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Patients with chronic obstructive pulmonary disease (COPD), irrespective of

their smoking history, are more likely to develop lung cancer than the general

population. This is mainly because COPD is characterized by chronic persistent

inflammation and hypoxia, which are the risk factors for lung cancer. However,

the mechanisms underlying this observation are still unknown. Hypoxia-

inducible factor 1-alpha (HIF-1a) plays an important role in the crosstalk that

exists between inflammation and hypoxia. Furthermore, HIF-1a is the main

regulator of somatic adaptation to hypoxia and is highly expressed in hypoxic

environments. In this review, we discuss the molecular aspects of the crosstalk

between hypoxia and inflammation, showing that HIF-1a is an important

signaling pathway that drives COPD progression to lung cancer. Here, we

also provide an overview of HIF-1a and its principal regulatory mechanisms,

briefly describe HIF-1a-targeted therapy in lung cancer, and summarize

substances that may be used to target HIF-1a at the level of COPD-

induced inflammation.
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Introduction

Lung cancer is the leading cause of cancer-related death worldwide (1). Although

immunotherapy has drastically improved the prognosis of lung cancer patients, its

efficacy is constrained to individuals with more than 50% programmed cell death 1 ligand

1 (PD-L1) expression. Accordingly, a global multicenter study of PD-L1 expression in

patients with locally advanced or metastatic non-small cell lung cancer (NSCLC)
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reported that only 22% of the patients expressed PD-L1 levels

greater than 50% (2). NSCLC is the predominant histological

subtype of lung cancer that accounts for 85% of all lung cancer

cases (3). Chronic obstructive pulmonary disease (COPD),

which is categorized by chronic inflammation and airflow

restriction, is prevalent among patients with NSCLC and

notably increases mortality. COPD occurs because individuals

with COPD and lung cancer are less likely to receive

chemotherapy or immunotherapy. However, if the progression

of COPD to lung cancer can be delayed, the incidence and

mortality rates of lung cancer will be reduced. Therefore, it is

crucial to first understand how the recognized risk factors

contribute to the early progression of lung cancer in order to

achieve this objective.
COPD and lung cancer are related

Smoking is a major risk factor for lung cancer, and patients

with COPD are four to six times more likely to develop lung

cancer than smokers without COPD (4). Furthermore, COPD

may cause lung cancer in nonsmokers (4). Therefore, COPD/

emphysema is a risk factor for lung cancer regardless of smoking

status (5). In a study, 2,507 patients with COPD were monitored

for an average of 60 months. Overall, 215 individuals developed

lung cancer at a rate of 16.7 per 1,000 person-years after the

follow-up (6). COPD severity is also a critical risk factor for lung

cancer. In a large epidemiological study with a 22-year follow-up

of 5,402 participants, an increased COPD severity was linked to

an elevated risk of lung cancer (7). Moreover, emphysema

diagnosed using computed tomography (CT) and airflow

restriction determined using spirometry is also associated with

lung cancer (8). Accordingly, annual CT screening has been

demonstrated to enhance lung cancer diagnosis and decrease

mortality, although this is only in individuals with normal or

minimally compromised lung function (9).

Approximately 1% of COPD patients develop lung cancer

each year (10, 11). According to the latest Global Burden of

Disease (GBD) statistics, the number of people with COPD

exceeded 1,400,000 in 2018, and the number of people with lung

cancer increased by about 400,000 from 2018 to 2019 (12).

Therefore, it is likely that about 30% of the new lung cancer

population from 2018 to 2019 is related to COPD. It’s a

staggeringly theoretical value. However, there are no real-

world statistical findings to confirm this figure. In addition,

smoking is known to be a common risk factor for COPD and

lung cancer. Therefore, this theoretical value is not influenced by

COPD alone. However, it has been shown above that the risk of

lung cancer is much greater in COPD patients than in the

smoking population. Therefore, this theoretical data is sufficient

to warn us to pay attention to COPD among the risk factors for

lung cancer.
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Inflammation and hypoxia link
COPD with lung cancer

Numerous mechanisms, including chronic inflammation,

aberrant immunology, oxidative stress, epithelial-mesenchymal

transition, hypoxia, and genetic variables, have been used to

elucidate the association between COPD and lung cancer (13–

22). Hypoxia as a carcinogenic etiology of COPD has recently

piqued the interest of researchers. Interestingly, a reciprocal

relationship exists between hypoxia and inflammation. Hypoxia

can aggravate inflammation by activating inflammatory pathways

and influencing immune cell functions. Conversely, during

inflammation, pathologies such as thrombosis, trauma,

compression (interstitial hypertension), and atelectasis (airway

obstruction) elevate cells’ metabolic requirements, consequently

decreasing oxygen delivery and worsening tissue hypoxia (23).

