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Frontotemporal dementia is a highly heritable and devastating neurodegenerative disease. About 10–20% of all frontotemporal de-

mentia is caused by known pathogenic mutations, but a reliable tool to predict clinical conversion in mutation carriers is lacking.

In this retrospective proof-of-concept case-control study, we investigate whether MRI-based and cognition-based classifiers can pre-

dict which mutation carriers from genetic frontotemporal dementia families will develop symptoms (‘convert’) within 4 years. From

genetic frontotemporal dementia families, we included 42 presymptomatic frontotemporal dementia mutation carriers. We acquired

anatomical, diffusion-weighted imaging, and resting-state functional MRI, as well as neuropsychological data. After 4 years, seven

mutation carriers had converted to frontotemporal dementia (‘converters’), while 35 had not (‘non-converters’). We trained regular-

ized logistic regression models on baseline MRI and cognitive data to predict conversion to frontotemporal dementia within

4 years, and quantified prediction performance using area under the receiver operating characteristic curves. The prediction model

based on fractional anisotropy, with highest contribution of the forceps minor, predicted conversion to frontotemporal dementia

beyond chance level (0.81 area under the curve, family-wise error corrected P¼ 0.025 versus chance level). Other MRI-based and

cognitive features did not outperform chance level. Even in a small sample, fractional anisotropy predicted conversion in presymp-

tomatic frontotemporal dementia mutation carriers beyond chance level. After validation in larger data sets, conversion prediction

in genetic frontotemporal dementia may facilitate early recruitment into clinical trials.

1 Department of Radiology, Leiden University Medical Centre, 2333 ZA, Leiden, the Netherlands
2 Leiden Institute for Brain and Cognition, Leiden University, 2333 ZA, Leiden, the Netherlands
3 Institute of Psychology, Leiden University, 2333 AK, Leiden, the Netherlands
4 Department of Neurology, Erasmus Medical Centre, 3015 GD, Rotterdam, the Netherlands
5 Dementia Research Centre, University College London, London, WC1N 3AR, UK

Correspondence to: Rogier A. Feis, MD Department of Radiology, Leiden University Medical Centre,

Albinusdreef 2, 2333 ZA, Leiden, the Netherlands

E-mail: r.a.feis@lumc.nl

Keywords: frontotemporal dementia; MAPT protein, human; GRN protein, human; multimodal MRI; classification

Abbreviations: 3DT1w ¼ T1-weighted 3-dimensional MRI; AUC ¼ area under the receiver operating characteristics curve; AxD

¼ axial diffusivity; (bv)FTD ¼ (behavioral variant) frontotemporal dementia; C9orf72 ¼ chromosome 9 open reading frame 72;

DWI ¼ diffusion-weighted imaging; DTI ¼ diffusion tensor imaging; FA ¼ fractional anisotropy; FCor ¼ full correlations between

ICA components; FTD-RisC ¼ frontotemporal dementia risk cohort; GMD ¼ gray matter density; GRN ¼ progranulin; GENFI ¼

Received November 4, 2019. Revised April 29, 2020. Accepted May 11, 2020. Advance Access publication June 11, 2020
VC The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which per-

mits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

BBRAIN COMMUNICATIONSAIN COMMUNICATIONS
doi:10.1093/braincomms/fcaa079 BRAIN COMMUNICATIONS 2020: Page 1 of 14 | 1

http://orcid.org/0000-0002-4040-7900
http://orcid.org/0000-0003-2030-2789


genetic frontotemporal dementia initiative; ICA ¼ independent component analysis; MAPT ¼ microtubule-associated protein tau;

MD ¼ mean diffusivity; MMSE ¼ mini-mental state examination; MRI ¼ magnetic resonance imaging; PCor ¼ sparse L1-regular-

ized partial correlations between ICA components; (nfv)PPA ¼ (non-fluent variant) primary progressive aphasia; RD ¼ radial diffu-

sivity; rs-fMRI ¼ resting-state functional MRI; TBSS ¼ tract-based spatial statistics; WM(D) ¼ white matter (density)

Introduction
Frontotemporal dementia (FTD) is a highly heritable and

devastating neurodegenerative disease that often occurs at

a presenile age (Ratnavalli et al., 2002; Harvey et al.,

2003; Hogan et al., 2016). Patients typically present with

behavioral symptoms (behavioral variant FTD; bvFTD;

Rascovsky et al., 2011) or with language disorders (pri-

mary progressive aphasia; PPA; Gorno-Tempini et al.,

2011), but may also develop amyotrophic lateral sclerosis
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(Lomen-Hoerth et al., 2002) or Parkinsonian syndromes

such as corticobasal syndrome and progressive supra-

nuclear palsy (Josephs et al., 2006). About 10–20% of

all FTD is caused by three known pathogenic mutations:

microtubule-associated protein tau (MAPT), progranulin

(GRN) and chromosome 9 open reading frame 72

(C9orf72) repeat expansion (Seelaar et al., 2008; Rohrer

et al., 2009; Benussi et al., 2015). These mutations have

a high penetrance and an autosomal dominant inherit-

ance pattern. As such, roughly 50% of family members

from a genetic FTD pedigree will develop an FTD

variant.

