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Abstract Decision-making behavior is often characterized by substantial variability, but its

source remains unclear. We developed a visual accumulation of evidence task designed to quantify

sources of noise and to be performed during voluntary head restraint, enabling cellular resolution

imaging in future studies. Rats accumulated discrete numbers of flashes presented to the left and

right visual hemifields and indicated the side that had the greater number of flashes. Using a signal-

detection theory-based model, we found that the standard deviation in their internal estimate of

flash number scaled linearly with the number of flashes. This indicates a major source of noise that,

surprisingly, is not consistent with the widely used ’drift-diffusion modeling’ (DDM) approach but is

instead closely related to proposed models of numerical cognition and counting. We speculate that

this form of noise could be important in accumulation of evidence tasks generally.

DOI: 10.7554/eLife.11308.001

Introduction
Subjects performing perceptual decision-making tasks display a large amount of trial-to-trial behav-

ioral variability. Determining the sources of this variability could provide insight into the neural mech-

anisms of decision-making and produce more accurate predictions of behavior. It has been

proposed that behavioral variability is caused in part by noise accruing during the process of evi-

dence accumulation. This noise may have a variety of origins depending on the behavioral task. It

can be inherent in the natural world, produced by the signal detection limits of sensory organs them-

selves (Barlow and Levick, 1969), or it may reflect the variability of neural responses in the brain at

different stages of processing. Previous studies have attempted to trace the sources of noise using a

combination of behavioral and neurophysiological approaches.

At the behavioral level, many models of the evidence accumulation process are known as ‘drift-

diffusion’ models (DDMs), because a major component of the noise is modeled as diffusion noise in

the accumulator, i.e., noise that is independent for each time point (Bogacz et al., 2006; Smith and

Ratcliff, 2004, but see Zariwala et al., 2013). A recent study by Brunton and colleagues

(Brunton et al., 2013) developed an accumulation of evidence task, which they modeled with a

DDM-like process, to isolate different sources of noise. In their task, evidence was delivered in ran-

domly timed but precisely known pulses: two randomly generated streams of discrete auditory clicks

were presented from left and right speakers, and subjects (rats and humans) were trained to indicate

the side with the greater number of clicks. The precise timing of the stimuli combined with large
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numbers of behavioral trials enabled fitting of a detailed and statistically powerful behavioral model.

The results suggested that in most subjects the diffusion noise in the accumulator was essentially

zero (noiseless), and the behavioral variability was best explained by noise that was added with each

pulse of evidence. However, it was assumed that each pulse introduced independent noise. This

implied that although time-locked to the stimulus, the noise associated with the stimulus was diffu-

sion-like, and the standard deviation of the total stimulus-induced noise scaled as the square root of

the number of pulses. Overall, the model was qualitatively consistent with the widely-assumed diffu-

sion-like noise in the evidence accumulation process. However, similar to other reports, diffusion-like

noise alone was unable to fully predict behavioral variability, and specifically failed to account for

errors on the easiest trials. Following common practice, Brunton et al. (2013) included an additional

noise parameter, termed lapse rate, which described variability that did not depend on the stimulus

or trial duration. The need for the lapse rate term suggests the existence of additional sources of

noise that are not diffusion-like.

To better characterize sources of noise during perceptual decision-making, here we developed a

visual analogue of the Brunton et al. accumulation of evidence task with two key features

(Erlich et al., 2013, SFN, abstract). First, rats could perform the task during voluntary head-restraint

(Girman, 1980; 1985; Kampff et al., 2010, SFN, abstract), allowing for the potential of cellular reso-

lution imaging (Scott et al., 2013) and perturbation in future studies (Rickgauer et al., 2014). Sec-

ond, the sensory stimuli were designed to attempt to isolate internally generated noise by

minimizing noise inherited from the stimulus. In our task, rats were presented with two series of brief

(10 ms), pseudorandomly timed LED flashes to the left and right visual hemifields. Following the

form of the Brunton et al. (2013) task, the side with the greater total number of flashes indicated

the location of a water reward. However, whereas the acoustics of the behavior chamber could dis-

tort localization of auditory stimuli, here our visual stimuli were presented from well-separated LEDs

positioned to the left and right visual hemifields, suggesting that the rats would have no difficulty

eLife digest Perceptual decision-making, i.e. making choices based on observed evidence, is

rarely perfect. Humans and other animals tend to respond correctly on some trials and incorrectly on

others. For over a century, this variability has been used to study the basis of decision-making. Most

behavioral models assume that random fluctuations or ’noise’ in the decision-making process is the

primary source of variability and errors. However, the nature of this noise is unclear and the subject

of intense scrutiny.

To investigate the sources of the behavioral variability during decision-making, Scott,

Constantinople et al. trained rats to perform a visual ’accumulation of evidence’ task. The animals

counted flashes of light that appeared on either their left or their right. Up to 15 flashes occurred on

each side, in a random order, and the rats then received a reward if they selected the side that the

greatest number of flashes had occurred on. The rats chose correctly on many occasions but not on

every single one.

Using a computer-controlled rat training facility or ’rat academy’, Scott, Constantinople et al.

collected hundreds of thousands of behavioral trials from over a dozen rats. This large dataset

provided the statistical power necessary to test the assumptions of leading models of behavioral

variability during decision-making, and revealed that noise grew more rapidly with the number of

flashes than previously predicted. This finding explained patterns of behavior that previous models

struggled with, most notably the fact that individuals make errors even on the easiest trials. The

analysis also revealed that animals maintain two separate running totals – one of stimuli on the left

and another of stimuli on the right – rather than a single tally of the difference between the two.

Scott, Constantinople et al. further demonstrated that rats could be trained to perform this task

using a new system that enables functional brain imaging. The next step is to repeat these

experiments while simultaneously recording brain activity to study the neural circuits that underlie

decision-making and its variability.

DOI: 10.7554/eLife.11308.002
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distinguishing the left versus right origin of each flash. Additionally, low numbers of flashes were pre-

sented in well-separated time bins.

Behavioral analyses indicated that rats solved the task by accumulating all available evidence, and

that flash-associated noise was the predominant source of behavioral variability. We implemented a

signal detection theory-based model to evaluate the assumption that noise in the accumulator value

was diffusion-like, i.e. that noise was independent for each flash and the noise (standard deviation)

of the accumulator value scaled as the square root of the number of flashes. The signal detection

theory-based model was designed to find the scaling relationship between noise in the accumulator

value and number of flashes that best described the data. Surprisingly, model fits revealed that the

noise in the subjects’ numerical estimates scaled linearly with the number of flashes presented, not

as the square root. This relationship, called scalar variability, has previously been observed in tasks

that require subjects to estimate the duration of a stimulus (Gibbon, 1977) or count the number of

stimuli (Gallistel and Gelman, 2000). Moreover, a behavioral model implementing scalar variability

predicted imperfect behavioral performance on the easiest trials, without the need for a non-zero

‘lapse rate’ parameter. Linear scaling of the standard deviation of the noise with the number of

flashes reveals a source of noise that does not treat individual pulses independently. Therefore, the

noise is not diffusion-like; unlike a lapse rate it depends on total number of evidence pulses; and it is

introduced after single-flash sensory processing. We suggest that taking into account this form of

noise will be a critical factor for understanding variability in decision-making behaviors.

An orthogonal approach for measuring noise in the accumulation process is to relate the variabil-

ity of neuronal responses to behavior (Shadlen et al., 1996; Cohen and Newsome, 2009;

Mazurek et al., 2003). Ideally, this approach would include recordings from multiple neurons across

Figure 1. Visual accumulation of evidence task, unrestrained version. (A) Task schematic. A rat initiates a

behavioral trial by inserting his nose into a center port along one wall of an operant training box (left panel). The

rat is presented with a series of pseudo-randomly timed flashes from LEDs presented from the left and right side

ports (middle panels). Following cue presentation and a variable delay period (see Materials and methods:

Stimulus Generation), the subject makes a behavioral report by poking his nose to one of the side ports (right

panel). Water reward (25 mL) was baited on the side that had the greater number of flashes. (B) Timing of task

events in an example trial. Rat was presented with two left flashes and one right flash and correctly oriented to the

left side poke after an auditory cue. (C) Behavioral performance of data pooled from all unrestrained rats across

the set of all stimuli. Color indicates the percentage of trials in which the subjects chose the right sideport. (D)

Psychophysical performance on the accumulation task pooled from all unrestrained rats.

