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Abstract: Rye (Secale cereale) is a climate-resilient cereal grown extensively as grain or forage crop
in Northern and Eastern Europe. In addition to being an important crop, it has been used to
improve wheat through introgression of genomic regions for improved yield and disease resistance.
Understanding the genomic diversity of rye will assist both the improvement of this crop and facilitate
the introgression of more valuable traits into wheat. Here, we isolated and sequenced the short
arm of rye chromosome 7 (7RS) from Triticale 380SD using flow cytometry and compared it to the
public Lo7 rye whole genome reference assembly. We identify 2747 Lo7 genes present on the isolated
chromosome arm and two clusters containing seven and sixty-five genes that are present on Triticale
380SD 7RS, but absent from Lo7 7RS. We identified 29 genes that are not assigned to chromosomal
locations in the Lo7 assembly but are present on Triticale 380SD 7RS, suggesting a chromosome arm
location for these genes. Our study supports the Lo7 reference assembly and provides a repertoire of
genes on Triticale 7RS.

Keywords: rye; isolated chromosome arm sequencing; presence-absence variation

1. Introduction

Rye (Secale cereale L., 2n = 2x = 14, RR genome) is a valuable cereal grain and commercial
crop, processed for culinary uses in bread, beer and whisky, consumed raw as animal
fodder and has utility in the field as a cover crop [1]. It is a stress tolerant cereal known
for its resilience in low fertility soils [2,3]. As a member of the Triticeae tribe in the grass
family Poaceae, it is closely related to modern domesticated wheat [4], having diverged
from a common ancestor only 7 million years ago [5,6]. Similar to Aegilops spp. [7] and
Agropyron spp. [8], rye chromatin can be recombined with wheat chromatin, allowing the
translocation of DNA segments between the two species. The introduction of rye DNA
into wheat has been exploited to improve wheat varieties [9]. For example, recombination
between wheat 1AL and rye 1RS resulted in greenbug resistance, and recombination
between wheat 1BL and rye 1RS improved yield as well as stem stripe and powdery mildew
resistance [10,11]. The ability to transfer beneficial traits to wheat varieties increases the
agronomic value that can be achieved through the identification and characterization of the
rye genome. Thoroughly characterizing the rye genome is therefore important, not only for
rye improvement, but also for the introduction of beneficial rye traits into wheat.

Rye has the largest genome of all temperate cereals, with a size of approximately
7.9 Gb/1C [12,13]. The amplification of transposable elements was a major cause of this
expansion, and these represent over 90% of the genome [14,15]. Rye’s large genome size and
repetitive content impeded the development of a genome assembly, even after the advent
of NGS technology. However, two long awaited high-quality chromosome scale reference
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assemblies were published in 2021, the rye inbred line ‘Lo7’ [16] and Weining rye [17],
with assembly sizes of 6.74 Gb and 7.74 Gb, respectively. Lo7 is a German winter rye,
which is adapted to the major global rye producing regions in north-eastern Europe [18].
Weining rye is an early flowering variety cultivated in China which has broad-spectrum
resistance to common wheat diseases, including powdery mildew and stripe rust [19,20].
The availability of these assemblies will support investigation into rye’s domestication
history, aid in identifying the genomic basis of agronomically important traits and assist in
the transfer of these traits into wheat.

Once a genome has been assembled, the assembly can be assessed and validated
through the physical isolation and sequencing of chromosome arms, and mapping of the
resulting reads to the assembly [21]. Whole chromosome and chromosome arm sequencing
has supported the assembly of the genomes of wheat [22–24] and pea [25]. Chromosome
arm sequencing validates the genomic positions and context of QTLs located on chromo-
some arms [26]. Rye chromosome 7 contains QTLs for pre- harvest sprouting [27], grain
α-amylase activity [28], flowering time [29], kernel weight and gibberellic and abscisic
acid responses [30]. Assessing and validating the genomic sequence of chromosome 7 is
therefore valuable, potentially supporting the improve of both rye and wheat [31].