Uncertainty about if and when a person will develop

FTD is a major burden (Riedijk et al., 2009; Cohn-

Hokke et al., 2018), and some subjects undergo genetic

testing to eliminate this uncertainty. However, when a

mutation is found, this raises the question when symp-

toms will emerge. A reliable prognosis may provide psy-

chological benefit, and contributes to the timely

organization of adequate care. Moreover, conversion pre-

diction in genetic FTD may facilitate early recruitment

into clinical trials for disease modifying treatments, which

could lead to improved trial efficacy (Tsai and Boxer,

2016). However, accurate conversion prediction is cur-

rently not possible. Expected time to symptom onset, cal-

culated using the ages of FTD onset of family members,

has been used as proxy in research settings (Rohrer

et al., 2015; Jiskoot et al., 2018a), but these estimates

are inaccurate due to the large variation in age of onset

between and within genetic FTD families (van Swieten

and Heutink, 2008; Jiskoot et al., 2018a). A more reli-

able clinical tool is needed to predict conversion in genet-

ic FTD.

MRI-based classification is a promising diagnostic bio-

marker for FTD (Raamana et al., 2014; Klöppel et al.,

2015; Koikkalainen et al., 2016; Bron et al., 2017;

Meyer et al., 2017; Bouts et al., 2018), and can distin-

guish presymptomatic FTD mutation carriers from con-

trols beyond chance (Feis et al., 2019a). Classification

with cognitive measures has also been advocated as diag-

nostic FTD biomarker (Wang et al., 2016). Therefore,

MRI- and cognition-based classification may be suitable

candidates for conversion prediction in genetic FTD. In

recent observational studies, FTD mutation carriers were

followed up until conversion, and multimodal MRI data

were analysed using mass univariate techniques such as

voxel-based morphometry and diffusion tensor imaging

(DTI; Jiskoot et al., 2019), or using classification scores

calculated from multimodal MRI and a classification

model based on FTD patients (Feis et al., 2019b). These

studies suggest that brain changes as found on MRI ap-

pear relatively explosively in the final years before symp-

tom onset. However, it is yet unknown whether

conversion in such subjects could have been predicted

based on pre-conversion MRI scans or neuropsychologic-

al data.

Here, we study whether MRI-based features and cogni-

tive measures have predictive value for FTD conversion

in genetic FTD. To this end, we train prediction models

on MRI-based features and cognitive measures to predict

which presymptomatic FTD mutation carriers develop

symptoms within 4 years (‘converters’), and which muta-

tion carriers do not (‘non-converters’).

Materials and methods

Participants

This retrospective case-control study included FTD muta-

tion carriers from the FTD-Risk Cohort (FTD-RisC;

Dopper et al., 2014; Jiskoot et al., 2016, 2019; Meeter

et al., 2016; Papma et al., 2017; Jiskoot et al., 2018), a

longitudinal study that follows healthy, 50% at-risk fam-

ily members of genetic FTD patients on a 2-year basis.

For the current study, we included the data of 43 FTD

mutation carriers, who entered FTD-RisC between May

2010 and November 2014. Inclusion criteria were age at

MRI scan between 40 and 70 years old, availability of a

T1-weighted 3-dimensional MRI (3DT1w) scan, a diffu-

sion-weighted imaging (DWI) dataset, a resting-state func-

tional MRI T2*-weighted (rs-fMRI) scan, and availability

of clinical follow-up after 2 and 4 years. Genotyping, as

described in previous work (Dopper et al., 2014; Jiskoot

et al., 2016), revealed nine MAPT mutation carriers, 28

GRN mutation carriers, and six C9orf72 repeat expan-

sion carriers. For seven FTD mutation carriers who had

converted to FTD (four MAPT and three GRN mutation

carriers; ‘converters’, see ‘Conversion’ section below), we

included the MRI data of their last visit before conver-

sion. For one converter (MAPT mutation carrier), these

MRI data were excluded due to the presence of artefacts,

and we included MRI data of the previous visit. The

time between MRI and conversion ranged between 11

and 41 months (mean ¼ median¼ 22 months,

SD¼ 10.5 months). More details on this group’s demo-

graphics are provided in the results. The remaining muta-

tion carriers were confirmed to be asymptomatic after

4 years follow-up in accordance with established diagnos-

tic criteria for bvFTD (Rascovsky et al., 2011), PPA

(Gorno-Tempini et al., 2011) and amyotrophic lateral

sclerosis (Ludolph et al., 2015), and were termed ‘non-

converters’. Follow-up after 6 years was not complete for

this group: 25 non-converters were followed up after

6 years and all remained asymptomatic at that point. For

non-converters, we included the FTD-RisC baseline MRI

data. One non-converter with a GRN mutation was

excluded due to incomplete neuropsychological data.

Other exclusion criteria were current or past neurologic

(other than dementia) or primary psychiatric disorders,

history of drug abuse, large image artefacts and gross

brain pathology other than atrophy.
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Standard protocol approvals,
registrations and patient consents

Participants and clinical investigators were blinded to the

participants’ genetic status, except for those that under-

went predictive testing at their own request. For convert-

ers, genetic counselling was offered to the patient and

family members, and genetic status was unblinded to con-

firm the presence of the pathogenic mutation. The study

was conducted in accordance with regional regulations

and the Declaration of Helsinki. The Erasmus Medical

Centre and Leiden University Medical Centre local medic-

al ethics committees approved the study, and every par-

ticipant provided written informed consent (Feis et al.,

2019b).