DOI: 10.7554/eLife.11308.003

The following figure supplements are available for figure 1:

Figure supplement 1. Stimuli and performance.

DOI: 10.7554/eLife.11308.004

Figure supplement 2. Psychometric performance of individual rats on the visual accumulation of evidence task.

DOI: 10.7554/eLife.11308.005
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brain regions and precise neural circuit manipulations. To this end, we developed a version of our

task that rats could perform during voluntary head restraint. Voluntary head restraint was developed

as an alternative to forced head restraint in which the initiation and termination of the restraint

period are under the control of the animal (Girman, 1980; 1985; A.R. Kampff et al., 2010, SFN,

abstract). Recently we reported that rats can be trained to perform voluntary head restraint in a

high-throughput semi-automated behavioral facility and described a voluntary head restraint system

that provides the stability needed for in vivo cellular resolution imaging (Scott et al., 2013). Here we

show that performance of head restrained rats was essentially identical to the performance of rats

trained on the unrestrained version of the task. These results demonstrate that rats can perform

complex cognitive behaviors during voluntary head restraint and provide a platform for characteriz-

ing noise during decision-making across multiple brain regions.

Results
In our rat visual accumulation of evidence task (Figure 1A and B), subjects initiate a trial by inserting

their nose into the center port of a three-port operant conditioning chamber. Subjects must keep

their nose in the center port (fixation) for 1–8 s while a series of brief (10 ms) flashes are presented

by LEDs to the left and right visual hemifields. Between 0 and 15 flashes are presented indepen-

dently to each hemifield with a randomized number and timing of flashes on each side (Figure 1—

figure supplement 1). Trial durations and number of presented flashes are independently varied on

a trial-by-trial basis. Following an auditory go cue that signals the end of fixation, subjects receive

water reward (typically 25 mL) for orienting to a nose port on the side that had more flashes.

We trained seven rats to perform this task using an automated procedure in a high-throughput

behavioral facility. Rats progressed through a series of stages in which they learned (1) to associate

light with reward, (2) to maintain nose in center fixation for increasingly long durations and (3) to

compare the number of flashes on each side to predict the rewarded location. The procedural code

used for training can be downloaded from http://brodylab.org/code/flash-code. Rats progressed

through the training stages in 3500 trials. Fully trained rats performed a combined 525,073 trials at

91% for the easiest trials and 70% correct overall. Moreover rats were sensitive to the difference in

the number of flashes including differences of a single flash (Figure 1C and D; Figure 1—figure sup-

plement 2).

Errors in behavioral choice increase with number of flashes, not
trial duration
Accumulation of evidence involves two processes: maintaining a memory of the evidence and adding

new evidence to that memory. To assess whether noise (and thus behavioral variability) was more

closely associated with the memory of the accumulator or with incoming sensory evidence, we ini-

tially fit the Brunton et al. model to our visual task data. This produced results consistent with those

found for Brunton et al.’s auditory task, including near-zero estimates of accumulator memory noise

(i.e., a predominant role for incoming sensory evidence noise), and long accumulation time constants

(Figure 2—figure supplement 1). However, further analysis described below led us to question

Brunton et al.’s assumption of independent noise across pulses of sensory evidence. We therefore

took a model-free approach to estimate whether noise was more closely associated with the memory

of the accumulator or with incoming sensory evidence. When trial duration and flash difference were

held constant, errors increased with total number of flashes presented, suggesting that noise

increased with each flash (Figure 2A). Next, we sought to directly compare the effects of flashes

and time on behavioral performance (% correct). First, looking across trials with identical differences

in flash number (fixed |#R-#L| = DF) but with varying total flash number (#R+#L=SF) , we calculated

the fraction of correct responses as a function of SF, relative to the average performance (D Perfor-

mance; Figure 2C). With the difference in flashes DF thus controlled for, we found that trials with

greater numbers of flashes showed a substantial decrease in performance. Linear regression sug-

gested that each additional flash decreased performance by 1.14% (+/-0.1%). With an average of 4

flashes presented per second, increasing total flashes at a fixed flash difference thus produced an

average decrement in performance of 4.56% per second. Then, to estimate the effect of time on

performance, we calculated D performance across trials with both identical flash differences (DF) and

identical total flash number SF), but with different overall trial duration. This analysis, which controls
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Figure 2. Error rate increases with number of flashes, not trial duration. (A) For trials of fixed duration and fixed difference in number of flashes (D-

flashes, colored lines), behavioral performance decreased with more flashes. (B) Reverse correlation analysis indicating the relative contribution of

flashes occurring at different times in the trial to the subject’s behavioral choice. Each point on the upper line represents the probability that on trials in

which the subject poked to the right, there was an extra right flash in each time bin. The lower lines represent the same analysis for trials in which the

subject poked left. The flatness of the lines suggests that rats use early, middle and late flashes equally to guide their decision. Lines and error bars

represent mean and standard error across rats. This result suggests a long time constant of accumulation. (C) Changes in behavioral performance (%

correct) as a function of the number of total flashes presented. Data points indicate behavioral performance relative to the average performance (D

Performance) across trials with identical differences in flash number (|#R-#L| = DF) but with varied total flash number (#R+#L=F). Red lines are regression

lines to those points, weighted by the number of behavioral trials contributing to each point. (D) Changes in behavioral performance as a function of

the trial duration. Performance across all delay durations was computed for each unique combination of total number of flashes and difference in the

number of flashes. For each unique combination of flash number and difference, performance relative to that average performance (D Performance) was

computed for different trial durations binned in 50 ms bins (black circles). Red lines are regression lines to those points, weighted by the number of

behavioral trials contributing to each point.

DOI: 10.7554/eLife.11308.006

The following figure supplements are available for figure 2:

Figure supplement 1. Fits of drift diffusion-like model to individual rats.

DOI: 10.7554/eLife.11308.007

Figure supplement 2. Effect of flash number on performance of individual rats.

DOI: 10.7554/eLife.11308.008

Figure supplement 3. Effect of trial duration on performance of individual rats.

DOI: 10.7554/eLife.11308.009

Figure supplement 4. Psychophysical reverse correlation for each individual rat.

DOI: 10.7554/eLife.11308.010
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for the number of flashes, revealed that the purely time-dependent decrement in performance was

only 0.037% (+/-. 77%) for each second of trial duration. These results suggest that error rates

depend far more strongly on the number of flashes than on trial duration. We found this both for the

group data of Figure 2 and for individual rats as well (Figure 2—figure supplement 2; Figure 2—

figure supplement 3).

To assess whether the rats exhibited long accumulation time constants we next computed the

‘psychophysical reverse correlation’ (Brunton et al., 2013; Kiani et al., 2008; Nienborg and Cum-

ming, 2009 ; see Materials and methods). For each time bin, we computed the probability that there

was an excess flash in that bin on the side to which the subjects subsequently oriented. This analysis

indicated that flashes across all time bins contribute equally to subjects’ decisions, both when data

were pooled across rats (Figure 2B), and for individual rats (Figure 2—figure supplement 4). This

result suggests accumulation time constants that are longer than the trial duration, since subjects’

choices were equally influenced by early, middle, and late flashes.

Taken together, behavioral analyses and behavioral model fits suggested that rats based their

choices on evidence accumulated over the entire trial duration and that the noise associated with

each flash was the predominant source of noise in the accumulation process.

Subjects’ estimates of flash number exhibit scalar variability
As described in the introduction, in the drift diffusion framework assumed in previous behavioral

models of evidence accumulation, the standard deviation of the total flash-associated noise scales as

the square root of the total number of flashes (Brunton et al., 2013). However, two popular alterna-

tive models, called scalar variability and subitizing, have been proposed in which noise scales differ-

ently with evidence. In the scalar variability model, which has been used to describe both time

estimation and counting, the standard deviation of the estimate shows a linear relationship with the

quantity represented. The subitizing model predicts that the numerical representation of the first

few numbers, up to three or four, is essentially noiseless, and after five its standard deviation grows

linearly with the number of flashes. Subitizing has been proposed in tasks in which stimuli are pre-

sented simultaneously (Trick and Pylyshyn, 1994) and also sequentially (Camos and Tillmann,

2008; von Glasersfeld, 1982).

