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Abstract

Motivation: High-quality curation of the proteins and interactions in signaling pathways is slow

and painstaking. As a result, many experimentally detected interactions are not annotated to any

pathways. A natural question that arises is whether or not it is possible to automatically leverage

existing pathway annotations to identify new interactions for inclusion in a given pathway.

Results: We present REGLINKER, an algorithm that achieves this purpose by computing multiple

short paths from pathway receptors to transcription factors within a background interaction net-

work. The key idea underlying REGLINKER is the use of regular language constraints to control the

number of non-pathway interactions that are present in the computed paths. We systematically

evaluate REGLINKER and five alternative approaches against a comprehensive set of 15 signaling

pathways and demonstrate that REGLINKER recovers withheld pathway proteins and interactions

with the best precision and recall. We used REGLINKER to propose new extensions to the pathways.

We discuss the literature that supports the inclusion of these proteins in the pathways. These

results show the broad potential of automated analysis to attenuate difficulties of traditional man-

ual inquiry.

Availability and implementation: https://github.com/Murali-group/RegLinker.

Contact: murali@cs.vt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Signaling pathways are widely studied in systems biology. While sev-

eral databases record the proteins and interactions within a diverse

set of signaling pathways (Fabregat et al., 2016; Kanehisa et al.,

2016), high-quality curation is slow and painstaking. Moreover, the

vast majority of interactions in large-scale physical and signaling

interactomes are not annotated with information on the signaling

pathways to which they belong. This dichotomy raises the following

interesting question: given the proteins and interactions in a specific

curated signaling pathway, can we automatically determine which

interactions in the interactome are likely to be members of that

pathway?

The typical formulation of pathway reconstruction in the litera-

ture is as follows (Gitter et al., 2011; Mohammadi et al., 2013;

Navlakha et al., 2012; Ritz et al., 2016; Steffen et al., 2002; Supper

et al., 2009; Tuncbag et al., 2013; Yeger-Lotem et al., 2009; Yosef

et al., 2011): given the receptors (or sources) and transcription factors

(TFs or targets) in a specific signaling pathway P and a directed,

weighted interaction network G of signaling and physical interactions

among proteins, compute a subnetwork of G that connects the sour-

ces to the targets and has high overlap with P. In this model, the inter-

actions in the pathway P are also present in G (i.e. P is a subnetwork

of G) but these interactions are not labeled as being members of P.

Clearly, this formulation does not leverage the curated information

on interactions that is present in pathway databases.

In this work, we seek to address what we call the curation-aware

signaling pathway reconstruction problem. Here, we take as input

the network G, the set S of sources, the set T of targets, and, in add-

ition, the signaling pathway P also represented as a directed graph

(Fig. 1a). This graph represents the current state of knowledge of the

proteins and interactions in the signaling pathway. Informally, our

goal is to compute a subgraph P0 of the network G such that P � P0,

with the proteins and interactions in P0 � P serving as candidates for

inclusion in the pathway. We would like to rank the elements of

P0 � P so that we may quantitatively evaluate the accuracy of P0

using approaches akin to cross-validation.

We use the following intuition to guide our algorithm develop-

ment. First, we model the process of signal transduction as a path in
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G that starts at a receptor and ends at a TF, as is common in the lit-

erature (Gitter et al., 2011; Navlakha et al., 2012; Ritz et al., 2016;

Silverbush and Sharan, 2014; Steffen et al., 2002; Yosef et al., 2011)

(Fig. 1). Second, we prefer high-scoring paths (when edge weights

mean confidence or reliability) in analogy with cellular mechanisms

to transmit signals efficiently. Finally, and most importantly, when

P is partially known, we can partition a receptor-to-TF path in G

into subpaths with the following structure: each subpath contains

only interactions in P or only interactions not in P and these two

types alternate. The challenge is that we do not know a priori how

many edges each of these subpaths contains, especially when we also

want to compute high-scoring paths.

In this article, we present the REGLINKER algorithm for curation-

aware reconstruction of signaling pathways (Sections 3.1–3.3). It

labels every edge in G as ‘positive’ if it is in P or as ‘unknown’ other-

wise (labels p and x in Fig. 1b). It then computes, for every edge in

G, the shortest path through that edge that satisfies a provided regu-

lar expression, i.e. the edge labels along the path form a string in the

corresponding regular language. The output is the union of these

paths as P0 (Fig. 1c). Our primary technical contribution is an algo-

rithm to compute all these paths (i.e. one through each edge and

constrained by the regular expression) in the same asymptotic time

as taken to compute one such path.