Therefore, hypoxia and inflammation significantly contribute to

COPD carcinogenesis, and HIF-1a plays a critical role in both

processes. Additionally, hypoxia can increase HIF-1a expression

in hypoxic tissues and the serum. Two key angiogenic factors,

which include vascular endothelial growth factor-A (VEGF-A)

and angiopoietin-2 (Ang-2), are controlled by HIF-1a. Ang-2
promotes vasculature remodeling by inhibiting the associated

angiopoietin-1 protein (24). Angiogenesis is also crucial for

tumor progression and development. Administering VEGF-

specific monoclonal antibodies to mice suppressed tumor

development (25). VEGF-A also mediates vascular permeability,

which is linked with malignant effusions (26). Furthermore, neo-

angiogenesis and VEGF expression in NSCLC are markers of a

poor prognosis (27). Surprisingly, VEGF receptor 2 (VEGFR2),

VEGF-A and C, matrix metalloproteinase-2 (MMP-2), and

MMP-9 were overexpressed in the lungs and tumors of hypoxic

mice. VEGF-A and MMP-9 also increase in hypoxic malignancies

(28). Angiogenesis is controlled by tie receptors, which are

involved in vascular homeostasis, and VEGF receptors are the

essential components of angiogenesis. VEGF receptor 1

(VEGFR1) and Tie2 are downregulated in hypoxic mouse

tumors, which may cause aberrant vascular leakage linked to

tumor invasion (28). In the 3-methylcholanthrene/butylated

hydroxytoluene animal model, which is an inflammation-

dependent priming-promoting model, chronic persistent

alveolar hypoxia increased the expression of epidermal growth

factor receptor (EGFR), fibroblast growth factor receptor 2, and

platelet-derived growth factor receptor, which are known to

promote tumor growth and angiogenesis. However, intermittent

hypoxia did not induce the same increase in these growth factor

receptors (28).

In addition to VEGF family, the downstream target genes of

HIF, which include nuclear factor kappa B (NF-kB) and toll-like

receptors, link hypoxia to inflammation (23). Inflammation

significantly contributes to an increased susceptibility to lung

cancer in patients with COPD. In addition, several NF-kB (key
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regulators of inflammation) target genes involved in

carcinogenesis, including interleukin-6, MMP-9, and

cyclooxygenase 2, are also downstream genes of HIF-1a (29).

Hypoxia induces NF-kB expression (30). Furthermore, NF-kB
stimulates cell proliferation, inhibits programmed cell death,

facilitates tumor dissemination, and modifies tumor metabolism

in the context of chronic inflammation (29). Moreover, NF-kB
can also decrease p53 stability to promote carcinogenesis and

can collaborate with HIF-1a to enable the activation of tumor-

promoting gene promoters (31). NF-kB also directly regulates

the expression of genes encoding MMPs such as MMP-9, leading

to extracellular matrix remodeling, which promotes cancer cell

distribution in the vicinity (29).

Furthermore, chronically inflamed tissue leads to a hypoxic

environment that prevents hypoxia-inducible factor prolyl

hydroxylase (PHD), thereby regulating HIF stability.

Interleukin-1b and lipopolysaccharide are proinflammatory

cytokines that increase the basal transcription rate of HIF

messenger RNA probably because NF-kB binds to the HIF-1a
promoter and upregulates HIF-1a (32). NF-kB also promotes

HIF-1a activation and enhances HIF-1a expression during
Frontiers in Oncology 03
hypoxia (33). In contrast, PHD and HIF-1a inhibitors (FIH)

regulate NF-kB activation by controlling inhibitor of kappa B

kinase (IKKb)complex activity, which is a regulatory component

of NF-kB (34) (Table 1 and Figure 1).
HIF-1

HIF-1 initiation

HIF-1 is essential for the body’s adaptive regulatory response

to changes in the oxygen environment and is involved in several

physiological and pathological processes in the body, as well as

in the origin of many disorders. HIF-1 is a heterodimeric

transcription factor with three oxygen-sensitive alpha subunits,

HIF-1a, HIF-2a, and HIF-3a, and one constitutive beta subunit,
HIF-1b (35). Interestingly, studies on the mammalian HIF-1a
have significantly contributed to the knowledge of the structure

and regulation of transcription factors. Both HIF-1a and HIF-1b
possess a basic helix loop helix (bHLH) domain and two Per-

Arnt-Sim (PAS) domains, which include PAS-A and PAS-B
TABLE 1 Hypoxia and inflammation combined in cancer.

Cytokines Induction method Expression in hypoxic
tumor

Role of cytokines in hypoxic tumors after being
modulated

HIF-1a Induced by hypoxia Up Promote angiogenesis and tumor growth (24, 31)
Promote inflammation and a variety of inflammatory mediators (29–31)

PDGFR Induced by hypoxia Up Promote angiogenesis and tumor growth (28)

FGFR2 Induced by hypoxia Up Promote angiogenesis and tumor growth (28)

Tie 2 Induced by hypoxia Down Cause aberrant vascular leakage associated with tumor invasion (28)

NF-kB Co-induced by hypoxia and
inflammation

Up Promote inflammation (29, 31)
Stimulate cell proliferation (29)
Inhibit programmed cell death (29)
Facilitate tumor dissemination (29)
Promoting carcinogenesis (31)
Facilitate the activation of tumor-promoting gene promoters (30, 31)

VEGF family
VEGF-A

VEGFR1
VEGFR2

Target of HIF-1a
Up

Down
Up

Promote angiogenesis and tumor growth (26, 29)
Mediate vascular permeability associated with malignant effusions (27)
Cause aberrant vascular leakage associated with tumor invasion (29)
Promote tumor growth (29)

Ang-2 Target of HIF-1a Up Promote remodeling of the vasculature (22)