Conversion

Conversion was determined in a multidisciplinary consen-

sus meeting of the Erasmus Medical Centre FTD

Expertise Centre, involving neurologists (J.C.v.S.), neuro-

psychologists (J.L.P., J.M.P., L.C.J.), neuroradiologists, a

clinical geneticist and a care consultant (Feis et al.,

2019b). In the consensus meetings, information from the

medical history, neuropsychological assessment and MRI

of the brain were reviewed. The timing of symptom onset

was estimated from heteroanamnestic information pro-

vided by knowledgeable informants (e.g. siblings,

spouses). After the clinical diagnosis was made, and if

the subject and family agreed, genetic status was

unblinded for confirmation. Four MAPT mutation car-

riers and one GRN mutation carrier converted to bvFTD,

while two GRN mutation carriers converted to non-fluent

variant PPA (nfvPPA). BvFTD converters presented with

progressive behavioral deterioration, functional decline

and frontal and/or temporal lobe atrophy on structural

MRI, fulfilling the international diagnostic consensus cri-

teria for bvFTD with definite frontotemporal lobar degen-

eration pathology (Rascovsky et al., 2011). The two

nfvPPA converters presented with isolated language diffi-

culties and no impairment in daily living activities. Both

showed a non-fluent, halting speech with sound errors

and agrammatism, fulfilling the diagnostic criteria for

nfvPPA (Gorno-Tempini et al., 2011). For more detailed

information on conversion criteria, and for a full descrip-

tion of the converters’ clinical profile (see Jiskoot et al.,

2018b, 2019).

MRI data acquisition

Subjects were scanned at the Leiden University Medical

Centre using a 3T MRI scanner (Achieva, Philips

Medical Systems, Best, the Netherlands) with an 8-chan-

nel SENSE head coil (Feis et al., 2019a). The imaging

protocol included a whole-brain near-isotropic 3DT1w se-

quence for cortical and subcortical tissue-type segmenta-

tion, a DWI sequence for assessments of white matter

(WM) diffusivity, and rs-fMRI sequence for the calcula-

tion of functional connectivity measures. Participants

were instructed to lie still with their eyes closed and not

to fall asleep during rs-fMRI. Scan parameters are pro-

vided in Table 1.

Image preprocessing

Preprocessing of MRI scans was performed similarly to

previous work (Bouts et al., 2018; Feis et al., 2019a, b).

All registration and segmentation steps were critically

reviewed and errors were corrected accordingly.

For 3DT1w images, we performed bias field correction

(N4ITK; Tustison et al., 2010), brain extraction (FSL

BET; Smith, 2002), non-linear registration to the

MNI152 2� 2 � 2 mm T1 template (FNIRT; Anderson

et al., 2007), tissue-type segmentation (SPM12; Friston

et al., 2007), and segmentation of deep gray matter struc-

tures, including the bilateral thalamus, caudate nucleus,

putamen, globus pallidum, nucleus accumbens, amygdala

and hippocampus (FIRST; Patenaude et al., 2011). Our

choice to use SPM segmentation was based on the seg-

mentation tool comparison by Kazemi and Noorizadeh

(2014).

Preprocessing of DWI data sets included correction of

motion and eddy-current induced distortions (eddy cor-

rect; Leemans and Jones, 2009), and voxel-wise calcula-

tion of the measures fractional anisotropy (FA), mean

diffusivity (MD), axial diffusivity (AxD; largest eigen-

value) and radial diffusivity (RD; average of the two

remaining eigenvalues) using DTIFIT (Smith et al., 2004).

A global mean FA image was created by non-linearly

registering FA maps to the FMRIB58_FA template, and

tract-based spatial statistics (FSL TBSS; Smith et al.,

2006) was used to extract FA, MD, AxD and RD values

using the standard FSL TBSS skeleton. The skeleton was

thresholded at 0.2 to ensure that extracted values origin-

ate from WM.

For rs-fMRI data, preprocessing consisted of motion

correction (Jenkinson et al., 2002), brain extraction, spa-

tial smoothing using a Gaussian kernel with a full width

at half maximum of 3 mm, grand mean intensity normal-

ization, motion artefact removal and high-pass temporal

filtering (cut-off frequency: 0.01 Hz). Motion artefacts

were removed using a single-session independent compo-

nent analysis (ICA) to decompose the rs-fMRI data into

distinct statistically independent components, followed by

automatic identification and removal of motion artefacts

using ICA-AROMA (version 0.3 beta; Pruim et al.,

2015). Registration to standard space was performed in

two steps. First, a temporal mean image calculated from

the 4D rs-fMRI volume was registered to the 3DT1w

image using Boundary-Based Registration (Greve and

Fischl, 2009). Next, resulting registration parameters

were concatenated to the 3DT1w-to-MNI152 template

registration parameters to obtain the final registration

parameters.

4 | BRAIN COMMUNICATIONS 2020: Page 4 of 14 R. A. Feis et al.



MRI feature selection

Selection of MRI features was performed as described

previously (Bouts et al., 2018; Feis et al., 2019a).