Our key insight is that a regular language acts as a constraint

that allows us to control the number of and structure by which new

edges and nodes are considered for addition to P. For example, the

blue path in Figure 1b satisfies the regular expression p�xxp�, i.e.

the path starts with zero or more edges with label p, followed by

two consecutive edges with label x, and ends in zero or more edges

with label p. The pink path also satisfies this regular expression,

since the labels along this path form the string xxpp. To see that this

regular expression constrains the allowed paths, note that the green

path on the left of Figure 1b does not satisfy p�xxp� since it contains

four edges with label x. The yellow path on the right also violates

this expression since its edge labels form the string xpp. In the out-

put network P0 (Fig. 1c), there are two additional paths (light blue

and light pink) that satisfy p�xxp�.

Informally, a regular language is a set of strings with the prop-

erty that an algorithm that uses a fixed amount of memory can

examine the letters in the string sequentially to determine if it is a

member of the language. For example, for the alphabet {p, x}, regu-

lar languages are expressive enough to represent strings with an

even number of occurrences of p or strings where p and x strictly al-

ternate an arbitrary number of times.

To further facilitate pathway reconstruction, we present a novel

technique for weighting the interactome, which we call random

walk with edge restarts (RWER, Section 3.4). Weighting edges

according to our confidence in the curation or experimental method

(Ritz et al., 2016; Yeger-Lotem et al., 2009; Yosef et al., 2011) is

not specific to any given pathway. RWER addresses this issue with a

random walk whose transitions favor the interactions in a specific

curated pathway that we want to reconstruct.

We evaluate REGLINKER and five other algorithms (Section 3.4)

in their ability to reconstruct signaling pathways in the NetPath

database. We develop three different models of withholding infor-

mation (Section 4.2), inspired by the process by which knowledge

about a pathway accumulates in the literature. In our first model,

we derive a subnetwork of a curated pathway by withholding a ran-

dom subset of pathway interactions. This approach tests the ability

of algorithms to discover the interactions in a pathway where all or

most of its proteins are known. Our second model makes the more

realistic assumption that we do not know all the proteins in a path-

way. Therefore, we derive a subnetwork of the pathway that does

not contain a random selection of proteins or any of the pathway

interactions involving them. The third model combines the first two.

In Section 4, we demonstrate that REGLINKER, in combination

with RWER, offers a flexible and superior approach for pathway re-

construction. In particular, this approach achieves the highest or

close to highest AUPRC values in all models, ranging from 0.69 for

the interaction withholding model and 0.35 for protein recovery and

0.36 for interaction recovery in the combined model. We used

REGLINKER to propose new extensions to the pathways. Following

enrichment analysis, we discuss the literature that supports the in-

clusion of these suggested proteins in the brain-derived neurotrophic

factor (BDNF), Wnt and TNFa pathways.

2 Related research

Several algorithms exist to compute a compact subnetwork that con-

nects a set of sources with a set of targets in an interaction network

(Gitter et al., 2011; Mohammadi et al., 2013; Ritz et al., 2016;

Silverbush and Sharan, 2014; Steffen et al., 2002; Supper et al.,

2009; Tuncbag et al., 2013; Yeger-Lotem et al., 2009; Yosef et al.,

2011). An example is the PATHLINKER algorithm (Ritz et al., 2016)

from which REGLINKER takes inspiration. Given a user-defined par-

ameter k, PATHLINKER computes the k shortest paths in the interac-

tome that connect any receptor in P to any TF in P. PATHLINKER

(a) (b) (c)

Fig. 1. Overview of REGLINKER. (a) The curated pathway P is a subgraph of the interactome G. (b) Each edge in P has the label p and each edge in G–P has the label

x. The figure displays P and a subset of edges in G–P. Paths start at receptors (triangles) and end at TFs (rectangles). See the text for a discussion of the four col-

ored paths. (c) The output pathway P 0 is the union of P and a subset of edges from G–P. Each such edge belongs to a receptor–TF path that satisfies the regular

expression p�xxp�. There are four such paths
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achieves efficiency by integrating Yen’s algorithm (Yen, 1971) with

the A� heuristic. Several of these algorithms were not originally

developed to explicitly solve the problem of pathway reconstruction.

