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ABSTRACT

Motivation: Phylogenetic tree reconciliation is a widely used method

for reconstructing the evolutionary histories of gene families and spe-

cies, hosts and parasites and other dependent pairs of entities.

Reconciliation is typically performed using maximum parsimony, in

which each evolutionary event type is assigned a cost and the object-

ive is to find a reconciliation of minimum total cost. It is generally

understood that reconciliations are sensitive to event costs, but little

is understood about the relationship between event costs and solu-

tions. Moreover, choosing appropriate event costs is a notoriously

difficult problem.

Results: We address this problem by giving an efficient algorithm for

computing Pareto-optimal sets of reconciliations, thus providing the

first systematic method for understanding the relationship between

event costs and reconciliations. This, in turn, results in new techniques

for computing event support values and, for cophylogenetic analyses,

performing robust statistical tests. We provide new software tools and

demonstrate their use on a number of datasets from evolutionary gen-

omic and cophylogenetic studies.

Availability and implementation: Our Python tools are freely available

at www.cs.hmc.edu/�hadas/xscape.

Contact: mukul@engr.uconn.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Phylogenetic tree reconciliation is a fundamental technique for

studying the evolution of pairs of entities such as gene families

and species, parasites and hosts and species and geographical

regions. Recent algorithmic advances in tree reconciliation

have led to seminal biological discoveries. Among these are the

finding that 426% of extant gene families arose during the

Archaean period between 3.33 and 2.85 billion years ago

(David and Alm, 2011), a study showing that interactions of

species and their ecological niches are strongly conserved

across the entire tree of life (G �omez et al., 2010), and new in-

sights into the relationship between pathogenic RNA viruses and

their hosts (Jackson and Charleston, 2004).

The reconciliation problem takes as input two trees and the

associations between their leaves and seeks a mapping of one tree

onto the other such that incongruence between the two trees is

accounted for by a set of evolutionary events. In the context of

gene family evolution, the two trees are the gene tree and the

species tree, and in the well-studied Duplication-Transfer-Loss

model (DTL), the events are speciation, duplication, transfer

and loss. Unlike the simpler Duplication-Loss (DL)

reconciliation model (Goodman et al., 1979: Page, 1994), DTL

accounts for transfer events and is thus broadly applicable across

the tree of life. In the context of parasites and their hosts, the

corresponding events are co-speciation, independent speciation,

host switch and loss, respectively. In the context of species and

area cladograms, these four events correspond to vicariance,

sympatric speciation, dispersal and loss, respectively (Morrone,

2009). Henceforth, we refer to this set of events as the DTL

model and use the DTL event names.

DTL-reconciliation is generally performed in a maximum par-

simony framework in which each event type has an associated

user-defined cost and the objective is to find a reconciliation of

minimum total cost. Probabilistic approaches for DTL reconcili-

ation, which do not require event cost assignments, also exist

(Szollosi et al., 2012; Tofigh, 2009), but these require estimates

of other parameters, such as species divergence times, and are

prohibitively slow for trees with more than a few leaves. If the

species trees are fully dated, then maximum parsimony reconcili-

ations can be found in polynomial time (Doyon et al., 2010;

Libeskind-Hadas and Charleston, 2009). However, accurately

dating the internal nodes of a phylogenetic tree is generally dif-

ficult (Rutschmann, 2006). In the absence of dates, reconcili-

ations may be time-inconsistent in the sense that they can

induce contradictory constraints on the relative order of the in-

ternal nodes. The problem of finding optimal time-consistent

DTL-reconciliations in undated trees is known to be NP-hard

(Hallett et al., 2004; Ovadia et al., 2011). Therefore, a common

approach, and the one followed in this article, is to relax the

time-consistency requirement (Bansal et al., 2012, 2013; Chen

et al., 2012; David and Alm, 2011; Tofigh et al., 2011), which

permits an optimal (although not necessarily time-consistent) so-

lution to be found in O(mn) time (Bansal et al., 2012), where m

and n denote the number of nodes in the gene (parasite) and

species (host) trees, respectively. Experimental evidence suggests

that the solutions found using this approach are generally time-

consistent (Addario-Berry et al., 2003); but see also Stolzer et al.

(2012).
Maximum parsimony reconciliations depend on the event

costs. In the DTL model, speciations are considered ‘null events’

and are therefore typically assigned a cost of 0 while duplica-

tions, transfers and losses are assigned positive costs. Figure 1a

shows a species (host) tree in black and a gene (parasite) tree in

gray along with associations between their leaves. If duplication,

transfer and loss each cost 1, then the reconciliation in Figure 1b

is optimal, comprises one speciation and one transfer and has

total cost 1. However, if duplication and loss cost 1 and transfer

costs 5, then the maximum parsimony reconciliation in Figure 1c

is optimal, comprises one speciation, one duplication and three

losses and has total cost 4. Even small differences in event costs*To whom correspondence should be addressed.
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can induce different solutions when the trees are larger. For ex-

ample, we have found that in many datasets, the default costs

used in TreeMap (Charleston, 1998) and Jane (Conow et al.,

2010) give rise to different reconciliations than those using the

default costs in AnGST (David and Alm, 2011) and RANGER-

DTL (Bansal et al., 2012).

Despite great advances in the efficiency and accuracy of DTL-

reconciliation, little is understood about the relationship between

event costs and the resulting maximum parsimony reconcili-

ations. A systematic way to handle the difficulty in determining

appropriate event costs is to optimize for event counts rather

than total numerical cost. We define an event count vector for

a reconciliation to be a triple h�; �; ‘i, denoting the number of

duplications, transfers and losses, respectively. These vectors do

not explicitly count the number of speciation events because the

number of speciations is implicit (it is m� �� � � 1).
An event count vector v=h�; �; ‘i is strictly better than an

event count vector v0=h�0; �0; ‘0i if each entry of v is less than

or equal to the corresponding entry in v
0

and at least one entry of

v is less than its corresponding entry in v
0

. A reconciliation is

Pareto-optimal if there is no reconciliation with a strictly better

event count vector. We use the term Pareto-optimal for both

reconciliations and their corresponding event count vectors.