Crossbreeding wheat and rye gave rise to triticale, a wheat-rye hybrid crop that is
highly resistant to pathogens including leaf and stem rusts [32], displays high yield and
is used as animal fodder and for genomics research. The most common chromosomal
alterations found in wheat-rye substitution are usually deletions and translocation of
individual chromosomal regions such as chromosome arms [33,34]. Here, we isolate,
sequence and characterize a rye chromosome arm present in Triticale 380SD and assess
its gene content. The Triticale 380SD genome shows two R/D chromosome substitutions
(4R(4D), 5R(5D)) and a ditelosomic addition (7RS). The triticale used as a source for the
telocentric chromosome, Triticale ABR, originated from a stabilised cross of synthetic wheat
Triticum durum/Aegilops tauschii var. meyeri with wild rye (Secale cereale subsp. Segetale),
and has been highly modified by different steps of introgression and crossings. The stable
crossing of wild rye with synthetic wheat suggests that the centromere and the long arm
sequence, 7R, is similar to wild rye, which is its primary source.

Cultivated rye has been incompletely genetically isolated from its wild relatives and
rye is known to show large amounts of heterozygosity within and between genomes [16].
However, cereal rye is hypothesised to be a mosaic of different rye species and is not
reproductively isolated, being open to hybrid breeding [17]. Many chromosomes are
conserved between domesticated rye and wild rye, such as the B chromosomes, which
have been well studied and documented [35,36]. Additionally, structural heterozygosity
for reciprocal translocations has been reported both in cultivated and wild rye [37]. By
comparing chromosome arm 7RS from the rye donor line with the Lo7 chromosome
7 assembly, we identify gene clusters that are lost or moved to new locations after the two
lines diverged. Assessing variation on this chromosome will facilitate rye breeding and the
introgression of rye traits into wheat.

2. Results and Discussion

Bivariate flow cytometric analysis of chromosomes isolated from the Triticale 380SD
line yielded flow karyotype which groups of chromosomes with similar DNA and GAA
content formed separated populations (Figure 1). As the 7RS telosome is smaller than
the remaining chromosomes of Triticale 380SD line, its population was clearly discrimi-
nated. This permitted its flow sorting at average purity of 87%. In order to reduce DNA
amplification bias, DNA amplified from both flow-sorted batches was pooled to give
8.37 µg DNA.



Int. J. Mol. Sci. 2022, 23, 11106 3 of 8

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 8 
 

 

amplification bias, DNA amplified from both flow-sorted batches was pooled to give 8.37 
µg DNA. 

 
Figure 1. Bivariate flow karyotype FITC vs. DAPI fluorescence obtained after the analysis of chro-
mosomes isolated from the Triticale 380SD line. The population representing chromosome arm 7RS 
was clearly discriminated and this allowed its sorting using window shown as red rectangle. 

DNA amplified from the flow-sorted 7RS arm was sequenced generating a total of 
142.8 Gb of data. Reads were aligned to the Lo7 reference assembly [16] and 449 Mb, ap-
proximately 50% of chromosome 7R, showed high sequence coverage, starting around the 
third gene on the chromosome, SECCE7Rv1G0453870.1, and terminating around gene 
SECCE7Rv1G0489010.1 at position 449,957,624 (Figure 2). To validate the sequenced chro-
mosome arm, rye genetic markers [38] were aligned to the Lo7 reference genome assem-
bly. Four 7RS specific markers were located within the high coverage region of chromo-
some 7 and two 7RL markers in the low coverage region of chromosome 7, confirming the 
sequenced arm as the short arm of rye chromosome 7 (Figure 2). 

 

Figure 1. Bivariate flow karyotype FITC vs. DAPI fluorescence obtained after the analysis of
chromosomes isolated from the Triticale 380SD line. The population representing chromosome arm
7RS was clearly discriminated and this allowed its sorting using window shown as red rectangle.

DNA amplified from the flow-sorted 7RS arm was sequenced generating a total of
142.8 Gb of data. Reads were aligned to the Lo7 reference assembly [16] and 449 Mb,
approximately 50% of chromosome 7R, showed high sequence coverage, starting around
the third gene on the chromosome, SECCE7Rv1G0453870.1, and terminating around gene
SECCE7Rv1G0489010.1 at position 449,957,624 (Figure 2). To validate the sequenced chro-
mosome arm, rye genetic markers [38] were aligned to the Lo7 reference genome assembly.
Four 7RS specific markers were located within the high coverage region of chromosome
7 and two 7RL markers in the low coverage region of chromosome 7, confirming the
sequenced arm as the short arm of rye chromosome 7 (Figure 2).