They share a common characteristic: like PATHLINKER they do not

require or exploit any knowledge of the intermediate proteins or

interactions in P. Hence, they cannot be directly applied to curation-

aware pathway reconstruction.

Navlakha et al. (2012) developed a method to solve a problem

similar to ours. They computed the shortest paths between all pairs

of receptors and TFs in P. They searched for disconnected pairs of

nodes in P such that connecting the nodes by an edge yielded a

shorter path between at least one receptor and one TF. They added

to P the edge that yielded the greatest decrease in the sum of shortest

paths costs between all pairs of receptors and TFs, and repeated the

process until no such pair of nodes could be found. Their algorithm

did not add new proteins to P.

Note that other papers have considered related problems, e.g.

determining the orientations of interactions (Gitter et al., 2011;

Silverbush and Sharan, 2014) or determining which proteins should

be annotated to a specific pathway or a biological process (Jiang

et al., 2017). These algorithms cannot be directly applied to the

problem we consider.

3 Algorithms

We first introduce the notion of paths in a directed graph that satisfy

a regular language and describe an existing algorithm that computes

shortest paths under this constraint (Section 3.1). Next, we present

an approach that adds another criterion: compute the shortest regu-

lar language constrained path through every edge in the graph. We

then describe the REGLINKER algorithm (Section 3.3) as well as other

algorithms that we compare to REGLINKER (Section 3.4).

3.1 Regular language constrained paths
Suppose we are given a directed graph G ¼ ðV;E; c; lÞ, where V is

the set of nodes, E is the set of directed edges, c : E! R
þ is a func-

tion that maps every edge in E to a positive, real-valued weight and

l : E! R is a function that maps every edge to a label in an alphabet

R. Given a regular language L � R�, we say that a path p in G satis-

fies L if the concatenation of the labels of the edges in p forms a

string that is a member of L.

Given a source node s 2 V and a target node t 2 V, Barrett et al.

(2000) provide an algorithm to compute a shortest s–t path in G

that satisfies L. Briefly, they (a) construct a new graph H¼G�M

that is an appropriately defined cross-product of G and the deter-

ministic finite automaton (DFA) M that recognizes L and (b) com-

pute a shortest path in H using Dijkstra’s algorithm (Fig. 2).

Intuitively, as we traverse an s–t path p in G, we can use the labels

of the edges in p to traverse a path pM in M. If pM begins at the start

state and terminates at a final state in M, then p satisfies L. The

cross-product graph H permits us to record both traversals simultan-

eously. In Figure 2c, the dark edges form two source to target paths

in H, each corresponding to one of the s–t paths in Figure 2b that

has a label sequence recognized by the DFA in Figure 2a. The run-

ning time of their algorithm is OðjHj log jHjÞ.

3.2 Regular language constrained shortest paths

through each edge
There are several ways in which we could use the approach of

Barrett et al. to solve the curation-aware pathway reconstruction

problem. We start with an observation made in earlier work on

curation-unaware pathway reconstruction (Ritz et al., 2016): meth-

ods that computed compact source-to-target subnetworks, e.g.

based on shortest paths between every source-target pair, network

flow (Yeger-Lotem et al., 2009), Steiner trees (Yosef et al., 2011)

and prize-collecting Steiner forests (Tuncbag et al., 2013), achieved

high precision but only low recall (10% or less). The PATHLINKER al-

gorithm proposed by Ritz et al. computed the k shortest paths from

any source to any target. Increasing k permitted the smooth expan-

sion of the computed network. However, PATHLINKER had diminish-

ing returns: several paths computed for larger values of k were

composed entirely of edges in earlier paths.

Based on these considerations, we adopt the following approach

in this article. As in Section 3.1, we are given a directed, weighted,

edge-labeled graph G, a source node s, a target node t and a regular

language L. For each edge in G, we compute a shortest s–t path that

passes through that edge and satisfies L. We output the union of

these at most jEj paths.

Consider solving this problem for a single edge (u, v). The prob-

lem is NP-complete if we require the path to be simple (Barrett

et al., 2000). Therefore, we compute a non-simple path through

(u, v) that satisfies L by exploiting two observations. First, if we as-

sign a new set of labels to the edges in G, say the label k to (u, v) and

l to every other edge, then the label sequence of every path that

passes through (u, v) will satisfy the regular expression l�kðkjlÞ�.
Second, the intersection of two regular expressions is also regular.