Given the set of all Pareto-optimal event count vectors, we can

partition the space of possible event cost assignments into

equivalence classes, or ‘regions’, such that any two event cost

assignments within the same region lead to the same optimal

reconciliations. These regions provide insights into the relation-

ships between event costs and maximum parsimony reconcili-

ations and have numerous applications, including new

definitions and algorithms for computing event consensus

support.

Previouswork

TreeMap (Charleston, 1998) was the first to address the problem

of uncertain event costs by enumerating Pareto-optimal solu-

tions. However, TreeMap’s underlying algorithm has worst-

case exponential time and thus can only be used with small

trees. Tofigh (2009) later considered the problem of computing

all Pareto-optimal solutions for the DTL-reconciliation problem

but without accounting for losses; this simplifies the algorithmic
problem but affects the accuracy of the reconciliation. Losses
play a fundamental role in the ability to distinguish between

duplications and transfers, and in mapping the nodes of the
gene tree to the nodes of the species tree, and thus should be
explicitly considered during reconciliation (Stolzer et al., 2012).

Thus, despite earlier work on Pareto-optimal reconciliations,
there currently exist no algorithms or tools for computing or

exploring the space of all Pareto-optimal DTL reconciliations.

Our contributions

In this article, we give efficient algorithms that compute all
Pareto-optimal DTL reconciliations and completely characterize
the relationship between event costs and maximum parsimony

reconciliations. Specifically,

� We give an algorithm for computing the Pareto-optimal

event count vectors by extending the dynamic programming
approaches that we and others have developed for the case
of fixed event costs. Our algorithm has worst-case running

time Oðm5nlog mÞ where m and n denote the number of
leaves in the gene (parasite) tree and species (host) tree, re-
spectively. The algorithm also counts the number of distinct

reconciliations associated with each event count vector. In
addition, we give a Oðm4log mÞ-time algorithm that uses the

Pareto-optimal event count vectors to partition the event
cost space into equivalence classes, or regions, such that
event costs in a region give rise to the same set of maximum

parsimony reconciliations.

� We present three applications of this algorithm and provide
downloadable software tools for each one.

– The first tool, costscape, computes the Pareto-optimal

event count vectors and provides a visualization of the
corresponding regions.

– The second tool, eventscape, identifies the individual

events that are common to the reconciliations in each
region and uses this information to identify events that
are strongly supported across the event cost space.

– The sigscape tool permits new, more robust statistical sig-

nificance tests in cophylogenetic analyses.

� We apply these tools to a number of datasets to demonstrate
their utility. These results show that a small number of ap-

propriately selected event costs can be used to capture a
large fraction of maximum parsimony reconciliations; that
a significant fraction of speciation events occur in every rec-

onciliation across a wide range of event costs; and that du-
plications, transfers and losses are more sensitive to the
choice of event costs.

2 DEFINITIONS AND PRELIMINARIES

We follow the basic definitions and notation from Bansal et al.

(2012). Given a tree T, we denote its node, edge and leaf sets by
VðTÞ; EðTÞ and LeðTÞ, respectively. If T is rooted, the root node
of T is denoted by rtðTÞ, the parent of a node v 2 VðTÞ by paTðvÞ,

its set of children by ChTðvÞ and the (maximal) subtree of T

(a)

(b) (c)

Fig. 1. (a) A species (host) tree in black and a gene (parasite) tree in gray

with the leaf associations shown in dotted lines. (b and c) Two different

reconciliations with events labeled by type
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rooted at v by T(v). The set of internal nodes of T, denoted I(T), is
defined to be VðTÞnLeðTÞ. We define �T to be the partial order

on V(T) where x�Ty if y is a node on the path between rtðTÞ and
x. The partial order �T is defined analogously, i.e. x�Ty if x is a

node on the path between rtðTÞ and y. We say that y is an an-
cestor of x, or that x is a descendant of y, if x�Ty (note that,

under this definition, every node is a descendant as well as an-

cestor of itself). We say that x and y are incomparable if neither
x�Ty nor y�Tx. Given a non-empty subset L � LeðTÞ, we

denote by lcaTðLÞ the last common ancestor (LCA) of all the
leaves in L in tree T, that is, lcaTðLÞ is the unique smallest upper

bound of L under �T. Given x; y 2 VðTÞ; x!Ty denotes the
unique path from x to y in T. We denote by dTðx; yÞ the

number of edges on the path x!Ty; note that if x= y then

dTðx; yÞ=0. Throughout this work, the term tree refers to a
rooted binary tree.
We assume that the two input trees are denoted by T and S,

and the goal is to map tree T to tree S. Thus, in gene-tree/species-

tree reconciliation, T denotes the gene tree and S the species tree;
in coevolutionary studies, T denotes the parasite tree and S the

host tree; and in biogeographical studies, T denotes the species
tree and S the area cladogram. Each leaf of tree T is labeled with

the leaf-label from S with which it is associated. This labeling
defines a leaf-mapping LT;S : LeðTÞ ! LeðSÞ that maps a leaf

node t 2 LeðTÞ to the unique leaf node s 2 LeðSÞ, which has

the same label as t. Note that T may have more than one leaf
associated with the same leaf of S. Throughout this work we will

implicitly assume that the species tree contains all the species
represented in the gene tree.

2.1 Reconciliation and DTL scenarios

Next, we define what constitutes a valid DTL reconciliation;

specifically, we define a Duplication-Transfer-Loss scenario
(DTL-scenario) (Bansal et al., 2012; Tofigh et al., 2011) for T

and S that characterizes the mappings of T into S that constitute

a biologically valid reconciliation. Essentially, DTL-scenarios (i)
map each node of T to a unique node in S in a consistent way

that respects the immediate temporal constraints implied by the
topology of S, and (ii) designate each node of T as representing

either a speciation, duplication or transfer event.