MMP-9 Common target of HIF-1a and NF-kB Up Promote inflammation (30, 32)
Promote the spread of cancer cells in the vicinity (30)
Promote tumor development (32)

MMP-2 Common genes of HIF-1a and NF-kB Up Promote inflammation and VEGF release from the extracellular matrix
(30)
Promote tumor invasion (32)

IL-6 Common genes of HIF-1a and NF-kB Up Promote inflammation and tumor development (29, 31)

COX2 Common genes of HIF-1a and NF-kB Up Promote inflammation and tumor development (30, 32)
PDGFR, platelet-derived growth factor receptor; FGFR2, fibroblast growth factor receptor 2; NF-kB, nuclear factor kappa B; VEGFR2, vascular endothelial growth factor receptor 2; Ang-2,
angiopoietin-2; IL-6, interleukin-6; COX-2, cyclooxygenase 2.
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(36). Additionally, the bHLH and PAS structural domains

mediate the heterodimerization of HIF-1a and HIF-1b. A
basal region that precedes the N-terminus of the bHLH

domain binds this heterodimer to the hypoxia response

element (HRE)-DNA motifs of the target gene promoters (36).

The two transactivation domains (TADs) are categorized as

follows: NH2-terminal TAD (N-TAD) and COOH-terminal

TAD (C-TAD), which are located at the NH2-and COOH

terminuses, respectively. N-TAD is found within the oxygen-

dependent degradation domain (ODDD), which is constrained

to amino acid residues (400–600) of HIF-1a. Conversely,

ODDD and C-TAD control the activity and stability of the a-
subunit, which will be described in detail below. Furthermore,

the amino acid sequence (576–785) of the inhibitory domain

(ID) that prevents the transcriptional activity of N-TAD and C-

TAD under normoxic conditions separates N-TAD and C-TAD

(36). Summarily, HIF-1 signaling begins with its dimerization.

HIF-1a migrates to the nucleus and dimerizes with HIF-1b.
Subsequently, the dimer binds to the promoters of target genes

containing HREs, initiating the transcription of multiple genes,

including EGFR (35), which is involved in cellular adaptation to

hypoxia, metabolism, and cellular function (37). Furthermore,

the ability of HIF-1 to cause hypoxia-induced transactivation

significantly depends on its HIF-1a subunit (36) (Table 2).
Hydroxylation regulates HIF-1a

Several environmental factors influence HIF-1 expression.

Interestingly, the principal mechanism by which HIF-1 is

regulated is hydroxylation, with most of the mechanism
Frontiers in Oncology 04
occurring in the a-subunit. In resting cells, PHD, which

includes PHD1, PHD2, and PHD3, hydroxylates proline

residues within the ODDD region of HIF-1a, enabling the

ubiquitination of HIF-1a by the von Hippel–Lindau protein

(pVHL) E3 ubiquitin ligase (36, 38). Therefore, the PHD and

pVHL proteins primarily facilitate HIF-1a degradation.

Additionally, since PHD depends on oxygen, the baseline level

of HIF-1a remains low under normoxic conditions with a half-

life of less than 5 minutes (39). Conversely, hypoxia inhibits

PHD and reduces HIF-1 hydroxylation, resulting in HIF-1

accumulation, which translocates to the nucleus and binds to

its coactivator (38). Moreover, asparagine hydroxylase, under

normal conditions, hydroxylates asparagine residues 803 and

847 within the HIF-1a C-TADs. It prevents HIF-1a from

interacting with its coactivator, which is a cyclic adenosine

monophosphate response element binding protein-binding

Protein/P300 (CBP/p300) (36, 40). In contrast, this FIH

function is suppressed under hypoxic conditions, which

enables the binding of HIF-1a to its coactivators and boosts

the expression of its downstream target genes. Additionally, the

signal transducer and activator of transcription 3 enhance HIF-

1a activity by blocking VHL from binding to HIF-1a and

facilitating the coactivator CBP/p300 to bind to HIF-1a.
Additionally, the mammalian target of rapamycin (mTOR)

induces HIF-1a binding to its coactivator (41) (Figure 2).
Acetylation regulates HIF-1a

Moreover, lysine acetylation can alter the HIF-1a protein at

various sites, resulting in obvious downstream effects. However,
FIGURE 1

Crosstalk between hypoxia and inflammation in COPD and lung cancer toxicity. Angiogenesis, HIF-1a, and inflammation play important roles in
the progression of COPD to lung cancer. Angiogenesis and inflammation cross-talk through HIF-1a. FGFR2, fibroblast growth factor receptor 2;
PDGFR, platelet-derived growth factor receptor; Tie2, Tie2 (a member of the receptor tyrosine kinase family and the receptor for angiopoietin);
VEGF-A, vascular endothelial growth factor-A; VEGFR2, vascular endothelial growth factor receptor 2; VEGFR1, vascular endothelial growth
factor receptor 1; Ang2, angiopoietin-2; NF-kB, nuclear factor kappa B; IL-6, interleukin-6; COX-2, cyclooxygenase 2; MMP9, matrix
metalloproteinase-9; MMP2, matrix metalloproteinase-2.
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these findings remain controversial. A report indicated that the

lysine (K532) residue of HIF-1a directly interacts with arrest

defective-1 (ARD1: a protein acetyltransferase) to acetylate HIF-

1a, thereby enabling HIF-1a binding to pVHL and finally HIF-

1a degradation. This study further proved that pVHL-

dependent HIF-1a degradation is associated with intra-ODDD

acetylation. Metastasis-associated protein 1 (MTA1) is a

member of the MTA family that opposes the acetylation

function of ARD1 and upregulates the expression of histone

deacetylase 1, which induces HIF-1a deacetylation at the K532R

site, thereby improving the transcriptional activity and stability

of the HIF-1a protein (36). A hypoxic environment notably

enhances MTA1 expression (42). However, a report indicates

that ARD1 neither acetylates nor destabilizes HIF-1a (43).