Cortical gray matter density (GMD) and white matter

density (WMD) were calculated as weighted means of

their respective regional gray matter or WM probability

(SPM segmentation) weighted by the probability of a

voxel belonging to a specific cortical region. Cortical

probabilities were derived from the 48 Harvard-Oxford

probabilistic anatomical brain atlas (split into left and

right), and WM probabilities were derived from the

Johns-Hopkins University WM tractography atlas for 20

WM tracts. Voxels with atlas probability values under

25% were excluded. We estimated these features in na-

tive space by transforming the atlas masks to the images’

native space using the inverted non-linear registration

parameters. For deep gray matter regions, GMD values

were calculated as the regions’ volume (FIRST segmenta-

tions) divided by the total intracranial volume. This

resulted in a GMD feature vector of 110 weighted mean

GMD values (48 left cortical, 48 right cortical and 14

deep gray matter regions) and in a feature vector of 20

weighted mean WMD values per subject. While gray

matter volume as estimated from voxel-based morphom-

etry would also be a useful feature for prediction, we

chose the simpler GMD for generalisation purposes, as it

is not reliant on a study-specific template.

DTI features were calculated as weighted mean FA,

MD, AxD or RD values per tract per subject. First, we

projected each subject’s FA, MD, AxD and RD values

onto the TBSS group skeleton on a voxel-wise basis.

Next, we weighted the mean values per tract by the

probability of a voxel belonging to that specific tract,

derived from 20 tracts of the Johns-Hopkins University

WM tractography atlas. Voxels with atlas probability val-

ues under 25% were excluded. This resulted in four fea-

ture vectors of each 20 weighted mean values per subject.

To calculate functional connectivity features, all proc-

essed rs-fMRI images were combined in a temporally

concatenated group-level ICA (MELODIC; Beckmann

and Smith, 2004), with dimensionality fixed at 20 com-

ponents and an ICA threshold of 0.99 (Smith et al.,

2013). This means that each voxel included in the ICA

map was 99 times more likely to be part of that compo-

nent than to be caused by Gaussian background noise.

For each subject, we calculated the mean time course for

each component, weighted by the ICA weight map and

gray matter probability of that component’s regions.

Correlations between the mean time courses of all pairs

of components were subsequently calculated. Functional

connectivity was calculated as full correlations (FCor),

and as sparse, L1-regularized, partial correlations (PCor)

between the mean time courses of all pairs of compo-

nents. Partial correlations were calculated using the

graphical lasso algorithm (Friedman et al., 2008). This

procedure resulted in two feature vectors of each

(20� 19) � 2¼ 190 (partial) correlations per subject.

Finally, we created one multimodal feature vector by

concatenating all feature vectors together. As such, we

had nine feature vectors in total: two 3DT1w feature vec-

tors, four DTI feature vectors, two rs-fMRI feature vec-

tors and one multimodal imaging feature vector.

Neuropsychological assessment and
cognitive feature selection

We screened global cognitive functioning by means of the

Mini-Mental State Examination (MMSE; Folstein et al.,

1975). Experienced neuropsychologists (J.L.P., J.M.P.,

L.C.J.) administered neuropsychological tests within six

cognitive domains: language, attention and mental proc-

essing speed, executive functioning, social cognition,

memory and visuoconstruction. The language domain

was assessed using the 60-item Boston Naming Test

(BNT; Kaplan et al., 1978), verbal Semantic Association

Test (SAT; Visch-Brink et al., 2005), ScreeLing phonology

(Doesborgh et al., 2003) and categorical fluency

(Thurstone and Thurstone, 1962). The domain of atten-

tion and mental processing speed was evaluated using the

Trail Making Test (TMT-)A (Army Individual Test

Battery, 1944), the mean of Stroop Colour-Word Tests I

and II (Stroop, 1935), Wechsler Adult Intelligence Scale

III (WAIS-III) Digit Span forwards (Wechsler, 2005) and

Letter Digit Substitution Test (LDST; Jolles et al., 1995).

We measured the executive functioning domain using

TMT-B (Army Individual Test Battery, 1944), Stroop

Colour-Word Test III (Stroop, 1935), WAIS-III Digit

Span backwards (Wechsler, 2005), modified Wisconsin

Card Sorting Test (WCST) concepts (Nelson, 1976),

Letter Fluency (Thurstone and Thurstone, 1962) and

Table 1 MRI sequence parameter settings

Slices TR (ms) TE (ms) Flip angle (�) Matrix (mm) Voxel size (mm) Duration (min)

3DT1w 140 9.8 4.6 8 256 � 256 0.88 � 0.88 � 1.20 4.57

DWIa 70 8250 80 90 128 � 128 2.00 � 2.00 � 2.00 8.48

rs-fMRI 38 2200 30 80 80 � 80 2.75 � 2.75 � 2.99b 7.28

Scan protocol of whole-brain near-isotropic 3DT1-weighted (3DT1w), diffusion-weighted imaging (DWI) and resting-state functional MRI T2*-weighted MRI (rs-fMRI) on a 3T scan-

ner at the Leiden University Medical Centre.
a60 directions, b¼ 1000, one b0 image.
bIncluding 10% interslice gap.

TR ¼ repetition time; TE ¼ echo time.
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WAIS-III Similarities (Wechsler, 2005). The social cogni-

tion domain was assessed by means of Happé theory of

mind cartoons, Happé non-theory of mind cartoons

(Happé et al., 1999) and Ekman Faces (Ekman and

Friesen, 1976). We evaluated the memory domain using

the immediate response and recall of the Dutch Rey

Auditory Verbal Learning Test (RAVLT; Rey, 1958), and

the Visual Association Test (VAT; Lindeboom et al.,

2002). Lastly, we tested the visuoconstruction domain by

means of clock drawing (Royall et al., 1998) and WAIS-

III Block Design (Wechsler, 2005).

