The results showed that the bivariate zero-inflated Poisson regression model fitted the data better than the other
models.

1. Introduction

Blood transfusion is so important in health system that it
plays a big part in saving many people’s lives in normal and
emergency situations. Furthermore, it has a noticeable impact
on improving the quality of life and consequently the life
expectancy of chronic patients. Nevertheless, many patients
either die due to lack of access to safe blood transfusion
or at least suffer from it. According to the World Health
Organization report, about one percent of the population of
every country is in need of blood donation [1]. Today, the
need for blood and its products is increasing day by day [2].
Since some diseases may be caused by blood transfusion,
screening the donors and detecting potential healthy donors
are of great importance [3]. For that matter, lack of healthy
donors has always been a serious problem for blood banks to
supply sufficient and healthful blood [4, 5]. Therefore, one of
the main goals of blood transfusion centers is detecting and

preserving healthy donors and preventing unhealthful blood
donation which may cause many diseases to be created or
aggravated [2]. Nonetheless, even from among those who are
eligible to donate blood only a small portion really become
blood donors [6]. Inasmuch as the screening test is done at
each donation to separate healthful from unhealthful blood,
the more the blood donation is, the higher the chances of
getting healthful blood will be. That is why recognizing the
factors which influence blood donation is of great importance
in attracting potential donors and turning them into regular
donors [3]. From among all the laboratory screeningmethods
to prevent the transference of infection through blood, the
only truly effectivemethod is to select healthy donors and not
allow ineligible donors to donate blood [7]. People who are
not eligible to donate blood are called “deferred donors” [8].
Most deferrals are “temporary” and exist due to taking certain
medications before donation, high or low blood pressure,
anemia, high-risk behavior, and so forth. These deferrals
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are controllable and can be reduced by giving the necessary
information before donation [2, 9–11]. Naturally, as return to
donation increases, the probability of deferral from donation
increases too. Therefore, it is expected that there will be
positive correlation between the number of donation and the
number of deferral. What has been said so far points out
the importance of getting healthful blood and its products
and the relation between number of return for donation and
deferral.

Poisson regression model belongs to the family of gener-
alized linear models in which the response variable is a count
one and has followed Poisson distribution.The equality of the
variance and the mean of the dependent variable is one of the
important hypotheses of Poisson regression analysis. In most
practical applications, response observations are overdis-
persed (i.e., the variance of observations is significantly bigger
than theirmean); thus fitting the Poisson regressionmodel on
the data will not yield the desired results. In a univariate case,
the best solution to the problem of overdispersion is to use a
negative binomial regression model [12, 13]. In many studies,
it is seen that there is a correlation between the two count
response variables; in these cases, dealing with the response
variables separately without considering this correlation will
result in inconsistent and inefficient estimators [14]. The
basic solution is to use bivariate count models [14–16]. In
medical, environmental, and ecological studies, existence of
excessive zeros in count data is common. If the zeros are
ignored for the sake of simplifying the analysis, valuable
information will be lost and can result in biased estimate
of the parameters and thus misleading findings [17, 18].
An appropriate class to explain these data is the class of
zero-inflated distributions. In practice, the data including
zero inflation can be sampled from zero-inflated Poisson or
zero-inflated negative binomial [18]. The zeros in the count
data can then be attributed to structural causes (known as
structural zeros) or sampling limitations (known as sampling
zeros) [17]. The most common model for explanation and
analysis of excessive zeros in count data is the zero-inflated
model [17, 18]. Generally, for this kind of data, zero-inflated
models fit better than regular models [19]. For a multivariate
and especially a bivariate case, in which there is a correlation
between the two count response variables [18], since the
marginal distributions of bivariate model are univariate, this
bivariate model cannot be used to model extra zeros paired
count data. Instead, the bivariate zero-inflated regression
model is used [20]. In most applications, it seems logical to
use the zero-inflated bivariate Poisson distribution.

Due to calculation problems while fitting these models,
researchers were not able to use zero-inflated bivariate count
model for a long time [18]. Recent improvements in hierar-
chical Bayesian modeling and specifically the improvement
in simulation methods like Markov chain Monte Carlo
(MCMC) have provided the mechanisms for simple imple-
mentation of bivariate distributions such as bivariate Poisson
[18].

This study seeks to determine the factors which affect
the number of return for donation and also deferral from
donation. The data is of the type of count data and, to
explain it, it is necessary to use a count regression model.
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Figure 1: Frequency of the response variables.