DEFINITION 2.1 (DTL-scenario). A DTL-scenario for T and S is a
seven-tuple hL;M;S;";�;�; �i, where L : LeðTÞ ! LeðSÞ rep-

resents the leaf-mapping from T to S;M : VðTÞ ! VðSÞ maps
each node of T to a node of S, the sets S; " and � partition

I(T) into speciation (or co-speciation), duplication and transfer
nodes, respectively, � is a subset of edges of T that represent

transfer edges and � : �! VðSÞ specifies the recipient for each

transfer event, subject to the following constraints:

(1) If t 2 LeðTÞ, thenMðtÞ=LðtÞ.

(2) If t 2 IðTÞ and t0 and t00 denote the children of t, then,

(a) MðtÞ 65Mðt0Þ andMðtÞ 65Mðt00Þ,

(b) At least one of Mðt0Þ and Mðt00Þ is a descendant of

MðtÞ.

(3) Given any edge ðt; t0Þ 2 EðTÞ; ðt; t0Þ 2 � if and only ifMðtÞ

andMðt0Þ are incomparable.

(4) If t 2 IðTÞ and t0 and t00 denote the children of t, then,

(a) t 2 S only ifMðtÞ=lcaðMðt0Þ;Mðt00ÞÞ and Mðt0Þ and
Mðt00Þ are incomparable,

(b) t 2 " only ifMðtÞ�S lcaðMðt0Þ;Mðt00ÞÞ,

(c) t 2 � if and only if either ðt; t0Þ 2 � or ðt; t00Þ 2 �.

(d) If t 2 � and ðt; t0Þ 2 �, then MðtÞ and �ðtÞ must be

incomparable, andMðt0Þ must be a descendant of �ðtÞ.

Constraint 1 above ensures that the mappingM is consistent

with the leaf-mapping L. Constraint 2a imposes onM the tem-

poral constraints implied by S. Constraint 2b implies that any

internal node in G may represent at most one transfer event.

Constraint 3 determines the edges of T that are transfer edges.

Constraints 4a, 4b and 4c state the conditions under which an

internal node of T may represent a speciation, duplication and

transfer, respectively. Constraint 4d specifies which species

may be designated as the recipient species for any given transfer

event.
DTL-scenarios correspond naturally to reconciliations, and it

is straightforward to infer the reconciliation of T and S implied

by any DTL-scenario.
Given a DTL-scenario, one can directly count the minimum

number of gene losses (Bansal et al., 2012) in the corresponding

reconciliation as follows.

DEFINITION 2.2 (Losses). Given a DTL-scenario �=hL;M;S;";
�;�; �i for T and S, let t 2 VðTÞ and ft0; t00g=ChðtÞ. The number

of losses Loss�ðtÞ at node t is defined to be

� jdSðMðtÞ;Mðt
0ÞÞ � 1j+jdSðMðtÞ;Mðt

00ÞÞ � 1j, if t 2 S.

� dSðMðtÞ;Mðt
0ÞÞ+dSðMðtÞ;Mðt

00ÞÞ, if t 2 ".

� dSðMðtÞ;Mðt
00ÞÞ+dSð�ðtÞ;Mðt

0ÞÞ, if ðt; t0Þ 2 �.

The total number of losses in the reconciliation corresponding to

the DTL-scenario � is defined to be Loss�=
X

t2IðTÞ
Loss�ðtÞ.

We assume that speciations have zero cost, and let C"; C�

and CL denote the assigned positive costs for duplication, trans-

fer and loss events, respectively. Then the cost of reconciling T

and S according to a DTL-scenario � is defined as follows:

DEFINITION 2.3 (Reconciliation cost of a DTL-scenario). Given a

DTL-scenario �=hL;M;S;";�;�; �i for T and S, the recon-

ciliation cost associated with � is given by

C" � j"j+C� � j�j+CL � Loss�.

The traditional goal of DTL-reconciliation is to find a

most parsimonious reconciliation, i.e. a DTL-scenario for G

and S with minimum reconciliation cost. However, in

this work, we assume that the exact cost assignments, C"; C�

and CL, are unknown; therefore, we focus on the inferred

event counts rather than the reconciliation cost itself.

DEFINITION 2.4 (Event count vector). Given a DTL-scenario �=
hL;M;S;";�;�; �i for T and S, the event count

vector associated with �, denoted v�, is defined to be

hj"j; j�j;Loss�i.

Given two DTL-scenarios �=hL;M;S;";�;�; �i and �0=
hL;M;S

0;"0;�0;�0; �0i for T and S, the event count vector v� is

said to be strictly better than v�0 if each entry of v� is less than or
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equal to the corresponding entry in v�0 and at least one entry of
v� is less than its corresponding entry in v�0 .

DEFINITION 2.5 (Pareto-optimal event count vector). Given a

DTL-scenario �=hL;M;S;";�;�; �i for T and S, the event

count vector v� is said to be Pareto-optimal if there does not
exist any other DTL-scenario �0 for T and S whose event count

vector v�0 is strictly better than v�.

Given trees T and S and leaf-mapping LT;S, our goal is to find

all Pareto-optimal event count vectors for the two trees. Note
that, if an event count vector h�; �; ‘i is Pareto-optimal, then

there exists some assignment of values for C"; C� and CL for

which a most parsimonious reconciliation invokes exactly � du-
plications, � transfers and ‘ losses. Thus, the set of all Pareto-
optimal event count vectors provides a relationship between

event cost assignments and most parsimonious reconciliations.

PROBLEM 1 (Pareto-optimal vectors). The Pareto-optimal vectors

(PV) problem is to find the set of all Pareto-optimal event count
vectors for trees T and S and their leaf-mapping LT;S.

The set of Pareto-optimal vectors obtained by solving the PV

problem can then be used to partition the space of possible event

cost assignments into ‘equivalent’ regions.