To quantify the amount of noise associated with different numbers of flashes, we used a signal

detection theory-based framework that abstracted away the sequential nature of the stimulus pre-

sentation, and focused instead on the total number of flashes on each side, and noise associated

with those totals, as the key determinants of the animal’s decisions (Figure 3A). In this approach,

the subjects’ estimate of the number of flashes on one side is modeled as a random variable drawn

from a Gaussian distribution. For n flashes presented on a side, the mean of this distribution is equal

to n, and the variance is a free parameter, s2
n. If there can be up to 15 flashes presented on a side,

then, there will be 16 free parameters in the model, s2
0 through s2

15. On each trial the subject selects

two such random variables, one for the total number of flashes on the left and one for total flashes

on the right, compares the two variables and orients to the side for which the random sample was

greater. Correct responses occur when the random sample associated with the side that had the

greater number of flashes is greater than the random sample from the other side.

We used maximum likelihood estimation to calculate the standard deviations of each distribution

(s0 ::: s15) given the number of flashes and behavioral choices across all trials. We found that the

best-fit standard deviation values scaled approximately linearly with the number of flashes

(Figure 3B; Figure 3—figure supplement 1). We next compared the predictions of the model with

the behavioral data (Figure 3C and D). The model was able to capture a large number of features of

the data, including the subjects’ imperfect performance on the easiest trials, even though no lapse

rate parameter was included in the model (Figure 3D). This was true both for the group data in Fig-

ure 3 and for individual rats (Figure 3—figure supplement 2). Note, although our model represents

numerical estimates as a scalar random variable on each trial, our results are also consistent with

probabilistic numerical representations in the brain (Kanitscheider et al., 2015).

We used least squares regression combined with bootstrapping to estimate the best-fit scaling of

sn as a function of n according to each of the three models of noise: scalar variability (SV, linear scal-

ing), subitizing (SUB +SV, constant at zero up to some value of n, then linear scaling) and linear vari-

ance (LV, square root scaling) (Figure 3E). Comparison of goodness-of-fit value (r2) using a
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Figure 3. Signal detection theory-based model reveals linear scaling of standard deviation of numerical estimates. (A) Schematic of the model used to

determine the standard deviation (s) of the subjects’ estimate of flash number. Left panel indicates the stimuli from an example trial in which four

flashes were presented to the left side (green) and six flashes were presented to the right (orange). The model assumes that on any given trial, a

subjects’ estimate of flash number on each side is a continuous random variable drawn from a Gaussian distribution whose mean is the number of

flashes on that side (n), and whose variance is a free parameter (s2
n) (middle panel). The choice on each trial is determined by comparing these two

random variables. Errors occur when the difference of the two random variables (greater magnitude – lesser magnitude) is less than zero. The variance

for each Gaussian representing a given flash number (s2
0 . . . s

2
15) was fit to the behavioral data (right panel) using maximum likelihood estimation.

(B) Model fits of the standard deviations (s0 . . .s15) in the rats’ estimate for different numbers of flashes. Error bars indicate the 95% confidence intervals

for the mean based on one thousand-fold resampled data. Note the deviation from pure linear dependence of the sn parameters on n for n<2. (C)

Comparison of the behavioral data (left panel) with the predictions of the model (right panel) based on the sn values calculated as shown in Figure 3B.

Color indicates the percentage of trials on which the subject responded correctly. (D) Comparison of psychometric performance of the rats (data, green

triangles) and model prediction of performance (model, blue squares). (E) Three models that predict how the standard deviation (s) of the numerical

estimate scales with the number of flashes. Scalar variability predicts that s scales linearly with the number of flashes (SV, yellow). Subitizing predicts

that s is zero until a limit (3 or 4), and then follows scalar variability prediction (black dashed). The drift diffusion models predict that the variance of the

estimate scales linearly, and s scales with the square root of the number of flashes (LV, blue). Purple triangles are model estimates of s, replotted from

Figure 3B. Each model was fit using linear regression to the model estimate of s, weighted by the number of data points contributing to each triangle.

Additionally, all models were constrained to intersect with the origin. (F) Goodness of fit of the ss shown in Figure 3B to subitizing (SUB+SV, black), the

drift diffusion model (LV, blue) and scalar variability (SV, yellow) using least squares regression. Analysis indicates that the data is best fit by a scalar

variability model. Error bars represent the 95% confidence intervals based on fits derived from a thousand-fold resampling of the data.

DOI: 10.7554/eLife.11308.011

The following figure supplements are available for figure 3:

Figure supplement 1. Signal detection theory-based model fit to individual rats.

DOI: 10.7554/eLife.11308.012

Figure supplement 2. SDT model prediction vs. data for each rat.

DOI: 10.7554/eLife.11308.013

Figure supplement 3. Behavior and SDT model approximate scalar variability.

Figure 3 continued on next page
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nonparametric permutation test confirmed that the MLE standard deviation estimates (s0 ::: s15)

were better fit by the scalar variability model than the subitizing or linear variance models

(Figure 3F; see Materials and methods: Model Comparison).

Scalar variability suggests that scaling the number of flashes on each side by the same factor

should lead to identical discriminability: if sn ¼ k� n, then the probability of choosing right (equa-

tion in Figure 3A) is a function of the ratio r = NR/NL, where NR and NL are the number of flashes on

right and left, respectively. For the easiest trials (e.g., NL >> 1 and NR = 0), performance asymptotes

at

1
ffiffiffiffiffiffi

2p
p

ð

¥

1
k

e�x2=2dx

producing a non-zero lapse rate even without an explicit lapse rate parameter (see mathematical

appendix, Appendix 1). To test the prediction that performance should be constant for trials with a

fixed ratio r, we compared behavioral performance on trials with constant ratios of flashes on the

rewarded and unrewarded sides. Supporting scalar variability, both the data and best-fit signal

detection theory-based model predictions exhibited roughly constant performance for trials with

fixed ratios of flashes (Figure 3—figure supplement 3). Interestingly, however, behavior deviated

from scalar variability, especially for trials with very low number of flashes. For these trials, there was

an improvement in performance with additional flashes, even though the ratio of flashes was fixed

(Figure 3—figure supplement 3), which is not predicted by pure scalar variability. Nevertheless, this

deviation from scalar variability was well predicted by the model parameters of Figure 3B. It is thus

likely driven by the deviation from pure linear dependence of the sn parameters on n for n<2

(Figure 3B).

We repeated the signal detection theory-based analysis on behavioral data collected from rats

performing a previously developed auditory accumulation of evidence task (Brunton et al., 2013;

Hanks et al., 2015). We accounted for adaptation effects, which are prominent in the auditory task

due to high click rates, and computed the ‘effective’ number of clicks presented after implementing

the adaptation dynamics described in Equation (6) (see Materials and methods). On trials in which

this approach yielded fractional number of clicks, we rounded the effective click number (after adap-

tation) to the nearest integer. This kept the number of parameters in the auditory task model

roughly equal to the number in the model for the visual task. We then used maximum likelihood esti-

mation to calculate the standard deviations of each distribution (s0; . . . ;sn) given the effective num-

ber of clicks and the subjects’ behavioral choices. Consistent with our results with the visual flashes

task, the goodness-of-fit value (r2) revealed that the MLE standard deviation estimates in the audi-

tory task were better fit by a model of scalar variability plus a constant offset (SV, sn= k0 þ k� n)

compared to the linear variance previously assumed by sequential sampling models (LV, sn
2

=k0 þ k� n) (r2 = 0.97 for SV vs r2 = 0.89 for LV, p << 0.001 based on nonparametric permutation

test, Figure 3—figure supplement 4, 5). Our findings are thus not specific to the visual modality.