On the other hand, the data has a large number of zeros, and
also there is a positive correlation between the number of
return for donation and the number of deferral. In order to
model these two variables obtained from blood transfusion
data, the bivariate zero-inflated Poisson regressionmodel was
used. The remainder of the paper is organized as follows: in
Section 2, first, the bivariate data set of blood transfusion is
introduced, then, the bivariate zero-inflated Poisson models
are presented, and later a Bayesian methodology for fitting
the bivariate zero-inflated Poisson model is developed. In
Section 3, the result of fitting the proposed model on
blood transfusion data is brought up and discussed. Finally,
Section 4 provides some conclusions.

2. Materials and Methods

2.1. Data. The data used in this research was obtained from a
longitudinal study in which a random sample of donors who
had a first-time successful donation were followed up for a
maximum of five years and their number of return for blood
donation and number of blood deferral were measured as
response. A full description of the data can be seen in [3].
Figure 1 shows the frequency of return for blood donation
and blood deferral. 51% of return for blood donation and
85% of blood deferral are zero, which is much more than
the Poisson distribution contribution. On the other hand,
the Spearman correlation coefficient of the number of return
for donation and the number of deferral was equal to 0.276,
which is significant at level 0.01. Therefore, to study the
effective factors, the bivariate zero-inflated regression model
was used. Sex, weight, age, marital status, education, and job
were taken as independent variables. Since education and job
were nominal, in order to apply those in the model, three
dummy variables for education and four for job were used.
As a result, thirteen independent variables were inserted into
the model.

2.2. Statistical Models

2.2.1. Bivariate Poisson Distribution. The discrete random
variables of 𝑌

1
and 𝑌

2
are bivariate Poisson distribution and
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if 𝜆
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are independent. This way, the bivariate Poisson distribution
becomes multiplication of two univariate Poisson distribu-
tions and is known as double-Poisson model [16, 21].
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Table 1: Posterior summaries for the parameters of bivariate zero-inflated Poisson model.

Parameter Mean Median Standard deviation 95% credible interval
2.5 percentile 97.5 percentile
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in which I
𝑖
is an indicator that (𝑌

1
, 𝑌
2
) are both zero at

which I
𝑖
= 1 and 0 otherwise. The posterior density of

parameters is very complicated; thus, we use simulation
approach ofMarkov chainMonte Carlo (MCMC) to estimate
the parameters.

3. Results and Discussion

The codes of the programs related to the models were written
using the WinBUGS software version 1.4.3. To make sure
of the convergence of parameter’s chains, both graphical
and analytical convergence diagnostics were used. In the
graphical method, the behavior of the trace plots and the
autocorrelation function were checked. Also, in order to
study the convergence analytically, two parallel chains with
a burn-in of 5000 samples and 30000 observations after that
were run. The samples obtained from posterior distributions
of the parameters were fed into R software and the modified
Gelman-Rubin [25] scale reduction factor of the model’s
parameters was calculated using package of BOA [26]. All
these values were close to one; the biggest value of scale
reduction factor was 1.00402, which belongs to the coeffi-
cient of sex. We found no evidence from the convergence
diagnostics methods that the chains are not converging to
posterior distribution of the parameters. Since there was a
high autocorrelation in the successive values of the simulated
observation, in order to get roughly independent samples,
every 20th sample was kept to get statistical summaries of
the parameters.The posterior summaries of the parameters of
the bivariate zero-inflated Poisson regression model, includ-
ing mean, median, standard deviation, and 95% credible
intervals, based on 30,000 simulated values in presence and
absence of independent variables can be seen in Tables 1 and
2, respectively. In order to prevent confusion in the tables,
the MC error values have not been reported, yet they were
taken lower than 0.1 of the posterior standard deviation for
all parameters, which in turn indicates the convergence of the
produced chains [27].