PROBLEM 2 (Equivalent Region Partition). Given T; S; LT;S and
the set of all Pareto-optimal event count vectors for the two trees,

the equivalent region partition (ERP) problem is to partition the

space of possible event cost assignments into disjoint regions such

that any two event cost assignments within the same region yield
the same set of maximum parsimony reconciliations.

In the next section, we first show how to efficiently solve both

the PV and ERP problems. In the subsequent sections, we use

these algorithmic results as the basis of new software tools and
then demonstrate the utility of these tools on several biological

datasets.

3 ALGORITHMS

Our algorithm for the PV problem is based on an extension of

the dynamic programming framework for computing most par-
simonious DTL reconciliations with known event costs, e.g.

(Bansal et al., 2012). Tofigh (2009) was the first to adapt the

dynamic programming algorithm to compute Pareto-optimal

event count vectors. However, that result did not count losses,

which significantly simplifies the dynamic programming algo-
rithm and also bounds the number of Pareto-optimal event

count vectors to just O(m), resulting in an Oðm3nÞ-time algo-

rithm, where m=jLeðTÞj and n=jLeðSÞj. In developing an effi-

cient algorithm for the PV problem, we not only show how to
efficiently account for losses in the dynamic programming algo-

rithm [using ideas from Bansal et al. (2012)] but also show how

to efficiently maintain the resulting larger set of Pareto-optimal

event count vectors.

3.1 Solving the PV problem

Given any t 2 IðTÞ and s 2 VðSÞ, let PSðt; sÞ denote the set of

Pareto-optimal event count vectors for reconciling T(t) with S

such that t maps to s and t 2 S. The terms P"ðt; sÞ and P�ðt; sÞ

are defined similarly for t 2 " and t 2 �, respectively. Given any

t 2 VðTÞ and s 2 VðSÞ, we define Pðt; sÞ to be the set of Pareto-

optimal event count vectors for reconciling T(t) with S such that

tmaps to s. Our algorithm performs a nested post-order traversal

of T and S to compute Pðt; sÞ for each t and s.
Given two sets A and B of Pareto-optimal event count vectors,

we define A	 B to be the set obtained by taking the union of

the event count vectors in A and B and then selecting the

subset of event count vectors that are Pareto-optimal.

Similarly, A
 B is defined to be the set obtained by first com-

puting the Cartesian product of A and B, then converting each

resulting ordered pair into a single event count vector by adding

the two vectors of the ordered pair, and finally taking only the

subset of Pareto-optimal event count vectors. These operations

will be used when merging the Pareto-optimal event count vec-

tors from smaller subproblems to compute the Pareto-optimal

event count vectors for larger subproblems. The dynamic pro-

gramming table for Pðt; sÞ is initialized and computed as shown

below:

Pðt; sÞ=

h0; 0; 0i if t 2 LeðTÞ and s=MðtÞ;

h1;1;1i if t 2 LeðTÞ and s 6¼ MðtÞ;

PSðt; sÞ 	 P"ðt; sÞ 	 P�ðt; sÞ otherwise:

8>><
>>:

Given an event count vector, v=h�; �; ‘i, we use the notation

v+ð"; iÞ, for i 2 Z
+, to denote the event count vector where the

count for duplications is incremented by i, i.e. h�+i; �; ‘i. The

vectors v+ð�; iÞ and v+ðL; iÞ are defined analogously for trans-

fers and losses, respectively. We extend this notation to a set of

event count vectors, A, as follows: A+ð"; iÞ represents the set

fv+ð"; iÞ : v 2 Ag. The sets A+ð�; iÞ and A+ðL; iÞ are defined

analogously. We define

inðt; sÞ=	x2VðSðsÞÞðPðt;xÞ+ðL; dSðs; xÞÞÞ,

outðt; sÞ=	x2VðSÞ incomparable to s Pðt; xÞ, and

inAltðt; sÞ=	x2VðSðsÞÞ Pðt; xÞ.

Our algorithm computes PSðt; sÞ; P"ðt; sÞ and P�ðt; sÞ for

each t 2 VðTÞ and s 2 VðSÞ by performing a nested post-order

traversal of T and S. The values inð�; �Þ; outð�; �Þ and inAltð�; �Þ

help to reuse previously computed information to efficiently

compute the values PSðt; sÞ; P"ðt; sÞ and P�ðt; sÞ at each step.

The exact formulas for computing the values of PSðt; sÞ; P"ðt; sÞ
and P�ðt; sÞ using previously computed values are given in steps

17, 18 and 19 of the algorithm below. The nested post-order

traversal ensures that when computing PSðt; sÞ; P"ðt; sÞ and P�

ðt; sÞ at nodes t 2 G and s 2 S, all the required

inð�; �Þ; outð�; �Þ; inAltð�; �Þ and Pð�; �Þ values have already been

computed.
Note that once all the Pð�; �Þ sets have been computed, the set

of Pareto-optimal event count vectors for the reconciliation of T

and S is simply 	s2VðSÞ PðrtðTÞ; sÞ. The algorithm is as follows:

Algorithm Pareto� ReconcileðT;S;LÞ
1: for each t 2 VðTÞ and s 2 VðSÞ do

2: Initialize Pðt; sÞ; PSðt; sÞ; P"ðt; sÞ; P�ðt; sÞ; inðt; sÞ; inAltðt; sÞ, and

outðt; sÞ to 1.

3: for each t 2 LeðTÞ do
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4: Pðt;LðtÞÞ=fh0; 0; 0ig, and, for each s�SLðtÞ, inðt; sÞ=f

h0; 0; dSðs;LðtÞÞig and inAltðt; sÞ=fh0; 0; 0ig.
5: for each t 2 IðTÞ in post-order do

6: for each s 2 VðSÞ in post-order do

7: Let ft0; t00g=ChTðtÞ.

8: if s 2 LeðSÞ then

9: PSðt; sÞ=fh1;1;1ig.

10: P"ðt; sÞ=ðPðt
0; sÞ 
 Pðt00; sÞÞ+ð"; 1Þ.