Similarly, ARD1 inhibition and overexpression had minimal

effect on basal HIF-1a levels or hypoxic responses (44).

Additionally, the CBP/p300-associated factor acetylates the

lysine residue (K674), which elevates HIF-1a levels and

promotes HIF-1a binding to P300 (45). In particular, Geng

et al. (46) demonstrated that P300 stabilizes HIF-1a by

acetylating lysine residues (K709). Summarily, most current

studies indicate that HIF-1a is acetylated and deacetylated,

leading to its removal and accumulation, respectively (Figure 2).
Frontiers in Oncology 05
Phosphorylation regulates HIF-1a

Protein kinases control HIF-1a activity and phosphorylate

specific HIF-1a residues under normoxic conditions. Cyclin-

dependent kinase-1 (CDK1) phosphorylates HIF-1a at serine

668, increasing the expression of HIF-1a and its target genes and

boosting tumor angiogenesis, proliferation, and growth (47).

Similarly, ataxia and telangiectasia mutated (ATM) proteins

phosphorylate the inhibitory domain residue S696 to stabilize

HIF-1a (48). Conversely, polo-like kinase-3 (P3) phosphorylates

residues S576 and S657 to destabilize HIF-1a (49). Moreover,

glycogen synthase kinase-3 (GSK3) also phosphorylates residues

S551, T555, S589, T498 S502, S505, T506, and S510 in ODDD

and N-TAD, which enhances HIF-1a degradation (50–52). In

the human liver hepatocellular cell lines (HepG2), chronic

hypoxia induced an increase in GSK3 activity, which decreased

HIF-1a protein levels (52); however, this effect was undetected

in other cell types. Additionally, adenosine 5’-monophosphate-

activated protein kinase (AMPK) phosphorylates S419 in HIF-

1a to downregulate HIF-1a (53). Additionally, two members of

the p38 mitogen-activated protein kinase (MAPK) family, p38a
and p38g, can phosphorylate the amino acid 576–785 domain of

HIF-1a, thereby contributing to its stability (54). The activation
TABLE 2 The Location of the HIF-1 Partial Functional Domains/Regions.

Feature key Position(s) Description Graphical view Length

Domain 17–70 bHLH 54

Domain 85–158 PAS 1 74

Domain 228–298 PAS 2 71

Domain 302–345 PAC 44

Region 1–401 Interaction with TSGA10 401

Region 1–30 Disordered 30

Region 21–30 DNA-binding 10

Region 170–191 Required for heterodimer formation with ARNT 22

Region 380–417 N-terminal VHL recognition site 38

Region 401–603 ODDD 203

Region 494–520 Disordered 27

Region 531–575 N-TAD 45

Region 556–572 C-terminal VHL recognition site 17

Region 576–785 ID 210

Region 642–688 Disordered 47

Region 786–826 C-TAD 41
fronti
HIF-1, hypoxia-inducible factor 1; bHLH, basic helix loop helix; PAS 1, Per-Arnt-Sim 1; PAS 2, Per-Arnt-Sim 2; PAC, PAC motifs occur C-terminal to a subset of all known PAS motifs;
TSGA10, testis-specific gene 10 (a protein-coding gene); ARNT, aryl hydrocarbon receptor nuclear translocator; VHL, von Hippel–Lindau protein; ODDD, oxygen-dependent degradation
domain; N-TAD, NH2-terminal transactivation domain; ID, inhibitory domain; CTAD, COOH-terminal transactivation domains.
ersin.org

https://doi.org/10.3389/fonc.2022.984525
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.984525
of the p42/p44 MAPK pathway induces HIF-1a by

phosphorylating S641/S643 in HIF-1a (55–57).This study

further found that p42/p44 MAPK activation was sufficient to

promote the transcriptional activity of HIF-1 in the VEGF

promoter mutated at a MAPK-sensitive site (SP1/AP2-88-66

site) (57) (Figure 2).
COPD and lung cancer exhibit
aberrant HIF-1a expression

HIF-1a corresponds with COPD severity

COPD causes a hypoxic environment for HIF-1a.
Numerous studies have proven that HIF-1a is overexpressed

in the lungs of patients (58–60). Wang et al. (59) measured HIF-

1a serum levels using enzyme-linked immunosorbent assay.