To evaluate gene content on the isolated chromosome arm, the 449 Mb high coverage
region was intersected with the Lo7 reference gene model annotation, resulting in 3517 total
Lo7 gene models in the high coverage region. Gene presence was called using a modified
version of the SGSGeneLoss pipeline [39] (Figure S1). Of 3,517 genes on Lo7 7RS, 2747 were
called as present (Table S1) and showed a median horizontal coverage of 99.9% with a
median sequencing depth of 38X, while absent genes showed had a median horizontal
coverage of 0% and a median sequencing depth of 0X (Figure 3).

Genes that are present in Lo7 7RS but absent in the sequenced arms formed two clusters
from position 197,001,808 to 198,126,643 and from position 258,201,402 to 273,997,788
(Figure 2). In the region from position 197,001,808 to 198,126,643 on 7R, a block of seven
consecutive genes were called as absent (SECCE7Rv1G0476080.1, SECCE7Rv1G0476090.1,
SECCE7Rv1G0476100.1, SECCE7Rv1G0476110.1, SECCE7Rv1G0476120.1, SECCE7Rv1G047
6130.1 and SECCE7Rv1G0476140.1) and all seven genes had zero bases exceeding the 2X
base coverage threshold (Figure S2). The Lo7 annotation classifies gene models as high- and
low-quality predictions [16], and in this region only two of the seven missing genes had
high quality annotation, suggesting that the missing genes may be due to mis-annotation
of the Lo7 reference. Of the seven missing genes in cluster one, only two yielded conserved
domains, when subjected to the NCBI conserved domain search (Table S3A). The Lo7
7RS region between position 258,401,889 and position 271,512,497 contains 81 genes (from
SECCE7Rv1G0479760.1 to SECCE7Rv1G0480790.1), 65 of which are absent from the rye
donor chromosome arm. The absence of the 65 genes was confirmed by their per-base



Int. J. Mol. Sci. 2022, 23, 11106 4 of 8

coverage, which never exceeded a 2X threshold for 5% of bases in a gene (Figure S3). Of
the 65 absent genes, 29 had high quality Lo7 annotations and only four lacked a conserved
domain, suggesting that this block of genes may be lost or moved after the divergence of
the Lo7 and the rye donor line. The 65 missing genes were subjected to a NCBI conserved
domain search and conserved domains included various domains (Table S3B).
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The chromosome arm sequencing data can be used to support the allocation of un-
placed genes onto chromosome arms. We identified 29 genes that are in annotated in
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unplaced contigs in the Lo7 reference assembly and had no pseudomolecule assignment
but present in our isolated 7RS dataset (Table S2). The presence of these 29 genes was
confirmed by their individual per-base coverage (Figure S4). The 29 present genes could be
added to Lo7 7RS in future versions of reference quality rye assemblies.

3. Materials and Methods
3.1. Purification of Chromosome Arm 7RS

This study used Triticale 380SD, a line developed by the Genetic Resources Institute
of Azerbaijan National Academy of Sciences (ANAS) which was generated by crossing
triticale (2n = 6x = 42, genome AABBRR) and the Chinese Spring wheat variety in 1990, and
the results of the molecular cytogenetic study were published in 2020. Triticale 380SD’s ma-
ternal parent is Triticale ABR (also indicated as NA-75) which originated from the stabilised
cross of synthetic wheat Triticum durum/Aegilops tauschii var. meyeri (Kyoto, GenBank ac-
cession number AD 221-16a by 1975) with Secale cereale subsp. segetale. The Triticale 380SD
genome shows two R/D chromosome substitutions (4R(4D), 5R(5D)) and a ditelosomic
addition (7RS). Rye chromosome arm 7RS was purified by flow cytometric sorting from
Triticale 380SD as describe in Vrána, Kubaláková [40] and Kubaláková, Vrána [41]. Briefly,
root tip cells of young seedlings were synchronized using hydroxyurea, accumulated in
metaphase using amiprohos-methyl and fixed by formaldehyde. Intact chromosomes were
released by mechanical homogenization of root tips in LB01 buffer [42]. GAA microsatellite
clusters on chromosomes in suspension were labelled by FITC using fluorescence in situ hy-
bridization in suspension (FISHIS) as described by Giorgi et al. [43] and chromosomal DNA
was stained by DAPI. Chromosome analysis and sorting was conducted using FACSAria II
SORP flow cytometer and sorter (Becton Dickinson Immunocytometry Systems, San José,
CA, USA). Sort window was setup on a dot-plot FITC vs. DAPI fluorescence (Figure 1) and
two batches of 25,000 7RS telosomes were sorted into 40 µL sterile deionized water in PCR
tubes. To determine chromosome content of the sorted fractions, 1000 chromosomes were
flow sorted into 10 µL of PRINS buffer containing 2.5% sucrose [44] on a microscopic slide,
labelled by FISH with a probe for GAA microsatellite and evaluated microscopically.