11: P�ðt; sÞ=ððinðt
0; sÞ 
 outðt00; sÞÞ	

ðinðt00; sÞ 
 outðt0; sÞÞÞ+ð�; 1Þ.

12: Pðt; sÞ=PSðt; sÞ 	 P"ðt; sÞ 	 P�ðt; sÞ.

13: inðt; sÞ=Pðt; sÞ.

14: inAltðt; sÞ=Pðt; sÞ.
15: else

16: Let fs0; s00g=ChSðsÞ.

17: PSðt; sÞ=ðinðt
0; s0Þ 
 inðt00; s00ÞÞ	
ðinðt00; s0Þ 
 inðt0; s00ÞÞ.

18: P"ðt; sÞ=ðinðt
0; sÞ 
 inðt00; sÞÞ+ð"; 1Þ.

19: If s 6¼ rtðSÞ, then P�ðt; sÞ=ððinðt
0; sÞ 
 outðt00; sÞÞ	

ðinðt00; sÞ 
 outðt0; sÞÞÞ+ð�; 1Þ.
20: Pðt; sÞ=PSðt; sÞ 	 P"ðt; sÞ 	 P�ðt; sÞ.

21: inðt; sÞ=Pðt; sÞ 	 ðinðt; s0Þ+ðL; 1ÞÞ	

ðinðt; s00Þ+ðL; 1ÞÞ.

22: inAltðt; sÞ=Pðt; sÞ 	 inAltðt; s0Þ 	 inAltðt; s00Þ.
23: for each s 2 IðSÞ in pre-order do

24: Let fs0; s00g=ChSðsÞ.

25: outðt; s0Þ=outðt; sÞ 	 inAltðt; s00Þ, and

outðt; s00Þ=outðt; sÞ 	 inAltðt; s0Þ.
26: Return 	s2VðSÞ PðrtðTÞ; sÞ.

To complete our description of the above algorithm, we must also

show how to efficiently perform the operations A	 B and A
 B,

for any two sets A and B of Pareto-optimal event count vectors.

Operation A	 B can be performed in Oðm4Þ time using a straight-

forward algorithm (Lemma 3.2 below). ComputingA
 B efficiently

is more involved. From Lemma 3.1 (below), each Pareto-optimal

set has size Oðm2Þ. Thus, computing their Cartesian product

takes time Oðm4Þ. Finding the subset of Pareto-optimal vectors

by pairwise comparisons would thus take Oððm2 �m2Þ
2
Þ=Oðm8Þ

time. We now show how A
 B can be computed in Oðm4log mÞ

time.

Procedure Perform�
ðA;BÞ

1: Create an empty ordered list Z that will be used to store event count

vectors in lexicographically sorted order.

2: for each a 2 A do

3: for each b 2 B do

4: Compute the vector a+b. Let this new vector be denoted as

c=h�; �; ‘i.

5: Insert c into Z (maintaining lexicographic order).

6: Consider the element d immediately before c in the list Z.

7: if d exists and is of the form h�; �; ‘� xi, where x � 0

then

8: Delete c from Z.

9: else

10: Consider the element e immediately after c in the list Z.

11: if e exists and is of the form h�; �; ‘+xi, where x � 0

then

12: Delete e from Z.

13: Delete from Z all vectors that are not Pareto-optimal.

14: Return Z.

We now analyze our algorithm and prove its correctness.

Recall that m and n denote the number of leaves in T and S,

respectively.

LEMMA 3.1. The cardinality of any set of Pareto-optimal event

count vectors can be no greater than �ðm2Þ.

PROOF. Consider any event count vector h�; �; ‘i. Let A be any

set of Pareto-optimal event count vectors. Suppose A contains

more than one vector with identical values for � and � but dif-

ferent values for ‘. Clearly, only one of these vectors can be

Pareto-optimal (the one with the lowest value for ‘). Thus, for
any pair of fixed values for � and �, A may contain at most one

vector with that assignment of values for � and �. Because the

values of � and � are both bounded by m – 1, the number of

internal nodes in T, the lemma follows.

LEMMA 3.2. Given any two sets, A and B, of Pareto-optimal event

count vectors, the set A	 B can be computed in Oðm4Þ time.

PROOF. Let C=A	 B. Because both A and B have Oðm2Þ elem-

ents, so does C. Thus, trimming down set C to just the Pareto-

optimal vectors requires at most Oðm4Þ time.

LEMMA 3.3. Given any two sets, A and B, of Pareto-optimal event

count vectors, the set A
 B can be computed in Oðm4log mÞ time.

PROOF. Consider Procedure Perform�
ðA;BÞ. We first prove

its correctness and then analyze its time complexity.

Correctness: Consider the set Y=fv1+v2 : v1 2 A andv2 2 Bg.

TheprocedureconstructseachelementofC,oneata time,andadds

it to the ordered setZ. The only elements ever deleted from setZ in

Steps8and12arethosethatarenotPareto-optimal.Finally,Step13

removes any remaining elements that are not Pateto-optimal from

Z. The procedure thus computes the value ofA
 B correctly.

Complexity: Because both A and B contain at most Oðm2Þ

vectors (Lemma 3.1), Steps 4 through 12 are each executed

Oðm4Þ times. By using a self-balancing binary search tree to rep-

resent Z, each of these steps can be executed in Oðlog mÞ time,

yielding a total time complexity of Oðm4log mÞ for Steps 1

through 12. Because the time complexity of Step 13 is OðjZj2Þ,

it now suffices to show that the size of Z never exceeds m2 at any

time. Consider Steps 8 and 12. These steps ensure that for any

fixed value of �, and �, there is at most one vector in Z of the

form h�; �; ‘i. Thus, the size of Z can not exceed Oðm2Þ at any

time.

Based on the pseudo-code for Algorithm Pareto-Reconcile,

and on the previous three lemmas, the next two theorems

follow easily. For brevity, their proofs appear in

Supplementary Section S1.

THEOREM 3.1. Algorithm Pareto-Reconcile correctly solves the PV

problem.