They discovered that serum HIF-1a levels were higher in

stable patients with COPD than in the general population and

that these higher serum levels were positively correlated with the

Global Initiative for Chronic Obstructive Lung Disease (GOLD)

classification, the United Kingdom modified Medical Research

Council (mMRC) score, and medical history. Therefore, this

result suggests that increased HIF-1a serum levels are associated

with COPD progression. Additionally, Fu et al. (61) assessed
Frontiers in Oncology 06
HIF-1a expression in the lung tissues of 102 smokers with or

without COPD. Patients with COPD had increased levels of

HIF-1a and its downstream target genes, including VEGF and

VEGFR2, in their lung tissue compared with healthy individuals

and nonsmokers without COPD. Furthermore, COPD severity

has been associated with HIF-1a expression and downstream

target genes. In another study, Zhang et al. (60) investigated the

bronchoalveolar lavage fluid from patients with COPD and

healthy participants. They found that HIF-1a was

overexpressed, and the production of inflammatory markers

was elevated in patients with COPD through the activation of

the EGFR/PI3K/AKT pathway. Moreover, in a feedback loop,

the lung inflammation-induced EGFR/PI3K/AKT pathway

upregulates HIF-1a expression, eventually exacerbating COPD.
HIF-1a stimulates tumor development

Increased levels of HIF-1a expression promote tumor

growth, whereas a reduction in its activity inhibits tumor

growth (62). HIF-1a levels in lung cancer tissue samples are

excessively high and play a crucial role in tumor genesis,

development, and metastasis (63–65). Infantino et al. (66)

demonstrated that HIF-1a contributes to the regulation of

glutamine and serine metabolism as well as the one-carbon
FIGURE 2

Regulation of HIF-1a by hydroxylation, phosphorylation and acetylation. Activated regulatory pathways under normoxia: ①②; Activation of the
following pathway is less associated with oxygen: ③④⑤⑥;Activated regulatory pathways under hypoxia: ⑦⑧⑨⑩⑪⑫⑬⑭⑮. PHD, prolyl hydroxylase;
pVHL, Von Hippel-Lindau protein; ARD1, arrest defective-1; CBP/P300, cAMP response element binding protein (CREB)-binding protein and
P300; ODDD, oxygen-dependent degradation domain; AMPK, adenosine 5’-monophosphate (AMP)-activated protein kinase; GSK3, glycogen
synthase kinase-3; PLK3, polo-like kinase-3; MTA1, metastasis-associated protein 1; ATM, ataxia and telangiectasia mutated; p42/p44 MAPK,
mitogen-activated protein kinase; CDK1, cyclin-dependent kinase-1; mTOR, mammalian target of rapamycin; STAT3, signal transducer and
activator of transcription 3.
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cycle and fatty acid metabolism in hypoxic cancer cells, thereby

reprogramming cancer cell metabolism under hypoxic

conditions. Additionally, these changes promote cell survival,

proliferation, and tumor growth. Furthermore, HIF-1a
overexpression enhanced tumor development, vascularization,

and energy metabolism, whereas a decrease in its activity had the

opposite impact during in vitro xenograft tests (67–70).

Moreover, cigarette smoke extract, which is a prevalent risk

factor for COPD and lung cancer, also elevates HIF-1a in a

concentration-dependent manner (71). In addition, VEGFR,

which is one of the essential target genes downstream of HIF-

1a, adapts cancer cells to the hypoxic environment and

stimulates the formation of new blood vessels in the tumor,

provides nutrients and oxygen to promote tumor growth and

metabolism, and presents a major pathway for cancer cells to

metastasize to distant organs (72).
HIF-1a links COPD with lung cancer

HIF-1a may increase the risk of cancer in patients with

COPD. Although when the gene encoding HIF-1a was

disrupted in the lung epithelium of a K-ras mutant mouse

model (CC-LR), independent of COPD-like airway

inflammation, the number of surface tumors in the mouse

lung, tumor angiogenesis, and tumor cell proliferation were

cons iderably reduced (73) . However , COPD- and

adenocarcinoma-like phenotypes were observed in their

offspring when CC-LR mice were bred with transgenic animals

overexpressing human HIF-1a in airway epithelial cells.

According to the same study, the CC-LR mice with

overexpressed HIF-1a in the COPD airway epithelium

developed substantial emphysema. Additionally, they

possessed an aggressive metastatic phenotype, with increased

tumorigenesis, angiogenesis, and cell proliferation. Polosukhin

et al. (74) analyzed 55 bronchial biopsies from smokers with

COPD and found that HIF-1a contributes to the progression of

precancerous epithelial lesions in the airways of smokers with

chronic airway inflammation. Furthermore, HIF-1a promotes

cigarette smoke exposure-induced malignant transformation of

bronchial epithelial cells, which is a process dependent on AKT/

NF-kB pathway (75). Moreover, HIF-1a also encourages

epithelial-mesenchymal transition and the acquisition of

cancer stem cell-like characteristics in the bronchial epithelium

(76, 77). Therefore, these findings indicated a link between

COPD-associated airway inflammation, HIF-1a , and

lung cancer.
Targeting HIF-1a in lung cancer

The mechanism of action of HIF-1a in lung cancer, HIF-1a
targets, and HIF-1a pharmacology are of significant interest to
Frontiers in Oncology 07
researchers. In NSCLC experiments, several substances, such as

the HIF-1a inhibitor LW6 (78), chetomin (79), gamma-linolenic

acid (80), propofol (81), a novel mycotoxin-derived compound

GL331 (82), resveratrol (83), sevoflurane (84), flavanols (85),

MiR-199a (86, 87), and connective tissue growth factor (88),

possess anticancer properties focusing on cancer cell

proliferation and invasion capabilities, by downregulating HIF-

1a levels. Interestingly, digoxin inhibits hypoxia-induced VEGF,

HIF-1a, and N-myc downstream-regulated genes 1 (NDRG1) in

a concentration-dependent manner in A549 cells (89).