Notably, perfect scalar variability (sn ¼ k� n without the constant k0) would predict no improve-

ment as a function of time for a fixed click ratio, yet such an improvement is clearly seen in the clicks

data (Figure 3—figure supplement 6). The SV model accounted for this by having a significantly

non-zero offset, k0, and was thus able to fit the clicks data quite well (Figure 3—figure supplement

7). A non-zero fixed offset, k0, thus represents a source of noise that is added to the accumulators,

independently of the stimulus that was presented. Notice that this source of noise does not account

Figure 3 continued

DOI: 10.7554/eLife.11308.014

Figure supplement 4. Signal detection theory-based model fit to the auditory (clicks) data.

DOI: 10.7554/eLife.11308.015

Figure supplement 5. Permutation test comparing goodness-of-fit of scalar variability and linear variance to the auditory (clicks) data.

DOI: 10.7554/eLife.11308.016

Figure supplement 6. Chronometric plots for the auditory (clicks) data and predictions of scalar variability.

DOI: 10.7554/eLife.11308.017

Figure supplement 7. Chronometric plots for the auditory (clicks) data and predictions of scalar variability with an offset.

DOI: 10.7554/eLife.11308.018

Scott et al. eLife 2015;4:e11308. DOI: 10.7554/eLife.11308 8 of 23

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.11308.014
http://dx.doi.org/10.7554/eLife.11308.015
http://dx.doi.org/10.7554/eLife.11308.016
http://dx.doi.org/10.7554/eLife.11308.017
http://dx.doi.org/10.7554/eLife.11308.018
http://dx.doi.org/10.7554/eLife.11308


Figure 4. Comparison of behavioral models suggests the presence of at least two accumulators. (A) General forms

of the signal detection theory-based models that were compared assumed either single or dual accumulators.

Each model determines which choice to make on each trial, by randomly selecting a value (a) from a Gaussian with

mean equal to the difference in total right minus left flashes, and standard deviation sn. If a>0, the model decides

“Right”, and if a<0 the model decides “Left”. Noise, parameterized as the standard deviation of the distributions

of flash number or flash difference (sn), enters the accumulation process differently in each model. Single

accumulator models assume that noise depends only on the difference in the number of flashes (R-L) while dual

accumulator models assume that noise depends on the total number of flashes (R+L). (B) For each class of models

(single vs. dual accumulators), we implemented versions that assumed scalar variability or linear variance and that

assumed a static or a sequential sampling process. For the static model, equivalent to our original signal detection

theory-based model, noise scales with the number of flashes seen at the end of the trial. For the sequential

sampling model, noise is added to the subject’s estimate with each flash, and the magnitude of the noise

depends on the value of the accumulator at the time of the flash (a(t)). (C) Cladogram indicating the details of

each of the eight models (a-h). (D) Comparison of the likelihood of the model given the data for each of the eight

model versions. A bootstrapping procedure was used, in which behavioral trials were resampled (with

replacement) and each model was fit to each resample. Error bars indicate the 95th percentiles of the model

likelihoods using the best-fit parameters for all resamples. The number of parameters is equal across all models,

allowing direct comparison of likelihoods. (E) The permutation test used to assess statistical significance. Black line

indicates the distribution of the differences of likelihoods between the two models with the largest likelihood,

scalar variability, dual accumulator static version (b) and linear variance, dual accumulator, static version (d), across

all resamples. Gray line indicates the distribution under the null hypothesis (see Materials and methods: Model

comparison). Model b has a significantly larger likelihood than model d and all other models (p<<.001; see

Materials and methods: Model comparison).

DOI: 10.7554/eLife.11308.019

Figure 4 continued on next page

Scott et al. eLife 2015;4:e11308. DOI: 10.7554/eLife.11308 9 of 23

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.11308.019
http://dx.doi.org/10.7554/eLife.11308


for the lapse rate, since k0 does not appear in the expression for the lapse rate (see mathematical

appendix, Appendix 1). A larger offset (k0) was the main qualitative difference we found between fit-

ting the auditory clicks data (for which k0 = 2.10 +/- 0.20, mean +/ s.e.m. across rats) and the visual

flashes data (for which k0 = 0.49 +/- 0.142).

Comparison of behavioral models suggests the presence of at least two
accumulators
The signal detection theory-based model described above makes two assumptions about the nature

of the accumulation process. First it assumes that subjects maintain separate estimates of left and

right flashes during a behavioral trial. Second it assumes that noise depends only on the final value

of the left and right integrator. However, many quantitative models of accumulation of evidence pro-

pose that subjects maintain a single decision variable (e.g., a running estimate of the difference in

number of right minus left pulses; Bogacz et al., 2006). Other binary decision models have pro-

posed two separate accumulators in which noise is added throughout the accumulation process

(Ratcliff et al., 2007; Usher and McClelland, 2001).

Therefore, we decided to evaluate the assumption of a dual accumulator and the assumption that

the noise depends only on the final value of the integrator(s), by comparing the performance of mul-

tiple variants of our signal detection theory-based behavioral model (Figure 4). We probed three

independent questions, the combined answers to which produced eight different models: (1) Is per-

formance best fit by dual accumulators or by a single accumulator? (2) Is performance best fit by

gradual accrual of noise throughout stimulus presentation, or by noise that depends only on the final

value of the integrator? And finally, as in the previous section, (3) Is variability best fit as standard

deviation being linear in flash number, or by variance being linear in flash number? Each model (a-h)

had two free parameters b1 and b2 that determined the relationship between the number of flashes,

n, and the standard deviation of the flash number, sn (Figure 4B). Four models (a,b,e,f) assumed

scalar variability (s = b1*n+b2) and four (c,d,g,h) assumed linear variance (s2 = b1*n+b2). Four models

assumed a single accumulator (a,c,e,g) and four assumed independent left and right accumulators

(b,d,f,h). Four models (a-d) assumed that noise was based only on the final estimate of the accumula-

tor (static sampling), and four assumed (e-h) that noise was added to the estimate of the accumula-

tor at the time of each flash (sequential sampling).

We used maximum likelihood estimation to find, for each model, the values of b1 and b2 that best

fit the behavioral data. Despite the closely related structure of the eight models, and having pre-

cisely the same number of free parameters, the likelihood of the data at the best-fit parameter val-

ues for nearly all of the two-accumulator versions (b,d,h) of the model was significantly greater than

the corresponding one-accumulator versions (a,c,g) (p<.001; nonparametric test using bootstrap-

ping; see Materials and methods), indicating better performance for the two-accumulator model

(Figure 4D,E). Overall we found that the static, dual accumulator scalar variability model had the

highest likelihood across all models (p<.001; nonparametric test using bootstrapping see

Materials and methods: Model Comparison; Figure 4—figure supplements 1, 2). This suggests that

the main noise source, in the limited regime of models considered here, operates on the final value

of the accumulators, rather than being incrementally and sequentially added to the accumulators as

the process unfolds. We emphasize, however, that we have not made an effort to systematically

explore the full space of possible models in which noise is added gradually during the stimulus pre-

sentation, so a conclusion that noise is added only to the final value of the accumulator remains

tentative.

Figure 4 continued

The following figure supplements are available for figure 4:

Figure supplement 1. Model comparisons for each rat.

DOI: 10.7554/eLife.11308.020

Figure supplement 2. Model predictions versus data.

DOI: 10.7554/eLife.11308.021
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Figure 5. Rats accumulate flash number, not duration. (A) Distribution of flash durations. In a subset of

experiments, flash durations were drawn from a Gaussian distribution with a mean of 10 ms. As a consequence, on

some trials in which the same number of flashes were presented to both sides (#R=#L), there was a greater overall

flash duration on one side (up to 50 ms) (B) Schematic of the timing and duration of left (blue) and right (red)

flashes on an example trial in which #R=#L, but there was greater overall flash duration from the right LED. (C)

Percent of trials on which the animal went right as a function of difference in right-left LED duration (specifically

(durR-durL)/(durR+durL)) across all combinations of left and right flash number. Because LED duration is correlated

with number of flashes on most trials, this looks very similar to performance as a function of flash number. Yellow

line is the regression line to the data. (D) Percent of trials on which the animal went right as a function of

difference in flash number ((#R-#L)/(#R+#L)). Green line is the regression line to the data. (E) Behavioral choice as a

function of the difference in the overall flash duration ((durR-durL)/(durR+durL)) on trials with equal numbers of

flashes on both sides (#R=#L). Black circles indicate the percent of trials in which animals went right on trials of

different overall flash durations. Error bars indicate 95% confidence intervals for the mean assuming a binomial

distribution. Solid gray line is the regression line to the data, whose slope is displayed in panel F. (F) Bar plots

indicate the slope of the regression lines in panels C and D for trials with equal numbers of flashes. Error bars are

standard error of the coefficient (slope) estimates. These represent different models of what the slope of the

regression line to the data would be if the animal were integrating flash duration (‘Duration model’, yellow) or flash

number (‘Flash model’, green). The slope of the regression line fit to the data (‘Data’) is significantly different from

the line relating the LED duration to choice, but not significantly different from zero. This suggests that rats

integrate flash number.