3.2. Sequencing Flow-Sorted 7RS

DNA of flow-sorted chromosome arms 7RS was amplified following Šimková et al. [45].
The chromosomes were treated with proteinase K and their DNA was amplified by multiple
displacement amplification using an Illumina GenomiPhi V2 DNA Amplification Kit (GE
Healthcare, Chalfont St. Giles, UK). DNA amplified from both batches of flow-sorted 7RS
was pooled. The libraries for genome sequencing were prepared using the Illumina Tru-
seq Nano DNA HT Library Preparation kit, according to the manufacturer’s instructions.
Genomic DNA was sequenced using an Illumina XTEN sequencer with 150 bp paired-end
(PE) technology at the Garvan Institute of Medical Research. Sequence data was cleaned
and trimmed using Trimmomatic-0.36 [46] to remove low quality regions and adaptors.

3.3. Presence-Absence Variation Analysis

The rye Lo7 reference genome assembly was downloaded from (https://doi.org/10.5
447/ipk/2020/33, accessed 18 February 2018) [16]. Bowtie2 v2.4.2 was used to align the
sequence reads [47]. Sam files were filtered for a minimum quality score of 30. The sam
files were then converted to bam files, sorted and their per-base coverage was calculated
using SAMtools v1.11 [48]. Rye specific PLUG markers were downloaded (https://doi.org/
10.1007/s00412-013-0428-7, accessed 18 February 2018) and aligned to the Lo7 reference
genome using Bowtie2 [38].

Presence-absence variation analysis was performed using the SGSGeneLoss pipeline [39],
in short, the prior calculated per-base sequencing depth for each gene was filtered for a
minimum of 2X and used to calculate the relative amount of coding sequence bases which
exceed the cut off for each gene (horizontal coverage). Genes exhibiting more than 5%
horizontal coding classified as present. To identify genes that were placed on unplaced

https://doi.org/10.5447/ipk/2020/33
https://doi.org/10.5447/ipk/2020/33
https://doi.org/10.1007/s00412-013-0428-7
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contigs in the Lo7 reference assembly, a more conservative SGSGeneLoss cutoff of 50X
minimum per-base sequencing depth, 95% horizontal coverage was applied.

3.4. Data Analysis

Data analysis was performed using R v4.1.0 [49], Rstudio v 1.4.1717 [50] and the
R packages ‘Tidyverse’ v1.3.1 [51] and ‘data_table’ v1.14.0 [52]. Data visualisation was
performed using the ggplot function in Tidyverse. Median coverage for 100 Kb windows
was calculated and visualized using a custom Rscript.

4. Conclusions

The Lo7 reference genome is a profound foundation to identify candidates and isolated
chromosome sequencing can validate physical gene positions and provide the genetic
material for introgression at the same time. Missing genes identified in this study were likely
moved or removed after divergence of Triticale 380SD and should be carefully validated
within any introgression donor line, specifically, the rye donor used in the generation of
Triticale ABR (NA-75). Once validated if the missing genes are mis-annotations or not,
these segments can be used as markers for future introgression studies. Finally, identifying
the 29 genes present in the isolated 7RS dataset which are located in Lo7 unplaced contigs
will further enable wheat introgression.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231911106/s1.
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