Topotecan and etoposide inhibited the hypoxia-induced

expression of HIF-1a protein in NSCLC cell lines in a dose-

and time-dependent manner (90). Conversely, the combination

of emodin and cisplatin downregulated the multidrug

resistance-1 gene and HIF-1a production in lung tumor cells

(91), which restricted cancer cell proliferation, adhesion,

migration, and tumor angiogenesis. Additionally, PX-478,

which is a potent small-molecule HIF-1a inhibitor, had a

substantial anticancer effect in two adenocarcinoma models,

PC14-PE6 and NCI-H441, and two small cell lung cancer

(SCLC) models, NCI-H187 and NCI-N41 (92). Furthermore,

cytokine signaling 3 (SOCS3) suppresses HIF-1a expression,

reducing the progression and spread of SCLC (93). Sulforaphane

inhibits HIF-1a expression under hypoxic conditions probably

because of its H2S-donating characteristics (94, 95). Sphingosine

kinase 1 (96) and andrographolide (97) prevent HIF-1a
expression in NSCLC cells, although no link with anticancer

activity was detected. Moreover, SU5416 and KRN633 are

VEGFR tyrosine kinase inhibitors that reduce HIF-1a
expression in various cancer cells (excluding lung cancer) (98).

Therefore, future studies are necessary to determine whether

they have similar effects on lung cancer cells (Table 3).
Targeting HIF-1a could reduce
COPD-related oncogenic effects

The above evidence implies that an increase in HIF-1a levels

in COPD leads to the progression of COPD to lung cancer

progression. Conversely, inhibiting HIF-1a expression in COPD

may delay or block this process. However, some studies have

proven that HIF-1a plays a crucial role in the energy metabolism

of inflammatory cells and that preventing it causes severe

immunodeficiency (24). In a preliminary assessment of HIF

interference in inflammatory diseases, the hydroxylase inhibitors

dimethyloxalylglycine and FG4497 had a significant protective

effect on two models of inflammatory bowel disease (IBD), such

as dextran sodium sulfate and 2,4,6-trinitrobenzene sulfonic acid

(99, 100). Notably, the respiratory and digestive systems have a

common embryonic origin in the primitive foregut.

Consequently, their structural similarities may explain their

comparable immunological responses to noxious stimuli (101).

Furthermore, the closely related IBD and COPD are chronic
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inflammatory diseases of the digestive and respiratory systems,

respectively. Moreover, exposure to cigarette smoke is also a

common risk factor for both diseases. Accordingly, both disease

states show increased levels of innate lymphocytes and

unconventional T cells, such as gdT cells, and myeloid cells,
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including neutrophils, eosinophils, and macrophages (102).

Because VEGF is an important downstream target gene of

HIF, we also considered whether blocking its pathway would

have a similar effect, and we searched for relevant information.

Although evidence that VEGF inhibitors can improve COPD
TABLE 3 Substances that can target HIF-1a in lung cancer.

Medicine/
Protein

Experimental cells In
vivo/
vitro

Impact on
HIF-1a

Ways to influence HIF-1a Experimental results

LW6 A549 cells In vitro Inhibit levels of
HIF-1a

Upregulate pVHL Induced apoptosis

Digoxin A549 cells In vitro Inhibit levels of
HIF-1a

Suppress the expression of VEGF, NDRG1,
and HIF-1a

Suppressed growth of cells

Chetomin H1299 and H460 cells In mice
and
vitro

Inhibit levels of
HIF-1a

Block p300-HIF-1a interaction Antitumor activity

SOCS3 NCI-H446 cells In mice
and
vitro

Inhibit levels of
HIF-1a

Downregulate the activation of AKT Inhibited the proliferation and angiogenesis
of cells

GLA Calu-1 and SK-MES-1
cells

In vitro Inhibit levels of
HIF-1a

Suppress the HIF1a-VEGF pathway Inhibited the proliferation and invasion of
cells

GL331 CL1-5 cells In vitro Inhibit levels of
HIF-1a and
VEGF

Decrease the binding of CL1-5-derived
nuclear components to the promoter of HIF-

1alpha gene

Suppressed the angiogenesis of cells

Propofol A549 cells In vitro Inhibit levels of
HIF-1a

/ Suppressed the migration and invasion of
cells

Resveratrol LLC cells In mice Inhibit levels of
HIF-1a

/ Antitumor activity

Sevoflurane A549 cells In vitro Inhibit levels of
HIF-1a

/ Suppressed the growth and metastasis of
cells

Flavanols A549 cells In mice
and
vitro

Inhibit levels of
HIF-1a and
VEGF

/ Antitumor and anti-angiogenic activity;