THEOREM 3.2. The total time complexity of Algorithm Pareto-

Reconcile is Oðm5nlog mÞ. In addition, the algorithm can be im-

plemented so that its total space complexity is Oðm3nÞ.

3.2 Equivalent region partition

In this section, we describe how the set of Pareto-optimal event

count vectors can be used to efficiently partition the space of

event costs into a finite number of equivalence classes, or ‘re-

gions’, such that all event costs in a given region induce the same

set of maximum parsimony reconciliations. These regions
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provide insights into the relationship between the event costs and

the resulting solutions and are used in several of the software

tools described in the next section.
Recall that we assume that speciation is a ‘null’ event with cost

0 and all other events have positive costs. Because the costs are

unit-less, duplication cost is normalized to 1 and the costs of

transfer and loss are non-negative values relative to the unit

cost of duplication. For a given event count vector v=h�; �; ‘i
and positive real transfer and loss costs C� and C‘, respectively,

the cost of that solution, denoted Cðv;C�;C‘Þ, is

�+C� � �+CL � ‘.
Let A denote the Pareto-optimal set of event count vectors for

a given pair of trees and leaf mapping. These vectors induce a

partition of the event cost space into regions where the region

R(v) associated with event count vector v 2 A is the set of points

ðC�;C‘Þ 2 R
+ �R

+ such that Cðv;C�;C‘Þ � Cðv
0;C�;C‘Þ;

8v0 2 A� v.
From this definition, it follows that for every combination of

transfer and loss costs in a given region, every maximum parsi-

mony solution using those costs will have the event count vector

associated with that region. While there can be many distinct

reconciliations in a given region, all event costs in that region

will admit the same set of maximum parsimony reconciliations.

THEOREM 3.3. Given a set of Pareto-optimal event count vectors,

the corresponding regions can be found in time Oðm4log mÞ.

PROOF. Let A denote the set of Pareto-optimal event count vec-

tors. By Lemma 3.1, jAj 2 Oðm2Þ. The region R(v) corresponding

to v 2 A comprises all points ðC�;C‘Þ 2 R
+ �R

+ such that

Cðv;C�;C‘Þ � Cðv
0;C�;C‘Þ; 8v

0 2 A� v. Each inequality of

the form Cðv;C�;C‘Þ � Cðv
0;C�;C‘Þ induces a half-space and

R(v) is the intersection of those half-spaces. The intersection of

N half-spaces can be found in time OðNlog NÞ (Berg et al., 2008)

and thus each region can be found in time Oðm2log mÞ. Thus, all

jAj regions can be found in time Oðm4log mÞ.

3.3 Counting solutions and enumerating events

Our algorithm for the PV problem can be easily adapted to count

the number of maximum parsimony reconciliations for each

Pareto-optimal event count vector and to record the events in

those reconciliations. To count the number of distinct reconcili-

ations, we keep track of the number of solutions associated with

each event count vector in each subproblem Pðt; sÞ. Those values
are easily updated based on the number of solutions from the

subproblems from which Pðt; sÞ is constructed (Bansal et al.,

2013). The additional bookkeeping does not increase the asymp-

totic running time of the algorithm.

In addition, the dynamic program can be augmented to keep

track of the set of events occurring in the reconciliations associated

with a Pareto-optimal event count vector. While the number of

reconciliations can grow exponentially with them and n, the total

number of distinct events is bounded by Oðmn2Þ because each of

theO(m) nodes ofT can bemapped to atmostO(n) nodes inS and,

for transfer events, there are O(n) possible destinations for the

‘landing site’.For each subproblemPðt; sÞwecan, therefore,main-

taina set of associated events suchas theunionor intersectionofall

events thatoccur in that subproblem.This increases theasymptotic

running time by a factor that depends only on the time complexity
of the particular set theoretic operation. For example, we use set
intersection in the eventscape tool described in the next section,

which contributes a multiplicative factor of Oðmn2log mnÞ using
self-balancing binary search trees.

4 APPLICATIONS AND SOFTWARE

In this section, we demonstrate three programs that use the al-

gorithmic results in the previous section to provide new insights
into maximum parsimony reconciliation. Each of these tools
solves the PV and ERP problems and uses those solutions in

different ways. We note that while our algorithms can compute
all Pareto-optimal regions, these tools take a user-specified a
range of costs for transfer and loss events, relative to the normal-

ized unit cost of duplication, and restrict the Pareto-optimal
event count vectors and corresponding regions to that event
cost space. (We note that the choice of fixing the duplication

cost to 1 and normalizing the remaining costs with respect to
duplication is arbitrary).
The first tool, costscape, computes the Pareto-optimal event

count vectors and their corresponding regions as well as a
‘Count’ of the number of distinct maximum parsimony recon-
ciliations in each region. These results are displayed graphically

to provide a systematic overview of the relationship between
event costs and the structure of the maximum parsimony solu-

tion space. For example, Figure 2a and b show the results of
using costscape on the canonical gopher-louse (Hafner and
Nadler, 1988) and indigobird-finch (Sorenson et al., 2004) data-

sets for transfer and loss costs ranging from 0.1 to 5, relative to
the unit cost of duplication.
The second tool, eventscape, augments the dynamic program-

ming algorithm to compute the set of events that are common to
every reconciliation in a region. Eventscape then collects all of
these events over all regions and partitions that set into the set of

events that are found in exactly one region, exactly two regions
and so forth up to the total number of regions. Each event in-
cludes a gene (parasite) node, its association with a species (host)

node and the type of event. In the case of transfers, the landing
site of the event is also specified. One important application of
eventscape is in identifying events that are highly supported by

merit of occurring in a large fraction of the regions or the cost
space. The next section explores this application on a large col-

lection of datasets.
The third tool, sigscape is designed for cophylogenetic analyses

where permutation tests are performed to test the null hypothesis

that the host and parasite trees are similar owing to chance.
Shades of each color indicate variations in P-values, with
brighter shades indicating smaller P-values. For example, for

the gopher-louse dataset using transfer and loss costs ranging
from 0.1 to 5 and using 1000 permutations, sigscape found 97:6
% of the event cost space to have significance at the 0.01 level,

1:5% to have significance between 0.01 and 0.05, and 0:9%
below the 0.05 level (Fig. 2c). More details about sigscape are
provided in Supplementary Section S2.