Raw test scores were added into one cognitive feature

vector per domain. This resulted in a language feature

vector with four features, an attention feature vector with

four features, an executive feature vector with six fea-

tures, a social feature vector with three features, a mem-

ory feature vector with three features, and a

visuoconstruction feature vector with two features.

Finally, we added these feature vectors together to create

a multidomain feature vector, bringing the total number

of feature vectors on seven: language, attention, execu-

tion, social, memory, visuoconstruction and multidomain.

Classifier

In order to identify future converters (n¼ 7) from non-

converters (n¼ 35) at baseline, we trained prediction

models using MRI features (n¼ 9) and, separately, cogni-

tive features (n¼ 7). Feature vectors were used to train a

logistic elastic net regression algorithm (Zou and Hastie,

2005; Friedman et al., 2010; Schouten et al., 2016; Bouts

et al., 2018, Feis et al., 2019a). The elastic net regression

procedure estimates a sparse regression model that

includes only a subset of the provided features by impos-

ing a penalty for including features (i.e. L1 penalty) and

for the sum of the squared value of the coefficients (i.e.

L2 penalty). This way, elastic net provides a solution for

the imbalance between the large number of features and

the small number of subjects. Age and sex were included

in the model without penalty to ensure that estimated

feature regression coefficients were conditional on subject

age and sex. A prediction score of 0 represented a non-

converter and 1 represented a converter.

Cross-validation

We trained our conversion prediction models in a strati-

fied nested 7-fold cross-validation scheme to make sure

that the proportion of converters and non-converters was

the same in each fold (i.e. one converter and five non-

converters per fold). In the outer loop, one part of the

data (i.e. one of the seven folds) was set apart as a test

set and served to test the generalized prediction perform-

ance of the elastic net regression model. The remaining

parts (six of the seven folds) were used to train the

model. Within the training set of the outer loop, we per-

formed a nested cross-validation to optimize the model’s

hyperparameters without overestimating prediction per-

formance (Varma and Simon, 2006; Kriegeskorte et al.,

2009). The resulting optimal hyperparameters were used

in the training set of the outer loop to train the model,

and the prediction performance was then tested in the

test set of the outer loop. This process was repeated

seven times to make sure that each subject was part of

the test set exactly once. Since the test set of the outer

loop was neither used for model training, nor for param-

eter optimisation, we reduced the risk of overestimating

the generalization performance as much as possible

(Kriegeskorte et al., 2009; Schouten et al., 2016; Bouts

et al., 2018, Feis et al., 2019a). The entire prediction

procedure was repeated 50 times to average prediction

outcome variability resulting from random partitioning in

training and test folds. All prediction analyses and evalu-

ations were implemented in R version 3.3.2 (R core

2016, GLMnet package; Friedman et al., 2010).

Prediction performance

For both analyses, we quantified prediction performances

using receiver operating characteristic curves. Receiver

operating characteristic curves were calculated by shifting

the threshold for predicting an individual as converter

from 0 to 1, and plotting the true positive rate (sensitiv-

ity) versus the false-positive rate (1 – specificity) for each

intermediate point. The area under this receiver operating

characteristic curve (AUC) is a measure of prediction per-

formance insensitive to the distribution between the

groups (Fawcett, 2006). Additionally, we calculated

the optimal operating point on the curve to calculate the

model’s sensitivity, specificity and prediction accuracy,

given equal class distribution and equal penalty for false

positive and false negative predictions. We averaged

AUC, accuracy, sensitivity and specificity values from the

50 times repeated nested cross-validations (Schouten

et al., 2016; Bouts et al., 2018, Feis et al., 2019a).

Statistical analysis

Statistical group analyses of demographic data were per-

formed using R (R Core 2016, Vienna, Austria). We

tested for differences between converters and non-convert-

ers using unpaired t-tests (age and education), the Mann–

Whitney U test [MMSE scores (0–30)] and the v2 test

(sex distribution).

To compare MRI and cognitive prediction models’

AUC values versus chance level, we used permutation

tests (N¼ 5000; Noirhomme et al., 2014). We used the

maximum t-statistic method to correct for multiple com-

parisons within, respectively, the nine MRI-based and the

seven cognitive prediction analyses. For each permutation,

we calculated the maximum absolute t-statistic within the

family of tests, which resulted in a maximum t-distribu-

tion of 5000 maximum absolute t-statistics. The observed

t-statistic of each analysis was then compared to this
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maximum t-distribution in order to obtain a family-wise

error rate corrected P-value. The alpha level required for

statistical significance was set at 0.05.

Data availability

Raw data were generated at the Leiden University

Medical Centre. The derived data, as well as scripts, that

support the findings of this study are available from the

corresponding author upon request.

Results

Demographics

Seven converters and 35 non-converters met the inclusion

criteria (Table 2). At the time of MRI scan, converters

did not differ from non-converters in terms of age

(P¼ 0.85), sex distribution (P¼ 0.40) and MMSE scores

(P¼ 0.50). However, converters had higher levels of edu-

cation than non-converters (P¼ 0.015). More information

on the converter group is shown in Table 3.