CTGF CL1-5 and A549 cells In mice Inhibit levels of
HIF-1a

/ Suppressed the proliferation, migration,
invasion, and angiogenesis of cells

Top I and Top II
inhibitor

A549, H460, H1299, and
H358 cells

In vitro Inhibit levels of
HIF-1a

/ Seemed useful for overcoming the
therapeutic resistance induced by tumor

hypoxia in NSCLC

MiR-199a NCI-H520 cells In mice Inhibit levels of
HIF-1a and
VEGF

/ Suppressed the proliferation of cells

PX-478 PC14-PE6, NCI-H441,
NCI-H187 and NCI-
N417 cells

In mice Inhibit levels of
HIF-1a

/ Antitumor activity

Combination of
emodin and
cisplatin

A549 and cells In vitro Inhibit levels of
HIF-1a

/ Antitumor activity

Sphingosine
kinase 1

A549 cells In vitro Inhibit levels of
HIF-1a

/ /

Andrographolide A549 cells In vitro Inhibit levels of
HIF-1a

Increase PHD2 and decrease VEGF /

SU5416 and
KRN633

HeLa, A431, MCF7 HCT
15 and HCT 116 cells

In vitro Inhibit levels of
HIF-1a

Inhibit both AKT and ERK phosphorylation
signaling pathways

/

Experimental cell types: (a) human lung adenocarcinoma cells: A549, CL1-5, LLC, PC14-PE6, and NCI-H441; (b) human NSCLC cells: H1299, H460, H358, NCI-H520, and SK-MES-1; (c)
human SCLC cells: NCI-H446, NCI-H187, and NCI-N417; (d) human lung cancer cells: Calu-1; (e) other cancer cells: human cervical carcinoma cell line, HeLa; human epithelial carcinoma
cell line, A431; human breast carcinoma cell line, MCF7; human colorectal carcinoma cell lines, HCT 15 and HCT 116.
Topoisomerase (Top) I inhibitor, topotecan; Top II inhibitor, etoposide; HIF-1a, hypoxia-inducible factor-1 alpha; VEGF, vascular endothelial growth factor; PHD2, prolyl hydroxylase 2;
ERK, extracellular regulated kinase; NSCLC, non-small cell lung cancer; AKT, protein kinase B; NDRG1, N-myc downstream-regulated genes 1; pVHL, von Hippel–Lindau protein.
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exists, whether they can delay or block the progression of COPD

to lung cancer has not been elucidated. Therefore, additional

studies are required to clarify this issue. Accordingly, we briefly

describe the drugs that can target HIF-1a at the level of COPD,

as well as the therapies that can accomplish this effect.
Non-coding RNA

Non-coding RNAs (ncRNAs) are RNAs that do not code for

proteins and are categorized into short microRNAs (miRNAs) and

long ncRNAs. Targeting ncRNAs is a promising therapeutic

strategy since they are involved in various complex

pathophysiological processes, such as immune system

development and function, immunological diseases, and

neurodevelopmental and neurological disorders (103).

Interestingly, miRNAs are prevalent in most somatic tissues.

Additionally, they are generally 22 nucleotides long and created

by two ribonuclease III proteins, Drosha and Dicer (104), which

are essential for gene expression regulation (105), predominantly

through translational repression or messenger RNA degradation

(106). Additionally, miRNAs control the expression of HIF-1a
(107, 108). Notably, Shiro et al. (109) were the first to reveal that

individuals with COPD/emphysema had higher lung tissue

expression of miR-34a and miR-199-5p. Specifically, they

observed that human pulmonary microvascular endothelial

cells (HPMVECs) transfected with the miR-199a-5p gene

showed a reduced HIF-1a protein expression. Additionally,

miR-199-5p expression was elevated in HPMVECs transfected

with miR-34a precursor gene. In a recent study, Wu et al. (110)

found that miR-125a-5p levels were higher in normal smokers

and COPD smokers than in the healthy population.

Furthermore, researchers have used smoke to induce COPD in

mouse models. They found that miR-125a-5p targeted the 3’-

untranslated region of Sp1 mRNA. Sp1 promotes sirtuin 1

(SIRT1) expression, and SIRT1 deacetylates HIF-1a, thereby
downregulating HIF-1a on Lys674. Therefore, when miR-125a-

5p was knocked down, HIF-1a expression was increased.

Similarly, Li et al. (105) conducted a cell culture experiment

with lung fibroblasts (MRC-5) and found that miR-186

decreased HIF-1a by directly targeting HIF-1a mRNA. These

results indicate that the increased expression of miR-199a-5p,

miR-34a, miRNA-186, or miR-125a-5p in the lung tissue of

patients with COPD may inhibit HIF-1a production,

consequently reducing COPD carcinogenesis. Furthermore,

numerous miRNA-targeted therapies, including those for solid

tumors, viral hepatitis C, atherosclerosis, myocardial infarction,

renal fibrosis, diabetes and its complications, and COPD, have

been employed in animal trials and perhaps attained clinical

development (111). Despite insufficient studies on the

application of miRNAs to lower HIF-1a expression in patients

with COPD, this treatment strategy appears beneficial

and promising.
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Sodium hydrosulfide

Sodium hydrosulfide (NaHS) is an H2S donor. Wu et al.