The posterior mean and 95% credible interval for the
zero-inflation parameter (proportion of extra zeros) inmodel
(𝑃
0
) are 0.43 and (0.391, 0.466), respectively. In other words,

in BZIP regression model, the posterior estimate of the
parameter 𝑃

0
= 𝑃(𝑌

1
= 0, 𝑌

2
= 0) is equal to 0.43. Since

the number of the observed (0, 0) in the response variables
was 411, the observed proportion of zeros was 411 to 864,
that is, 0.48. This value is close to the posterior estimate of
the inflation parameter obtained from the BZIP regression
model. In the univariatemodel, the posterior estimate of extra
zero parameters in the zero-inflatedPoisson regressionmodel
is obtained at 0.448 for the number of return for donation and
0.67 for the numbers of blood deferral. So, if the dependency
between the two response variables is not considered, and the
responses of the number of return for donation and deferral
are assumed independent, then the probability of 𝑃(𝑌

1
=

0, 𝑌
2
= 0) will be equal to 𝑃(𝑌

1
= 0) ⋅ 𝑃(𝑌

2
= 0), which will

be estimated as 0.448 ∗ 0.67, and result is 0.30, which is an
underestimation compared to the BZIP model and the true
proportion of zeros. The estimated value of the correlation
coefficient of the BZIP model in absence of covariate using
estimated moments is equal to 0.282, which is very close to
the Spearman correlation coefficient of the original data (𝑟 =
0.276) that, in turn, shows the qualified fitting of the model.

The 95% credible intervals of regression parameters
showed that weight and job (student and unemployed versus
housekeeper) were important factors to the number of blood
donation. Results, also, showed that weight is an important
factor to the number of blood deferral. To compare the
models, deviance information criteria (DIC) were used [28];
the results of DIC are presented in Table 3.

The findings showed that, among the independent vari-
ables, the only ones which influenced the number of donation
were weight and job (as the weight increases, return for
donation increases too). Also, students returned to donate,
most of all jobs, and housekeepers did so the least of all.
Weight had a positive effect on the number of blood deferral
as well; it looks like people with higher weights return for
donation more than other people, which in turn causes a
higher rate of blood deferral too.

All the prior distributions for parameters of this model
were noninformative, so the values of hyperparameters of
prior distributions were selected in a way that their variance
would be bigger. As another study, it is proposed to use
bivariate zero-inflated negative binomialmodel with our data
and results could be compared with BZIP model.



Computational and Mathematical Methods in Medicine 5

Ta
bl
e
2:
Po

ste
rio

rs
um

m
ar
ie
sf
or

th
ep

ar
am

et
er
so

fb
iv
ar
ia
te
ze
ro
-in

fla
te
d
Po

iss
on

re
gr
es
sio

n
m
od

el.

Pa
ra
m
et
er

𝜆
1

𝜆
2

M
ea
n

M
ed
ia
n

St
an
da
rd

de
vi
at
io
n

2.
5
pe
rc
en
til
e

97
.5
pe
rc
en
til
e

M
ea
n

M
ed
ia
n

St
an
da
rd

de
vi
at
io
n

2.
5
pe
rc
en
til
e

97
.5
pe
rc
en
til
e

Be
ta
0
(c
on

sta
nt
)

−
0.
01
43

−
0.
01
1

0.
25
0

−
0.
51
5

0.
46

0
−
0.
78
0

−
0.
77
3

0.
40
3

−
1.6

0.
00
5

Be
ta
(a
ge
−
m
ea
n
(a
ge
))

−
0.
00

4
−
0.
00

4
0.
00

4
−
0.
01
2

0.
00

4
0.
00

41
0.
00

42
0.
01

−
0.
01
5

0.
02
3

Be
ta
(s
ex
)

0.
43

0.
42
1

0.
28

−
0.
01

0.
99

−
0.
41
4

−
0.
42
9

0.
5

−
1.3

14
0.
60
1

Be
ta
(w

ei
gh
t−

m
ea
n
(w

ei
gh
t))

0.
01
61

0.
01
61

0.
00
27

0.
01
1

0.
02
13

0.
01
58

0.
01
59

0.
00

64
0.
00
32

0.
02
84

Be
ta
(m

ar
ita

ls
ta
tu
s)

0.
03

0.
03

0.
08
8

−
0.
14
1

0.
20
2

0.
17
6

0.
17
7

0.
21

−
0.
23
9

0.
59

Ed
uc
at
io
n

Be
ta
(h
ig
h
sc
ho

ol
ve
rs
us

ele
m
en
ta
ry
)

0.
09
63

0.
09
64

0.
11

−
0.
11
1

0.
30
4

0.
35
8

0.
35
7

0.
27
1

−
0.
17
1

0.
89
2

Be
ta
(d
ip
lo
m
av

er
su
se

lem
en
ta
ry
)