Prediction performance

Prediction with MRI features yielded mixed results

(Table 4). The model based solely on FA features (FA

model) significantly outperformed chance level with an

AUC of 0.81 (P¼ 0.025 versus chance level). For the FA

model, subjects’ prediction scores are shown in Fig. 1.

Converters with a MAPT mutation seemed to have

higher conversion prediction scores than those with a

GRN mutation. Similarly, male mutation carriers seemed

to have higher predictions scores than female mutation

carriers. There seemed to be no clear correlation

(Pearson’s r¼ 0.02) between conversion prediction scores

and time from MRI to conversion. However, the above

three observations should be noted with care, since the

small sample size did not permit for meaningful statistical

testing. The FA model’s beta weights for the 50 cross-val-

idation repeats are shown in Fig. 2. The highest beta

weights were found in the forceps minor. Other WM

tracts with above average beta weights included the for-

ceps major, right corticospinal tract, right inferior longi-

tudinal fasciculus, right anterior thalamic radiation and

right uncinate fasciculus. For the two WM tracts with

the largest beta weights (i.e. forceps minor and major),

we plotted subjects’ the mean FA value across the tract

in Fig. 3. Corresponding with the beta weights, the differ-

ences between converters and non-converters in mean FA

value were larger for the forceps minor than for the for-

ceps major.

The other DTI features (i.e. MD, AxD, RD) did not

outperform chance level, nor did gray and WM density

features, and functional connectivity features (i.e. FCor,

PCor). Concatenating all features together in a multi-

modal MRI model did not improve performance

compared to the FA model (AUC¼ 0.63, P¼ 0.55 versus

chance level).

Prediction with cognitive features resulted in poor per-

formances (Table 5). The best-performing cognitive model

was based on the executive domain (AUC¼ 0.35).

Adding multiple domains together in a multidomain cog-

nitive model did not improve performance (AUC¼ 0.34).

Discussion
This study describes conversion prediction within 4 years

in FTD mutation carriers using MRI-based and cognitive

measures. We found that it was possible to distinguish

converters from non-converters beyond chance level with

an AUC of 0.81 using FA. Other MRI-based and cogni-

tive measures did not outperform chance level.

The FA model’s performance reaffirms the potential of

diffusion scans for early FTD diagnosis. Group differen-

ces in FA and other DTI metrics exist in presymptomatic

FTD mutation carriers compared to controls (Borroni

et al., 2008; Dopper et al., 2014; Pievani et al., 2014;

Lee et al., 2017; Papma et al., 2017; Bertrand et al.,

2018, Jiskoot et al., 2018a, 2019). More specifically with

regard to conversion, two recent FTD-RisC studies

observed how mass univariate MRI measures and MRI-

based classification scores develop as subjects approach

conversion, as compared to subjects who did not convert

during follow-up. Jiskoot et al. found that gray matter at-

rophy and WM DTI changes become noticeable around

2 years before symptom onset, and longitudinal FA de-

cline was primarily located in the genu of the corpus cal-

losum (Jiskoot et al., 2019), the area with the highest

beta values in our current study. Feis et al. combined

multimodal MRI to calculate a single classification score

at each time point using a classification model that was

trained on bvFTD patients and controls. They found that

the classification scores of presymptomatic mutation car-

riers and non-carriers did not differ over time, but that

classification scores of converters rose faster than those

of non-converting mutation carriers (Feis et al., 2019b).

Together, these studies suggest that FTD-related deterior-

ation on MRI accelerates when subjects are near

Table 2 Demographics

Converter

(n 5 7)a

Non-converter

(n 5 35)

P-value

Age, mean (SD) years 51.7 (8.8) 51.0 (8.4) 0.85

Sex, n (%) female 4 (57%) 26 (74%) 0.4

Education, mean

(SD) yearsb

15.2 (0.75) 13.7 (2.9) 0.015

MMSE, median

(range) points

29 (27–30) 30 (24–30) 0.5

aFour MAPT, three GRN.
bEducation values were missing for one converter.

GRN ¼ progranulin; MAPT ¼ microtubule-associated protein tau; MMSE ¼ mini-mental

state examination.
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Table 3 Converter demographics

Gene Mutation Age at MRI Sex Months to conversion FTD variant Prediction scorea

Converter 1 GRN S82VfsX174 65 Female 23 bvFTD 0.12

Converter 2 MAPT P301L 54 Female 28 bvFTD 0.31

Converter 3 MAPT P301L 57 Male 18 bvFTD 0.79

Converter 4 GRN S82VfsX174 56 Female 11 nfvPPA 0.10

Converter 5 GRN S82VfsX174 49 Female 22 nfvPPA 0.03

Converter 6 MAPT G272V 41 Male 41b bvFTD 0.56

Converter 7 MAPT G272V 42 Male 11 bvFTD 0.72

aPrediction scores based on the FA prediction model range from 0 to 1, with 0 representing non-converters and 1 representing converters.
bMRI data nearer to symptom onset were excluded due to artefacts for this subject.

bvFTD ¼ behavioural variant FTD; FTD ¼ frontotemporal dementia; GRN ¼ progranulin; MAPT ¼ microtubule-associated protein tau; MRI ¼ magnetic resonance imaging; nfvPPA

¼ non-fluent variant primary progressive aphasia.