(112) discovered that NaHS reversed HIF-1a accumulation

during hypoxia and that this effect persisted even after the

degradation of the ubiquitin-proteasome pathway was

inhibited. Guan et al. (113) also discovered that NaHS

significantly reduced cigarette smoke-induced HIF-1a protein

expression and enhanced PHD2 protein levels in a mouse model

and in in vitro A549 alveolar epithelial cells. Notably, NaHS

reduces inflammation, epithelial cell damage, and apoptosis by

blocking HIF-1a signaling. These findings suggest that NaHS

may be a novel therapy for COPD. Additionally, NaHS protects

against stress-induced lung injury because of its antioxidative,

anti-inflammatory, antifibrotic, and antiapoptotic properties

(114). Over the past few decades, several H2S-based treatment

approaches, including those based on H2S donation and the

restriction of H2S generation, have been identified. H2S donors

can be obtained through the inhalation of H2S gas, parenteral or

enteral injection of H2S salts, or other methods. Furthermore,

H2S donors can be rapidly or slowly released, such as NaHS,

Na2S, or GY4137, which is a prototype chemical employed in

several in vivo and in vitro studies (115). These findings indicate

that NaHS may be used as a therapy to prevent the progression

of COPD to lung cancer.
Pyrrolidine dithiocarbamate

Pyrrolidine dithiocarbamate (PDTC) is an antioxidant that

is believed to be a potent NF-kB inhibitor (116). Briefly, rats

were orally administered PDTC, treated by the intratracheal

instillation of lipopolysaccharide, and subsequently exposed to

cigarette smoke, as described by Jiang et al. (117). They found a

decreased HIF-1a expression through NF-kB inhibition in the

COPD group caused by PDTC pretreatment. Therefore, PDTC

may be used to lower HIF-1a expression in patients in the

future. Moreover, PDTC, which is an NF-kB inhibitor, may also

be effective for treating COPD.
Lycium barbarum polysaccharides

Lycium barbarum polysaccharides (LBP), comprising

glucose, arabinose, galactose, mannose, rhamnose, and xylose,

are the primary bioactive components of the Chinese herbal

remedy, Lycium barbarum. Interestingly, multiple conditions,

such as cancer, aging, fatigue, colitis, stroke, diabetes,

Alzheimer’s disease, and glaucoma, have been proven to

benefit from LBP (118). Chen et al. (119) demonstrated that

oral LBP (5 mg/mL, 100 mL twice daily for 2 weeks) improved

COPD symptoms and significantly decreased blood HIF-1a
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levels. In this study, oral LBP elicited moderate adverse effects,

including constipation, dry mouth, inflamed gums, and

gastrointestinal reactions. However, these unfavorable

reactions to LBP diminished when the patient stopped taking

LBP, signifying that the side effects associated with LBP were

transient and reversible. Furthermore, animal studies reveal that

LBP has no negative or teratogenic effects on sperm (120),

although further studies are warranted to validate this claim.

LBP may benefit patients with COPD and reduce lung

cancer incidence; however, this also requires additional

clinical verification.
Conclusion

HIF-1a signaling plays a key role in the progression of

COPD to lung cancer and is a potential therapeutic target to

delay the progression. Additional insight into the processes that

govern HIF-1a expression and activation during COPD

inflammatory carcinogenesis would be advantageous in

developing COPD-specific HIF-1a therapies.
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COPD chronic obstructive pulmonary disease

HIF-1 hypoxia-inducible factor 1

HIF-1a hypoxia-inducible factor 1alpha

PD-L1 programmed cell death 1 ligand 1

CT computed tomography

NSCLC non-small cell lung cancer

VEGF-A vascular endothelial growth factor-A

Ang-2 angiopoietin-2

MMP-2 matrix metalloproteinase-2

VEGFR2 VEGF receptor 2

VEGFR1 VEGF receptor 2

EGFR epidermal growth factor receptor

NF-kB nuclear factor kappa-B

PHD prolyl hydroxylase

FIH HIF-1a inhibitor

IKKb inhibitor of kappa B kinase

bHLH basic Helix Loop Helix

PAS Per-Arnt-Sim

HRE hypoxia response element

TADs trans-activating structural domains

N-TAD NH2-terminal TAD

C-TAD COOH-terminal TAD

ODDD oxygen-dependent degradation domain

ID inhibitory domain

pVHL von Hippel-Lindau protein

CBP/P300 cyclic adenosine monophosphate response element binding
protein-binding Protein/P300

mTOR mammalian target of rapamycin

ARD1 arrest defective-1

MTA1 aetastasis-associated protein 1

CDK1 Cyclin-dependent kinase 1

ATM ataxia and telangiectasia mutated

PLK3 polo-like kinase-3

MTA1 metastasis-associated protein 1

GSK3 glycogen synthase kinase-3

AMPK adenosine 5'-monophosphate (AMP)-activated protein kinase

MAPK mitogen-activated protein kinase

HepG2 human liver hepatocellular cell lines

GOLD global initiative for chronic obstructive lung disease

mMRC modified Medical Research Council

CC-LR lung epithelium of the K-ras mutant mice mode

NDRG1 N-myc downstream regulated gene 1

SCLC small cell lung cancer

SOCS3 suppressors of cytokine signaling 3

ncRNAs non-coding RNAs

miRNA microRNA

HPMVECs human pulmonary microvascular endothelial cells

SIRT1 sirtuin 1
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MRC-5 lung fibroblasts

NaHS sodium hydrosulphide

PDTC pyrrolidine dithiocarbamate

LPS lipopolysaccharide

LBP lycium barbarum polysaccharides
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