These tools, collectively called xscape, are written in Python
and are freely available at www.cs.hmc.edu/�hadas/xscape. As
noted earlier, the underlying algorithms do not guarantee time-

consistent solutions because finding such solutions is NP-hard
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(Ovadia et al., 2011). However, if the species trees are fully dated,

then our algorithms can be modified (resulting in slower polyno-

mial-time algorithms) to guarantee time-consistency (Conow

et al., 2010).

5 RESULTS

In this section, we demonstrate the utility of our algorithms and

tools on a diverse collection of datasets. Currently, reconciliation

analyses infer evolutionary events by choosing a set of event

costs (often the default costs in the software, although most

tools recommend experimenting with different costs) and con-

structing reconciliations based on these costs. Because event costs

are not easily estimated and the choice of costs affects the rec-

onciliations, we seek here to understand the impact of event costs

on the resulting reconciliations.
We first analyzed a biological dataset consisting of predomin-

antly prokaryotic species sampled broadly from across the tree of

life (David and Alm, 2011). This consisted of 4860 gene trees

(with at least two extant genes) over 100 species, but, for effi-

ciency, we restricted our analyses to a subset of 3433 gene

families from 20 randomly sampled species and evaluated event

counts and their corresponding event cost regions for transfer

and loss costs ranging from 0.5 to 2 (with respect to the unit cost

of duplication). The results presented here exclude 34 (51.0%)

gene families for which eventscape used more than the allocated

5GB of RAM in our experimental setup.
Using the costscape tool, we observed that 85.8% (2917) of the

gene families induce at least two regions, 37.5% (1274) have at

least five regions and that the number of regions grows as a

function of tree size (Fig. 3a). Thus, the common practice of

selecting a single cost setting or a small fixed number of cost

settings [e.g., Stolzer et al. (2012) considered three settings, and

Bansal et al. (2013) considered five] can result in missing poten-

tially important parts of the solution space. Additionally, many

regions have zero area (e.g. lines or points), meaning that the

associated reconciliations are unlikely to be discovered by an ad

hoc choice of event costs: for this dataset, 54.1% (1839) of the

gene families have at least one region with zero area, and for

19.7% (669) of the gene families, more than half of the regions

have zero area.
We also found that a systematic choice of event costs (e.g.

using costscape) can cover a substantial portion of the solution

space. For example, for all gene families studied here, an appro-

priately selected subset of five or fewer regions covers the major-

ity (450%) of the event cost space (Fig. 3b), and coverage of the

event cost space appears to follow a power law distribution

(Supplementary Fig. S1). Although these results seem to suggest

that a small set of event costs (and their associated regions) is

representative of the entire event cost space, we note that cover-

age of event cost space is a biased measure, as some large regions

may include cost ratios that are biologically unrealistic while

other regions containing biologically plausible ratios might

cover a small fraction of the event cost space. Regions of zero

area, for example, are generally abundant and may contain a

biologically relevant solution. While these results provide some

preliminary understanding of the relationship of event costs and

the space of maximum parsimony reconciliations, further re-

search is needed to understand the properties of this space and,

ultimately, to determine appropriate event costs.

Next, we focus on the identification of well-supported events

across the event cost space. Given a user-specified event cost

space, that is, a range of costs on transfer and loss (with respect

to the unit cost of duplication), we used the eventscape tool to

infer the Pareto-optimal regions and the sets of events that are

common to 1; . . . ; k regions, where k is the total number of re-

gions in the event cost space. We define an event to have con-

sensus support s, 0 � s � 1 (with respect to the event cost space),

if the event is found in every reconciliation in at least a fraction s

(inclusive) of the regions. Note that this is one of many possible

measures of event support, and our algorithms can be used to

define and compute other measures.

(a) (b) (c)

Fig. 2. Pareto-regions for the (a) gopher-louse and (b) indigobird-finch datasets. Colors are arbitrary and are used to match regions with the event counts

in the legend. The displayed event counts comprise the number of speciations in addition to the number of duplications, transfers and losses. In addition,

the ‘Count’ field indicates the number of distinct reconciliations in each region. While most regions are polygons, regions may also be points or lines, such

as in the first region in the legend in (a). (c) Results of a permutation test on the gopher-louse dataset using 1000 random trials. For (c) only, green

indicates significance at the 0.01 level, yellow represents significance between 0.01 and 0.05 and red indicates lack of significance at the 0.05 level.

Brightness of green, yellow and red indicates differences in P-values, with brighter shades indicating smaller P-values. All plots use transfer and loss costs

ranging from 0.1 to 5. Plus sign marks the default event costs for Jane/TreeMap (C"=1;C�=2;CL=1) and multiplication sign the default event costs

for AnGST/RANGER-DTL (C"=1;C�=3=2;CL=1=2). In (a), the two sets of default costs are in the same region, whereas in (b) and in almost all but

the smallest datasets, the two sets of default costs are in different regions
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Using this definition, we investigated the fraction of events

supported at various support thresholds (Fig. 4a). Almost uni-

versally, speciations are the best supported type of event, with

�33.2% of speciations supported under strict consensus (that is,

found in all regions). Manual inspection revealed that speciations

found near the root of the tree were often conserved across mul-

tiple regions. However, when analyzing gene family evolution,

we are typically interested in the inferred duplications, transfers

and losses (collectively, the DTL events), and we found that few

of these have high support. For example, only 2.1% of duplica-

tions, 15.1% of transfers and 2.1% of losses have at least 80%

support (though the percentage of events with at least 50% sup-

port is substantially higher, with 56.8% of duplications, 41.4%

of transfers and 34.9% of losses supported at that level).