DOI: 10.7554/eLife.11308.022
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Subjects accumulate flash number, not flash duration
Scalar variability has been proposed both for numerical and interval timing estimation, raising the

possibility that rats could be accumulating the summed duration of the flash ‘ON’ times. Alterna-

tively, it is possible that rats could be treating each flash as a distinct event, independent of its dura-

tion, and integrating the number of flashes. To test which strategy the rats used, we performed an

additional experiment in which we trained a second cohort of rats (n=7) on a new version of the

task. As before, rats were rewarded for orienting to the side with the greater number of flashes, but

in this version the durations of each flash and inter-flash interval were randomly jittered (see

Materials and methods). Flash duration was drawn from a Gaussian distribution with a mean of

10 ms and standard deviation of 1.5 ms (Figure 5A,B). Because LED duration is correlated with num-

ber of flashes on most trials, it is difficult to evaluate whether animals use flash duration or flash num-

ber on most trials (Figure 5C,D). However, on trials in which there was no difference in the number

of flashes (Dflashes = 0), the jittering of flash duration led to the generation of some trials with a dif-

ference in the duration presented from the right or left LEDs (Figure 5B). Since, for example, 20 ms

of light is the equivalent of a difference of two flashes, we reasoned that on these trials, if the sub-

jects were integrating light duration, they would be more likely to orient to the side with longer LED

durations, and a regression line fit to the data in Figure 5E should have a positive slope. Conversely,

if they were integrating discrete flash number, they should not exhibit a preference to the side with

longer flash duration, and a regression line fit to the data in Figure 5E should have a slope of zero.

Consistent with integrating flash number, we found that on trials with 0 Dflashes, rats did not exhibit

a preference for the side with longer flash durations (Figure 5E,F). These results indicate that the

rats were accumulating the number of flashes, not their total duration.

Reward and error history bias future behavior choices
One potential additional source of variability in the rats’ behavior is the location of reward on previ-

ous trials. In some behavioral tasks, subjects display a win-stay-lose-switch approach to decision-

making, in which choices that lead to reward tend to be repeated, while alternative unrewarded

choices tend to be abandoned. To assess whether the memory of reward location on previous trials

biased the subjects’ decisions on future trials, we identified trials following a reward and compared

behavioral performance depending on whether the reward had been delivered to the left or right

(Figure 6A). On these trials subjects continued to perform the accumulation task, but were biased

toward the side where they had previously obtained reward. The effect of this bias was modest but

significant, and was constant across a range of numerical flash differences, producing a vertical shift

in the psychometric function (Figure 6A). Similarly, if the subjects made an error on one side, they

exhibited a bias toward the other side on the subsequent trial (Figure 6B).

Next, we extended this analysis to determine how long this bias persists. We computed the prob-

ability that subjects chose to return to the same side where they had previously obtained a reward

and repeated this computation for progressively later choices (Figure 6C, black line). The behavioral

side bias caused by a reward decreased steadily over the next three trials and after three trials no

significant bias was observed. We repeated this analysis for error trials and found that the bias was

smaller in magnitude, but displayed the same steady decrease for three trials into the future

(Figure 6C, gray line). After three trials no significant bias was observed.

Finally, when rewards were consecutive (i.e. more than two correct responses to the right in a

row) the bias observed was additive. The side bias observed from two consecutive rewards on the

same side is not significantly different from the sum of the reward biases from one and two trials

back (Figure 6D). Together these results suggest that (1) both rewards and errors bias the subject’s

choices up to three trials in the future and (2) reward history effects combine linearly to influence the

behavior of the subject. Similar results have been observed in the auditory, Brunton et al., version of

the accumulation of evidence task (Chan, Brunton, and Brody, unpublished data).

Performance of voluntarily head restrained rats on a visual
accumulation of evidence task
Future studies into the biological mechanisms of decision-making will be facilitated by the ability to

perform precise neuronal circuit perturbations and cellular resolution imaging. Behavioral tasks that

can be performed during head restraint allow the experimenter to perform techniques such as

Scott et al. eLife 2015;4:e11308. DOI: 10.7554/eLife.11308 12 of 23

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.11308


cellular resolution optical stimulation and large-scale two-photon calcium imaging that are difficult

to employ in unrestrained preparations. Therefore we developed a version of the visual accumulation

of evidence task that could be performed during voluntary head-restraint.

In the head-restrained version of the task, subjects initiate a behavioral trial by guiding a surgically

implanted titanium headplate into a custom headport mounted on one wall of an operant training

chamber (Figure 7A, left and 7B). The trial begins when the leading edge of the headplate contacts

two miniature snap action switches (contact sensors) mounted on the headport. Voltage-controlled

pneumatic pistons then deploy to immobilize the headplate and, using the principles of kinematic

mounts, register the head to within a few microns. During the restraint period, which lasts 2–3 s,

head-restrained animals are presented with up to six flashes on each side (Figure 7A, middle). After

a brief (500 ms) delay, subjects are released from restraint, and can obtain water reward by orienting

to one of two side ports mounted to the wall flanking the headport (Figure 7A, right). Head-

restrained subjects can also choose to terminate the restraint period early by operating a release

switch located on the floor of the chamber. Trials that are terminated early result in a brief timeout

(~2 s) in which no reward can be obtained and no trial can be initiated.

To compare behavioral performance to unrestrained rats, we trained seven rats on the head-

restrained version of this task. The initial stages of training were performed in a high-throughput

facility, while acclimation to the pistons and data collection from fully trained animals were per-

formed in a separate facility with a single dedicated behavioral chamber. Rats completed the initial

stages of training in similar time to the unrestrained rats. However, a portion of rats (~40%) were

Figure 6. Trial history contributes to behavioral variability. (A) Reward biases decision on subsequent trials. Plot

indicates psychometric performance on trials following correct right (red) and correct left (blue) trials. Black line

indicates the mean. Data is pooled across all sessions for all rats. Error bars are 95% confidence intervals for a

binomial distribution. (B) Psychometric performance on trials following errors. Making an error on one side

modestly decreased the probability that subjects would orient to that side on the subsequent trial. (C) Following a

rewarded trial, subjects exhibited increased probability of returning to the same side poke up to three trials in the

future (black line). Following an error trial, they exhibited a decreased probability of orienting to the same side up

to three trials in the future (gray). (D) Effects of reward history for correct trials are additive. Black line indicates the

probability of returning to the same side given 1-6 consecutive rewards on the side. Brown line indicates the bias

predicted from the linear sum of the biases observed for non-consecutive rewards as shown in Figure 6C.

DOI: 10.7554/eLife.11308.023
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slower to acclimate to the pistons than the remainder of their cohort and were excluded from further

study.

Behavioral analysis revealed comparable performance between voluntarily head-restrained and

unrestrained rats (Figure 7C and D). Fitting the accumulator model produced model parameters in

the head-restrained subjects that was similar to the best fit parameters for the unrestrained rats:

negligible accumulator noise, predominant flash-associated noise, accumulation time constants lon-

ger than the trial duration and bounds higher than the number of possible flashes. Fitting the signal

detection theory-based model revealed similar scaling of noise between restrained and unrestrained

versions of the task (Figure 7E). We computed the ‘psychophysical reverse correlation’ to further

assess whether the rats exhibited long accumulation time constants (see Materials and methods).

For each time bin, we computed the probability that there was an excess flash in that bin on the

side to which the subjects subsequently oriented. This analysis indicated that flashes in each time bin

contribute equally to subjects’ decisions (Figure 7F). This was true for both voluntarily head-

restrained and unrestrained rats.