−
0.
07

−
0.
07

0.
11

−
0.
28

0.
14
8

0.
39

0.
39

0.
27
1

−
0.
12
7

0.
93

Be
ta
(u
ni
ve
rs
ity

ve
rs
us

ele
m
en
ta
ry
)

−
0.
25

−
0.
25

0.
13

−
0.
5

0.
00
2

0.
24
1

0.
23
8

0.
33

−
0.
41

0.
9

Jo
b Be

ta
(c
le
ric

al
ve
rs
us

ho
us
ek
ee
pe
r)

0.
57

0.
57

0.
33
6

−
0.
1

1.2
3

−
0.
70
7

−
0.
70
2

0.
57
5

−
1.9

0.
39
6

Be
ta
(w

or
ke
rv

er
su
sh

ou
se
ke
ep
er
)

0.
53
3

0.
53
2

0.
33
2

−
0.
12

1.2
−
0.
46
2

−
0.
45
5

0.
56
6

−
1.6

0.
63

Be
ta
(fr

ee
jo
b
ve
rs
us

ho
us
ek
ee
pe
r)

0.
35

0.
35

0.
33

−
0.
3

1.0
1

−
0.
3

−
0.
25
9

0.
55
3

−
1.4

0.
77

Be
ta
(s
tu
de
nt

ve
rs
us

ho
us
ek
ee
pe
r)

0.
81

0.
81
2

0.
34

0.
15

1.5
−
0.
48

−
0.
47
3

0.
6

−
1.6

7
0.
65

𝑃
0

0.
42
8

0.
42
9

0.
02
0

0.
39
1

0.
46

6
𝜆
3

2.
07
5E

−
4

2.
20
6E

−
11

0.
00
12

2.
59
6E

−
32

0.
00
23

D
ev
ia
nc
e

38
27

38
26

7.0
63

38
15

38
44



6 Computational and Mathematical Methods in Medicine

Table 3: Results of deviance information criterion.

Model 𝑃
𝐷

𝐷bar DIC
Poisson (𝑌

1
) 11.93 3373.47 3385.4

Poisson (𝑌
2
) 11.81 1016.70 1028.51

Zero-inflated Poisson (𝑌
1
) 13.01 2885.16 2898.2

Zero-inflated Poisson (𝑌
2
) 12.90 955.69 968.60

Bivariate Poisson (𝑌
1
, 𝑌
2
) 27.10 4393.64 4420.72

Bivariate zero-inflated Poisson 25.32 3826.91 3852.23

4. Conclusion

This article mainly aims at discovering the factors influencing
number of return for blood donation and number of blood
deferral. To do so, the bivariate zero-inflated Poisson regres-
sionmodelwas applied using aBayesian approach viaMCMC
simulation. Since the proposed response is naturally bivariate,
using ordinary univariate zero-inflated regression models
will not yield the desired results. A positive correlation
between dependent variables and zero frequency more than
Poisson distribution in each of the dependent variables are
the main characteristics of the data in this study. The idea
of using the bivariate zero-inflated Poisson (BZIP) model
was strengthened by these two features because this model
not only explains the positive correlation between the two
responses (as BP model does) but also explains overdisper-
sion and underdispersion conditions (which BP does not).
The bivariate zero-inflated Poissonmodel is an ideal model as
it has overcome the problems of bivariate Poissonmodel [15].

According to the estimate of the DIC in Table 3, the BZIP
model fits better and more comprehensively on the data in
comparison with the bivariate Poisson model. Moreover, the
total DIC value for the double-Poissonmodel (two individual
univariate Poisson models) equals the sum of DIC of each
model [19] and will be 4413.91, which is significantly lower
than the DIC statistic 4420.72 from the BP model. This
finding indicates that despite considering the correlation
between the responses, the BP model cannot fit the data very
well. On the other hand, the totalDIC value for two individual
univariate ZIP models is equal to the sum of DIC statistic of
each model and will be 3866.8, while this value was 3852.23
for BZIP model which shows its better fitting. This provides
empirical support for the BZIP model over univariate ZIP
models for our data. Among univariate Poisson models, for
each of the response variables, the DIC value for the zero-
inflated model was lower than that of the ordinary model,
which is logical due to the existence of excessive zeros in both
responses. Out of themodels fitted in this study, the BPmodel
had the most complexity. Overall, the bivariate zero-inflated
Poisson regression model was the most comprehensive and
the best model to explain the correlation and excessive zeros
and fitted the blood transfusion data in this study better than
other models.
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