Table 4 MRI features’ performance

MRI modality AUC Min–max Sensitivity Specificity Accuracy FWER Corr P-value (AUC > chance)

GMD 0.668 0.563–0.731 0.746 0.599 0.623 0.375

WMD 0.438 0.306–0.567 0.571 0.517 0.526 0.976

FA 0.812 0.608–0.906 0.769 0.761 0.762 0.025

MD 0.677 0.616–0.743 0.711 0.693 0.696 0.322

AxD 0.435 0.327–0.563 0.626 0.491 0.514 0.977

RD 0.625 0.465–0.722 0.689 0.630 0.640 0.590

FCor 0.336 0.204–0.449 0.446 0.513 0.501 1.000

PCor 0.403 0.233–0.502 0.514 0.527 0.525 0.996

Multimodal 0.626 0.547–0.710 0.557 0.781 0.744 0.552

Converters (seven presymptomatic FTD-RisC mutation carriers that developed symptoms within 4 years after assessment) versus non-converters (35 FTD mutation carriers that

remained cognitively healthy after 4 years). Multimodal represents a combination of all MRI features. Min–max AUC values represent the variance across the 50 repeats. Italic: best-

performing model. Bold: mean AUC significantly higher than chance level after family-wise error rate correction.

AUC ¼ area under the receiver operating characteristic curve; FA ¼ fractional anisotropy; FCor ¼ full correlations between 20 ICA components; FTD-RisC ¼ Frontotemporal de-

mentia Risk Cohort; FWER ¼ family-wise error rate; GMD ¼ grey matter density; ICA ¼ independent component analysis; MD ¼ mean diffusivity; PCor ¼ L1-regularized partial

correlations between 20 ICA components; RD ¼ radial diffusivity; WMD ¼ white matter density.

Figure 1 Converters’ and non-converters’ conversion prediction scores. Box and scatter plot of each subject’s conversion prediction

score on a scale from 0 (representing non-converter) to 1 (representing converter) after applying the FA model. Different FTD gene mutations

were represented with different shapes. The converter with the longest time between MRI and conversion (i.e. 41 months) was annotated with

increased size. These conversion prediction scores result in a performance of 0.81 AUC for the FA model (P ¼ 0.025 versus chance level).

C9orf72 ¼ chromosome 9 open reading frame 72; FA ¼ fractional anisotropy; GRN ¼ progranulin; MAPT ¼ microtubule-associated protein tau.
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conversion. However, they fail to address the most im-

portant question: is it possible, using presymptomatic

cross-sectional data, to predict future conversion in indi-

vidual FTD mutation carriers? We expand on this by

showing that individual differences in FA have predictive

value for FTD onset within 4 years in FTD mutation

carriers.

Within the FA model, the forceps minor feature had

the highest beta weights across 50 repeats, suggesting

that this area was important for prediction. Accordingly,

the difference in mean FA between converters and non-

converters was larger in the forceps minor than in other

tracts, e.g. the forceps major. The genu of the corpus cal-

losum (i.e. part of the forceps minor) was recently found

to be the most consistent WM region in terms of DTI

changes across FTD subtypes (Elahi et al., 2017). As our

converter group included both bvFTD and nfvPPA con-

verters, this might explain why the forceps minor had

high beta weights, and could provide biological support

for our model. Forceps minor changes may therefore be

a promising marker for early FTD detection, although it

might not discriminate between the different FTD sub-

types. Other WM tracts are affected more specifically in

the different clinical syndromes. BvFTD is generally char-

acterized by DTI changes in the anterior thalamic radi-

ation, cingulum, and uncinate fasciculus (Zhang et al.,

2011; Mahoney et al., 2014; Möller et al., 2015; Daianu

et al., 2016), while the superior longitudinal fasciculus

and corticospinal tract are typically affected in nfvPPA

(Whitwell et al., 2010; Galantucci et al., 2011; Omer

et al., 2017) and the inferior longitudinal and uncinate

fasciculi show DTI changes in svPPA (Whitwell et al.,

2010; Galantucci et al., 2011; Tu et al., 2015). Future

studies should investigate whether this combination of

shared and different WM DTI changes between the FTD

subtypes facilitate hierarchical classification. Although it

is interesting to examine which features were important

for prediction, care must be taken not to overinterpret

Figure 2 FA model beta weights. Box plots show the FA model’s standardized beta weights for the 50 cross-validation repeats.

Demographics (age and sex, in blue) were included in the model without penalty, while the FA features (red) were regularized. ATR ¼ anterior

thalamic radiation; CST ¼ corticospinal tract; CGC ¼ cingulum in the cingulate gyrus area; CGH ¼ cingulum in the hippocampal area; FA ¼
fractional anisotropy; FMA ¼ forceps major; FMI ¼ forceps minor; IFOF ¼ inferior fronto-occipital fasciculus; ILF ¼ inferior longitudinal

fasciculus; L ¼ left; R ¼ right; SLF ¼ superior longitudinal fasciculus; TSLF ¼ temporal projection of the SLF; UF ¼ uncinate fasciculus.
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the beta weights. Contrary to explanatory regression

models, the beta weights of our regularized prediction

model do not designate direct relationships between the

features and prediction score, nor do they reflect mean

differences between the groups (Shmueli, 2010). Each fea-

ture’s effect is conditional on the effects of all other fea-

tures in the model, and multicollinearity between features

may result in suppression of the effect of some features.