Figure 7. Head-restrained and unrestrained rats exhibit comparable task performance. (A) Schematic of the accumulation of evidence task during head

restraint. A rat initiates a behavioral trial by inserting his headplate into a custom headport along one wall of an operant training box (left panel). While

voluntarily head restrained, the rat is presented with a series of pseudo-randomly timed flashes from blue LEDs to the left and right in front of him

(middle panels). Following flash presentation, the subject is released from restraint and is free to withdraw his head from the headport and orient to

one of the side ports to obtain reward (right panel). (B) Image of a rat training on voluntary head restraint. The left and right stimulus LEDs, which are

mounted in light diffusing boxes, are pseudo-colored in blue. (C–F) Direct comparison of behavioral performance between seven head restrained rats

and seven unrestrained rats. (C) Comparison of psychophysical performance indicates similar sensitivity to the difference in the number of flashes

between restrained (black) and unrestrained rats (red). Error bars indicate 95% binomial confidence intervals on the data. (D) Comparison of behavioral

performance between restrained (upper panel) and unrestrained (lower panel) rats across all different stimulus types in the restrained version of the

task. Color indicates the percentage of trials on which the subjects oriented to the right. Gray indicates no data. (E) Comparison of the noise (standard

deviation) in the estimates of the number of flashes for restrained rats (black) and unrestrained rats (red) using the procedure described in Figure 3.

Lines indicate the best linear fit for the restrained (black) and unrestrained (red) cohorts. Error bars indicate the 95% estimates of the means of sn.

(F) Reverse correlation analysis indicating the relative contribution of flashes occurring at different times in the trial to the subjects’ behavioral choice for

restrained (transparent) and unrestrained (solid) rats. Data from unrestrained rats are a subset of the data plotted in Figure 2F (color convention is also

adopted from Figure 2F). Lines and error bars are mean and standard error across rats.

DOI: 10.7554/eLife.11308.024
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Discussion
In this study we developed a visual accumulation of evidence task to study the sources of noise that

contribute to behavioral variability. Subjects were presented with two simultaneous trains of ran-

domly timed flashes, one train on their left, and the other on their right, and were rewarded for ori-

enting towards the side with the greater total number of flashes. Behavioral analyses, including

reverse correlation, indicated that rats used flashes presented throughout the entire trial to guide

their decision, consistent with a strategy of accumulating evidence (Figure 2—figure supplement

4). We used a signal detection theory framework to estimate the noise associated with each pulse of

evidence (flash). This analysis showed that noise (standard deviation) in the subjects’ numerical esti-

mates scaled linearly with the number of flashes presented, indicating that noise per flash is not

independent across flashes. We find that noise is also independent of total stimulus duration, and is

perhaps added to the decision variable after the accumulation process. Our behavioral modeling fur-

ther suggests the existence of two separate accumulators in this binary decision task (Figure 4). The

noise scaling we found is similar to scalar variability described in the numerical cognition literature,

and appears to be the major source of variability in our subjects’ behavior. Yet it is not diffusion-like

and is therefore not well-described by the majority of current ‘drift-diffusion modeling’ (DDM)

approaches for accumulation of evidence in decision-making. Incorporating this scalar variability

noise will likely be critical for understanding variability in decision-making behaviors. Finally, we dem-

onstrate that rats can be trained to perform this task during voluntary head restraint, which opens

up new experimental avenues for uncovering the circuit mechanisms that generate behavioral vari-

ability during decision-making.

Performance of cognitive behaviors during voluntary head restraint
Head-restraint is an experimental tool widely used in psychology and neuroscience to immobilize

the head of a subject. The technique is typically employed in behavioral experiments to facilitate reli-

able presentation of sensory stimuli to the head or face and precisely control the subjects’ move-

ments, and in neurophysiological experiments to minimize motion between the brain and recording

apparatus. However, it can take some species, notably rats and primates, weeks to acclimate to

forced head restraint. Moreover forced head restraint requires skilled experimenter intervention and

is difficult to incorporate into automated training procedures. Voluntary head restraint has been pro-

posed to reduce the stress normally associated with forced head restraint and facilitate training on

sophisticated behavioral tasks (Scott et al., 2013). Here, we show that rats are able to perform a

complex cognitive task, involving both numerical representation and integration of evidence, while

voluntarily head-restrained. This provides a foundation for identifying and characterizing the neural

circuit mechanisms of accumulation of evidence and numerical representation in future studies using

in vivo cellular resolution imaging and perturbation (Rickgauer et al., 2014).

Sources of noise in accumulation of evidence tasks
The behavioral task described here exhibited a number of features that enabled detailed characteri-

zation of noise during accumulation of evidence. The visual stimuli presented in this study were: (1)

low in number; (2) presented reliably to left and right visual hemifields; (3) presented from well-sepa-

rated light sources in front of the rat’s face; (4) presented at sufficient intervals to avoid adaptation

or facilitation between successive stimuli. All of these features attempted to minimize sources of

noise other than noise in the subjects’ internal estimates. Consistent with previous reports

(Brunton et al., 2013; Kiani et al., 2013), we found that behavioral variability was not affected by

the trial duration but was strongly correlated with the number of flashes presented.

However, we identified a number of additional sources of noise. First, rats exhibit a modest side

bias due to reward history occurring up to three trials in the past (Figure 6). In dynamic foraging

tasks, strategies that incorporate trial history (such as win-stay, lose-switch strategies) often maximize

rewards (Corrado et al., 2005; Herrnstein, 1961; Sugrue et al., 2004). However, in the visual accu-

mulation of evidence task, the rewarded side is assigned independently on each trial, so trial history

adds noise to the decision process. The influence of trial history on subsequent decisions has been

observed in a number of other studies, suggesting that it is a general source of behavioral variability

that should be incorporated into accumulation of evidence models (Busse et al., 2011; Gold et al.,

2008).
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We also found that the standard deviation in the accumulated estimate scaled linearly with the

number of flashes. This type of noise scaling, called scalar variability, was consistent across the range

of stimuli presented (1-15 flashes, with minor deviations at the lowest number of flashes) suggesting

that the subjects did not use a subitizing approach, i.e., they did not use rapid accurate counting for

numbers less than five. We applied our analysis to a closely related previous auditory task that, as in

our current visual task, also delivered sensory evidence in discrete pulses (Brunton et al., 2013). We

found that our conclusions also applied to the auditory data, with the standard deviation of the noise

after N flashes well-described by sn= k0 þ k� n. Our observation that performance in the auditory

task improves with increased integration times is qualitatively consistent with data from tasks in

which evidence is delivered in a continuous stream rather than in discrete pulses. This leads us to

suggest that scalar variability should be an important consideration in the analysis of data from con-

tinuous tasks. But whether or not scalar variability is the dominant form of noise in continuous stream

tasks, as it was in the pulsatile tasks analyzed here, remains to be determined.

Implications for neural mechanisms of perceptual decision-making
The primary focus of this work has been to provide a quantitative description of behavior during

accumulation of evidence and to evaluate the sources of behavioral variability. However, an impor-

tant distinction should be made between quantitative models of behavior and mechanistic models

of the underlying neural processes (Marr, 1982). Our results do not suggest an underlying neural

mechanism, however they do place important constraints on such mechanistic models. One such

constraint is scalar variability, which has been observed in a wide variety of tasks requiring animals to

estimate magnitudes (such as time or number Gallistel and Gelman, 2000; Gibbon, 1977). Two

possible neural mechanisms have been proposed to explain this phenomenon. The first is that the

brain represents magnitude on a logarithmic scale with constant noise (Fechner, 1860;

Dehaene and Changeux, 1993; Meck and Church, 1983; Nieder and Dehaene, 2009). Neurophys-

iological recordings, particularly in sensory systems, have provided support for this mechanism. For

example, neurons in the rodent somatosensory cortex exhibit firing rates that scale logarithmically

with frequency of tactile stimulation (Kleinfeld et al., 2006). In addition, neurons in primate parietal

cortex appear to encode numerosity on a nonlinear scale (power law or logarithmic; Nieder and

Miller, 2003). The second possibility is that the brain represents magnitude on a linear scale with

noise that is proportional to the magnitude. The results described here did not allow us to differenti-

ate between these two models, and indeed, both models make identical psychophysical predictions

(Dehaene, 2001). However, how they would be instantiated in the brain is quite different. For the

logarithmic case, the signal diminishes with the quantity being represented, but noise added at each

time point is independent. For the linear case, the signal is constant (implying near perfect summa-

tion of signals), but noise scales linearly with the magnitude being estimated.