Interestingly, we observed a ‘jump’ in the number of supported

events around a support threshold of 50%. Also, in general, for

most support thresholds, duplications are the most supported

type of event (after speciation), followed by transfers, then

losses; however, for low support thresholds, the three types of

DTL events show roughly equal support. These results have im-

portant implications for existing analyses that rely on DTL rec-

onciliation and suggest that many inferred events are highly

specific to the user-defined event costs.
In this study, we have investigated a specific range of event

costs (transfer and loss ranging from 0.5 to 2 relative to the unit

cost of duplication). The number of regions, and thus the level of

consensus support, depends on this range. Moreover, our ana-

lyses permitted cost combinations in which duplications are more

expensive or less expensive than transfers and losses. Adding

constraints on these cost relationships could alter the levels of

support. We also note that manual inspection revealed that loss

events, and to a lesser extent transfers, are often ‘fungible’ in the

sense that they can be moved from one location to another with-

out changing the total cost of the solution, and thus any individ-

ual loss or transfer event is not likely to be strongly supported.

By looking at the event cost space and supported events, our

tools allow the elucidation of the complex interplay between

event cost assignments and event support under various ranges

and constraints of event costs.
For completeness, we also determined event support as mea-

sured by fraction of the event cost space (rather than fraction of

the number of regions) covered (Fig. 4b), yielding similar results.
The main difference between these two measures is that event
support increases gradually with increasing region coverage but

tends to ‘jump’ with increasing event cost space coverage; this
confirms our finding that the event cost space is dominated by a
few large regions. Otherwise, duplications also show a clear de-

marcation from no support to high support at �66.7% coverage.
To demonstrate the applicability of our tools on cophyloge-

netic datasets, we performed similar analyses on five host–para-

site datasets and found results consistent with those above
(Supplementary Section S3, Supplementary Fig. S2).
Finally, the average runtimes for our tools is on the order of

seconds (Supplementary Table S1). To demonstrate scalability,
we also ran costscape on the full 100-taxa tree of life dataset (also
using transfer and loss costs ranging from 0.5 to 2) and found
that the median runtime remains51min.

6 CONCLUSIONS

In this work, we have described new algorithms and tools for
understanding the relationship between event costs and max-
imum parsimony reconciliations. In particular, we have given

algorithms for computing the set of Pareto-optimal event count
vectors and partitioning the event cost space into equivalence
classes, or regions, induced by these vectors. We have demon-
strated these algorithms in three software tools that (i) compute

and visualize the regions that partition the event cost space, (ii)
list the sets of events shared by reconciliations within and be-
tween regions and (iii) determine the statistical significance of

reconciliation costs over the cost space.
An alternative approach to computing Pareto-optimal event

count vectors would be to uniformly sample event costs and, for

each sample, use existing algorithms to compute the maximum
parsimony reconciliation and corresponding event counts.
However, it is not known how to determine the appropriate

sampling density to capture all event count vectors.
Additionally, sampling fails to find regions that comprise
points and lines, which we have shown to comprise a large frac-
tion of the total number of solutions. Finally, our approach

allows us to determine all Pareto-optimal event count vectors,

(a) (b)

Fig. 4. Event support for the tree of life dataset as measured by (a)

fraction of regions or (b) fraction of event cost space covered.

Coordinate (x, y) indicates that fraction y of events are found in at

least fraction x of regions (or event cost space), with the plot being

left-continuous (such that the highest y for each x should be read).

Over all gene families, 16 795 speciations, 8375 duplications, 41 247 trans-

fers and 13 761 losses are inferred

(a) (b)

Fig. 3. The costscape summary on the tree of life dataset. For each gene

family, we computed (a) the number y of Pareto-optimal regions (all

regions, black white circles; positive area regions, red plus sign; zero

area regions, blue multiplication sign) and the number x of extant

genes, and (b) the fraction y of the event cost space covered by the largest

x regions
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whereas a sampling approach would necessarily capture only a
subset of the event cost space.
Using the tools based on our algorithms, we have conducted

experiments on a broad array of datasets. These results show that

the space of maximum parsimony solutions is complex and sen-
sitive to the event costs, and thus, choosing ad hoc event costs
may result in misrepresenting evolutionary histories. At the same

time, we cannot discount ad hoc procedures for finding event
costs [for example, through comparison to event inferences on a
biological dataset, as in David and Alm (2011)]. In particular,

such approaches may elucidate the boundaries for biologically
reasonable event cost assignments, which could then be used as
input into our tools for more systematic analysis.

In addition, by defining notions of consensus support based on
the number of regions that share an event, we found that while
many speciation events have high consensus support, most other
events do not. Thus, inferring events based on non-systematically

selected event costs is likely to provide only a piece of a complex
picture, and our tools motivate further investigation into the
robustness of analyses based on DTL reconciliation.

There are numerous interesting directions for future work. In
particular, this work affords opportunities to explore many vari-
ants of event consensus support. For example, our work uses the

most specific definition of an event in computing support: for a
speciation, duplication or transfer to be supported across differ-
ent reconciliations, a gene (parasite) tree node must map to the
same species (host) tree node and to the same event, and transfers

must also yield the same transfer edge. Similarly, for two losses
to be supported across different reconciliations, they must be
found along the same branch of both the gene tree and species

tree. In some cases, analyses only require the species mapping
(David and Alm, 2011) or event mapping (Koonin, 2005), and
thus the support values must be considered for these relaxed

definitions of events. Our algorithms can be modified
accordingly.
In addition to identifying highly supported events, it is desir-

able to find highly supported whole reconciliations. In the spirit
of promising recent work on this problem for fixed event costs
(Scornavacca et al., 2013), one promising research direction is to
identify and succinctly represent whole reconciliations that are

robust across the space of event costs.
In summary, this work provides techniques and tools that are

immediately useful in the phylogenomic, cophylogenetic and bio-

geography analyses and offers avenues for further research that
leverages the Pareto-optimal reconciliation methods developed
here
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