For example, we cannot be sure whether the higher beta

weights in the FA model for right hemispheric WM tracts

point towards asymmetric effects—such as are reported

in GRN mutation carriers (Jiskoot et al., 2018a)—or

whether the corresponding regions in the left hemisphere

added redundant information, and were therefore sup-

pressed in the model.

Apart from the FA model, no other MRI- or cognition-

based prediction model significantly outperformed chance.

However, it would be inappropriate to draw conclusions

based on the non-significant results. Due to our small

sample size, it is unclear whether these features were un-

informative, or whether the study was underpowered to

find significant results. Grey matter atrophy occurs at a

later stage than WM changes in MAPT and GRN muta-

tion carriers (Borroni et al., 2008; Agosta et al., 2012;

Rohrer and Rosen, 2013, Feis et al., 2019a; Jiskoot

et al., 2019), but the question whether or not that pre-

cludes the use of gray matter features for early diagnosis

requires further investigation. Similarly, we cannot com-

ment on why the remaining diffusion features MD, AxD

and RD, which often yield comparable results to FA, did

Figure 3 Mean FA values in two WM tracts. Box and scatter plot of each subject’s mean FA value in the forceps minor (A) and forceps

major (B). Different FTD gene mutations were represented with different shapes. The converter with the longest time between MRI and

conversion (i.e. 41 months) was annotated with increased size. C9orf72 ¼ chromosome 9 open reading frame 72; FA ¼ fractional anisotropy;

GRN ¼ progranulin; MAPT ¼ microtubule-associated protein tau.

10 | BRAIN COMMUNICATIONS 2020: Page 10 of 14 R. A. Feis et al.



not outperform chance level. None of the cognitive fea-

tures predicted conversion within 4 years. However, it

should be noted that our selection of neuropsychological

tests was arbitrary, and higher performance might be

possible with different tests. Also, longitudinal cognitive

assessments may be more specific and predictive of con-

version than cross-sectional differences (Jiskoot et al.,

2016, 2018b).

Important strengths of this study include the unique

population and follow-up, which enabled the prediction

of conversion in genetic FTD. Our clinical follow-up

demonstrated that non-converters remained asymptomatic

even after 4 (and in 25 cases after 6) years, ensuring that

the labels ‘converter’ and ‘non-converter’ were truly sep-

arate. Furthermore, our methods have been validated in

previous studies concerning classification in AD and FTD

(Schouten et al., 2016; Bouts et al., 2018). The most im-

portant limitation to this study was sample size. Our

index group consisted of seven converters, which is a

small number in neuroimaging studies, and even more so

in machine learning. This resulted in performance esti-

mates with a large degree of uncertainty, which means

that relatively high performances were necessary to sig-

nificantly outperform chance level. For example, the AUC

needed to significantly outperform chance level after fam-

ily-wise error rate correction was 0.78 for the MRI anal-

yses, and 0.74 for cognitive analyses. Another limitation

to this study was the sample’s heterogeneity. We included

subjects from MAPT, GRN and C9orf72 families in

order to boost our sample size, even though there is evi-

dence that each mutation has its own pattern of neurode-

generation over time due to different underlying

pathology (Seelaar et al., 2011; Whitwell et al., 2012;

Mann and Snowden, 2017, Jiskoot et al., 2018a). Indeed,

converters with an MAPT mutation seemed to have

higher conversion prediction scores than did converters

with a GRN mutation, though this may also be due to

sex differences. Stratification was not feasible due to our

small sample size, but is necessary in future studies to

show whether conversion prediction is possible in all

FTD gene mutations carriers or solely in MAPT carriers.

Just as different FTD mutations have different neurodege-

nerative profiles, so do the different clinical syndromes

that constitute FTD (Seelaar et al., 2011; Whitwell et al.,

2012; Rohrer and Rosen, 2013). Five subjects developed

bvFTD, while two developed nfvPPA, increasing hetero-

geneity in our analyses. Despite these sources of hetero-

geneity, the FA-based model predicted conversion in

4 years beyond chance level, which is an important proof

of concept that conversion prediction is possible in genet-

ic FTD. Larger sample sizes might in the future facilitate

hierarchical (Kim et al., 2019) or multilabel (Raamana

et al., 2014; Klöppel et al., 2015; Koikkalainen et al.,

2016; Bron et al., 2017; Canu et al., 2017) prediction to

deal with these sources of heterogeneity. While the acqui-

sition of a larger, similar cohort is costly and time-con-

suming, our current results indicate that the acquisition

of such data is meaningful and may lead to more accur-

ate conversion prediction for genetic FTD. Lastly, the

timing of conversion, and therefore the time between

MRI and conversion, was based on heteroanamnestic in-

formation from knowledgeable informants, and as such

may not be fully accurate. However, it should be noted

that an exact time of conversion is near impossible to es-

timate in neurodegenerative diseases due to the gradual

increase in symptomatology, and this inaccuracy is un-

likely to have influenced our conclusions.

To conclude, we showed that FA predicted conversion

within 4 years in presymptomatic FTD mutation carriers.

This proof-of-concept study underlines the potential of

MRI-based prediction in genetic FTD to contribute to a

reliable early-stage FTD diagnosis, and should be repli-

cated when larger sample sizes become available to cor-

roborate our results.
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