Relation to accumulation of evidence models
Sequential sampling models of accumulation of evidence represent the decision process as the

movement of one or more latent decision variables towards a criterion value. Such models have

been useful to study a wide range of decision processes. One key advantage is that they provide a

moment-by-moment estimate of the decision variable on each trial. This time-varying estimate can

be compared to the observed neuronal dynamics, allowing analysis of the correlation between cellu-

lar firing rates and the subject’s internal representation of evidence (Hanks et al., 2015).

Our results suggest three modifications that could improve the accuracy of sequential sampling

models of accumulation of evidence. First we found that reward and error trials introduce a bias that

persists up to three trials into the future. Second we found that standard deviation in the decision

variable increased linearly with the total number of flashes. Note that this observation is inconsistent

with the common assumption made in drift diffusion models, that noise is added independent of

time and the value of the decision variable. Third, the data was better fit by models that accumulate

left and right flashes separately than by models that accumulate a single decision variable. The exis-

tence of two accumulators (Ratcliff et al., 2007; Usher and McClelland, 2001) has been previously

observed in the vertebrate brain, for example the oculomotor system in the goldfish contains two

lateralized accumulators that integrate transient motor commands to maintain a memory of gaze
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position (Aksay et al., 2007), and is consistent with electrophysiological recordings in primates

(Bollimunta and Ditterich, 2012) and rodents (Hanks et al., 2015).

In the future, it will be interesting to develop a reaction-time version of the task, in which subjects

are allowed to determine the time during which they observe the stimulus. This would allow testing

predictions from recent pulse-accumulation models (Simen et al., 2015).

Noise as a mechanism of generalization during perceptual learning
Variability in behavior and neuronal networks has been proposed to result, in part, from biophysical

constraints of the nervous system. In some systems, however, noise is thought to serve an important

functional role. For example it has been proposed that random fluctuations in neuronal membrane

potential contributes to contrast invariance in the visual system (Anderson et al., 2000). Moreover,

during motor learning, noise is actively introduced into highly reliable systems to create the behav-

ioral variability required for trial and error learning (Olveczky et al., 2005). An interesting question

is whether noise also facilitates learning in perceptual tasks. One potential function of noise in the

estimate of flash number is that it could allow animals, which have been trained on a reduced stimu-

lus set, to generalize, and perform correctly on trials with numbers of flashes they have never

encountered. For example, if rats were only trained on trials with 5 and 6 flashes, because of the var-

iability of their estimate of 5 and 6 flashes, on a portion of those trials they will have effectively per-

ceived 7 and 8 flashes, and could learn the correct response to those trials by trial and error. Thus

noise may allow the observer to experience a larger range of stimuli than they actually encountered,

enabling generalization.

Conclusion
High-throughput operant conditioning combined with detailed, quantitative analysis of behavioral

variability allowed us to characterize the process of evidence accumulation in rats. This analysis

revealed that animals’ choices were likely derived from a circuit with multiple accumulators and that

decisions were influenced by noise from multiple sources. The major source of noise displayed ‘sca-

lar variability’ in the sense that its standard deviation scaled linearly with the number of pulses of evi-

dence. This observation is inconsistent with the assumption made by most previous models of

accumulation for decision-making, namely that the primary noise source is diffusion-like, added to

the accumulator independent of time or accumulator value. Our observation is instead consistent

with previous models of numerical cognition, and suggests that evidence accumulation and numeri-

cal cognition may be subserved by similar or related circuits and neural mechanisms. We speculate

that noise that obeys scalar variability could be an important component in models of accumulation

of decision-making evidence generally. Finally, the observation that voluntarily head-restrained rats

exhibit similar behavioral performance to unrestrained rats, and can be trained to perform complex

decision-making tasks, suggests the possibility of using cellular resolution optical imaging and per-

turbation technologies to characterize the neural substrates of cognition.

Materials and methods

Animal subjects
Animal use procedures were approved by the Princeton University Institutional Animal Care and Use

Committee (IACUC; Protocols #1837 and #1853) and carried out in accordance with National Insti-

tutes of Health standards. All subjects were male Long-Evans or Sprague Dawley rats weighing

between 200 and 500 g (Taconic, NY). Rats were placed on a water schedule in which fluids are pro-

vided during behavioral training. If rats consumed less than 3% of their body weight in water, they

received ad lib water for 1 hr.

Behavior
Rats progressed through several stages of an automated training protocol before performing the

task as described in the results. All data described in this study were collected from fully trained

rats. Sessions with fewer than 100 completed trials were excluded from analyses. These sessions

were rare and usually caused by hardware malfunctions. From the sessions included in this paper, on

average, rats completed 385 trials per session (median: 362 trials per day; range: 128–1005 trials per
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day), and performed at 70% correct (median: 71%; range: 56–88% correct; see Figure 1—figure

supplement 1).

Stimulus generation
The cue period consisted of fixed time bins, each 250 ms in duration. Unrestrained rats experienced

up to 15 bins, whereas head-fixed rats experienced up to 6 bins. For a given trial, each of the two

LEDs had a fixed generative probability of producing a flash in each bin. In the final training stage

for the unrestrained rats, the generative probabilities for the high-probability LED and low-probabil-

ity LED ranged from 70-80% and 20-30%, respectively. For restrained rats, the generative probabili-

ties were 70% and 30%. However, the rats were rewarded based on the number of flashes that were

actually presented, not on the underlying generative probabilities. In other words, in the rare event

that the LED designated ‘high-probability’ happened to produce fewer flashes than the LED desig-

nated ‘low-probability’, the animal was rewarded for orienting to the side that had more flashes. The

flashes were 10 ms in duration (except for an experimental group in which the flash durations were

jittered; see Figure 5), and they occurred in the first 10 ms of each cue bin. For the unrestrained

rats, the inter-flash intervals ranged from 240 ms (two flashes in subsequent bins) to 3.45 s (two

flashes separated by 13 bins; see Figure 1—figure supplement 1). For the head-fixed rats, the

inter-flash intervals ranged from 240 ms to 1.24 s. In a subset of experiments, inter-flash intervals

and flash durations were jittered. In these experiments, flash durations were drawn from a Gaussian

distribution with a mean of 10 ms, and standard deviation of 1.5 ms. Inter-flash intervals were drawn

from a Gaussian distribution with a mean of 250 ms and standard deviation of either 25 or 50 ms.

In the unrestrained version of the task, there was a 500 ms pre-cue period before the beginning

of the cue period. For the majority of trials, the duration of the post-cue (or memory) period was ran-

domly drawn from a uniform distribution from 5 to 500 ms. In a small subset of trials, the post-cue

period was drawn from a broader distribution ranging up to 6.5 s, but those trials represent a minor-

ity of the dataset (see Figure 1—figure supplement 1). In the head-fixed version of the task, the

pre-cue period was 1 s in duration, to allow time for the pistons to actuate and fix the headplate in

place. The post-cue period was 500 ms.

Behavioral control system
Operant training chambers were controlled by the freely available, open-source software platform

Bcontrol (Erlich et al, 2011; Scott et al. 2013). Bcontrol consists of an enhanced finite state machine,

instantiated on a computer running a real-time operating system (RTLinux), and capable of state

transitions at a rate of 6 kHz, plus a second computer, running custom software written in MATLAB.

Each behavioral trial consisted of a sequence of states in which different actuators—for example,

opening of a solenoid valve for water reward—could be triggered. Transitions between the states

were either governed by elapsed times (e.g., 40 ms for water reward) or by the animal’s actions,

which caused changes to the voltage output of a sensor in the chamber.

Surgery
Surgical procedures for headplate implantation have been previously described (Scott et al., 2013).

Briefly, we anesthetized animals with isoflurane in oxygen and gave Buprenorphine as an analgesic.

Once anesthetized, the scalp and periosteum were retracted, exposing the skull. Dental cement

(Metabond) was used to bond the headplate to the skull. After a 2-week recovery period, implanted

animals began training in voluntary head restraint.

Psychophysical reverse correlation
The choice-conditioned reverse correlation analysis reveals the degree to which flashes in each time

bin contribute to the decision. We selected trials in the final training stage that had the same gener-

ative probabilities (g) for generating flashes (p(flash on high-probability side) = 0.7; p(flash on low-

probability side) = 0.3). We computed the average number of left (f L(t)) and right (fR(t)) flashes in

each time bin (t) conditioned on whether the animal went right or left, to obtain the average differ-

ence in flash number:

fwent rightðtÞ ¼ fRðtÞ� fLðtÞ (1)
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fwent leftðtÞ ¼ fLðtÞ� fRðtÞ (2)

We next computed the expected difference in flash number for each trial (0.7–.3 = 0.4 for correct

trials, -0.4 for error trials), and averaged across trials conditioned on choice. We subtracted this num-

ber (the average expected difference in flash number in each bin) from the observed average differ-

ence in flash number:

F went rightðtÞ ¼ fwent rightðtÞ� f ðtÞjg (3)

F went leftðtÞ ¼ fwent leftðtÞ� f ðtÞjg (4)

We multiplied F went_left by -1 so that the two vectors (F Þ were both in units of excess right

flashes. F went_right and F went_left are the red and blue lines plotted in Figure 2B. Positive/negative

values in F are time bins in which more right/left clicks occurred than expected by chance,

respectively.

8-parameter sequential sampling model
To obtain a moment-by-moment description of the decision process, we implemented a behavioral

model fit to the trial-by-trial data that has been described previously (Brunton et al., 2013;

Hanks et al., 2015). On each trial the model converts the incoming stream of discrete left and right

flashes into a scalar quantity a(t) that represents the gradually accumulating difference between

flashes presented to the two sides. At the end of the trial, the model predicts whether the animal

would go right or left if a is positive or negative, respectively. The rat’s behavior is used to fit param-

eters that govern how a(t) evolves. These parameters quantify sensory noise and noise associated

with time, leakiness/instability of the accumulation process, sensory depression/facilitation, side bias,

and a lapse rate that corresponds to a fraction of trials on which a random choice is made. The

dynamics of a(t) are implemented by the following equation:

da¼ sadW þðdt;tR �hR �C� dt;tL �hL �CÞdtþladt (5)

where dt,tR,L are delta functions at the flash times, h are Gaussian variables drawn from N(1, ss), dW

is a white-noise Wiener process, and C parametrizes adaptation/facilitation of subsequent flashes.

Adaptation/facilitation dynamics of C are implemented by the following equation:

dC

dt
¼ 1�C

tf
þðf� 1ÞCðdt;tR þ dt;tLÞ (6)

In addition, a lapse rate parameter represents the fraction of trials on which the rat responds

randomly.

Signal detection theory model
To describe how noise in the decision process scales with number of flashes, we implemented a

model to estimate the width of the distribution of animals’ internal estimates of flash number. This

signal detection theory-based model assumes that on a given trial, the animal’s estimate of flash

number presented to each side is a random variable drawn from a Gaussian distribution whose

mean is the number of flashes on that side, and whose variance is a free parameter in the model.

The difference of those Gaussians predicts the subjects’ performance: correct trials occur when the

difference of Gaussians is positive (i.e. the random variable drawn from the distribution representing

the larger number is in fact larger than the random variable drawn from the distribution representing

the smaller number). This was implemented by the following equation:

pðcorrectÞ ¼
ð

¥

0

N L�S;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
L þs2

S

q

� �

dðL�S
�

(7)

Where L and S are the means of the distributions for the larger and smaller numbers, respectively.

sL is the standard deviation of noise when L stimuli has been shown for the ‘larger/correct’ side, and

sS is the standard deviation of noise when S stimuli has been shown for the ‘smaller/incorrect’ side.

In other words, s2
L and s2

S are the variances of the distributions of the numerical estimates of L and

S. The values of s2
L and s2

S that maximized the likelihood of the animals’ behavioral choices were fit

Scott et al. eLife 2015;4:e11308. DOI: 10.7554/eLife.11308 19 of 23

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.11308


using the Matlab function fmincon. The values of s2
N reported in this paper were derived using a

bootstrapping approach. One thousand surrogate data sets were created by selecting behavioral tri-

als at random with replacement from the original data set. The signal detection theory-based model

was then fit to each surrogate data set, producing 1000-fold estimates for s2
0 . . . s2

15. The s2
n values

reported in the paper represent the mean of over these values and the confidence intervals were

derived from the standard deviation of these values.

Model comparison
To evaluate the goodness-of-fits of the different models, we implemented a nonparametric permuta-

tion test. First, for each model, we computed a distribution of bootstrapped r2 values by resampling

the behavioral trials with replacement, performing the fitting procedure, and computing the r2 value,

on 1000 iterations. For pairwise comparisons, (for example, between the scalar variability (SV) and

linear variance (LV) models in Figure 3F), the null hypothesis was that the r2 values for each distribu-

tion derive from a common distribution. To test this hypothesis, we combined the bootstrapped r2

values from the SV and LV models into a single distribution, and from that combined distribution,

created two arbitrary distributions of fake SV and LV r2 values, and computed the average of those

arbitrary distributions. We repeated this procedure for many (100, 1000, and 10000) iterations to

compute a distribution of arbitrary SV and LV r2 values and consequently, the difference of those

arbitrary distributions, which represents the null hypothesis. We treated the area under the null dis-

tribution corresponding to the difference between the true SV and LV r2 distributions as the p-value.

This procedure yielded identical results with 100, 1000, and 10000 permutations. It was performed

for the model comparisons in Figure 3F, as well as for evaluation of the SV vs. LV models for the

auditory (clicks) data.

To compare the different versions of the signal detection theory-based model (Figure 4), for

example single accumulator version vs two accumulator version or two accumulator version vs. the

two accumulator time-varying version, we used a bootstrapping approach. One hundred surrogate

datasets were created by selecting behavioral trials at random with replacement from the original

dataset. The signal detection theory-based model was then fit to each surrogate dataset, and the

log likelihood for the best-fit parameters was recorded. This gave us a distribution of log likelihoods

for each version of the model. We then performed the nonparametric permutation test described

above on the distributions of log likelihoods to make pairwise comparisons between the best-fit

model and all other models.
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Appendix 1

Let

NR ¼ number of Right pulses,

NL ¼ number of Left pulses,

and let

sN ¼ k0 þ kN: (1)

where k0 and k are constants, and N will represent number of pulses on one of the two sides.

Then define

P choice¼RightjNR; NLð Þ ¼ erf
NR �NL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
NR

þ s2
NL

q
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B

@

1

C

A
: (2)

where

erf að Þ � 1
ffiffiffiffiffiffi

2p
p

ð

¥

�a

e�x2=2dx: (3)

Consider the case where kNL � k0 and NR ¼ 0 (the easiest “go Left” trials). Under these

conditions k0 is negligible, and we obtain

P choice¼RightjNR; NLð Þ » erf
�NL
ffiffiffiffiffiffiffiffiffiffiffiffi

k2N2
L

q

0

B

@

1

C

A
(4)

¼ erf
�1

k

� �

: (5)

A similar expression holds for the easiest “go Right” trials. Equation (5) corresponds to the

“lapse rate” according to the model: that is, the probability of making an error even in the

easiest trials. Notice (a) that the lapse rate is non-zero even though there is no explicit lapse

rate parameter and (b) k0 does not enter into the expression for the lapse rate.

Now consider the case where the number of pulses is very low (e.g., NR ¼ 0 and NL ¼ 1). The

larger that k0 is, the closer that P (choice = Right|NR, NL) » 0.5, in other words, the closer that

performance will approach chance. Consequently, for large k0, performance starts near

chance for very short duration trials (since these will have low numbers of clicks).

Performance will grow for longer duration trials, and will reach a maximum fraction correct of

1 – erf (–1/k) for the easiest, longest, trials.
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