Therefore, to compute the desired path, we can utilize the algorithm

of Barrett et al. by computing an appropriate shortest path in the

cross-product graph G�M�M0, where M is the DFA that recog-

nizes L and M0 is the DFA for l�kðkjlÞ�. Since M0 has only two

nodes, the running time of this algorithm is OðjHj log jHjÞ, where

H¼G�M, as in Section 3.1.

As we iterate over the edges of G, the DFA M0 remains the same

but the product graph G�M�M0 changes since the edge with the

label k also changes. Thus, a naive application of the above ap-

proach to each edge in G will yield a running time of

OðjGjjHj log jHjÞ, which is quadratic in the size of G. This running

time is undesirable in practice.

We have developed an algorithm that can compute all the

desired shortest paths using only the cross-product H in

OðjHj log jHÞÞ time, thus saving a factor of OðjGjÞ. We present only

the intuition here. If we did not have to satisfy the constraint

imposed by L, then a shortest non-simple path through (u, v) in G is

the concatenation of a shortest s–u path, the edge (u, v), and a short-

est v–t path. We can compute the shortest paths from s to every

node in G and from every node in G to t using two invocations of

(a) (c)

(b)

Fig. 2. An illustration of paths that satisfy a regular language. (a) The DFA M

for the regular expression p�xp�. The start state is q. The final state has a dou-

ble border. (b) A graph G with edge labels from the alphabet {p, x}. (c) The

product graph H ¼ G �M. Node colors and shapes indicate how we pair

nodes in G with states in M, while the color of an edge indicates whether it is

possible (dark pink) or not possible (light pink) to find a source–target path

through that edge. A path of light pink edges in H corresponds to a path in G

whose labels form a string that the DFA will not recognize
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Dijkstra’s algorithm. Thus, we can compute all the shortest s–t paths

through each edge of G in OðjGj log jGjÞ time. When we also have

to satisfy the constraint imposed by the regular language L, we show

that we can generalize this idea to H. We describe this algorithm in

detail, prove its correctness, and analyze its running time in

Supplementary Section S1. In addition, we illustrate the steps of

REGLINKER on a toy example in Supplementary Section S2, Figure

S5.

3.3 REGLINKER

We are now ready to present the REGLINKER algorithm for recon-

structing signaling pathways, which will use the algorithm of

Section 3.2 as a subroutine. Recall that the inputs to this problem

are a weighted, directed graph G representing the interactome, a

directed graph P representing a curated pathway, a set S of sources

and a set T of targets. We assume that P is a subgraph of G.

3.3.1 Multiple sources and targets

The algorithm of Section 3.2 permits only a single source and a sin-

gle target in the input, whereas REGLINKER allows multiple sources

and targets. Therefore, in order to use the algorithm of Section 3.2

in REGLINKER, we add a supersource s to G and an edge from s to

every node in the set S of sources. Analogously, we add a supertarget

t to G and an edge from every node in the set T of targets to t. All

these edges have unit weight. For each edge in G – {s, t}, we use the

algorithm in Section 3.2 to compute s–t paths in G that satisfy the

input regular language. We delete s and t from these paths.

3.3.2 Regular-language constraints

We use an alphabet R ¼ fp; n; xg that contains three labels, standing

for ‘positive’, ‘negative’ and ‘unknown’, respectively. Our choice of

regular expressions depends on how we apply REGLINKER. (i) When

we evaluate the accuracy of REGLINKER in reconstructing a specific

curated pathway, we take P to be a subnetwork of this pathway. We

create this subnetwork through a random sampling process. Since it

is necessary to explain this process before we can motivate the dif-

ferent types of regular languages we use during evaluation, we pre-

sent them in later sections (Sections 4.2 and 4.3). (ii) In contrast,

when we use REGLINKER to suggest new interactions for inclusion in

a specific signaling pathway P (Section 4.7), we assign the label p to

every edge in P and x to every edge in G–P; we do not use the label

n in this analysis. We use the regular expression p�xxp�, i.e. we com-

pute paths that contain zero or more edges in P, followed by two

consecutive edges not in the pathway, and ending in zero or more

edges in P.

3.3.3 Multiple regular languages

It may be desirable to specify many regular languages and to priori-

tize them. Our implementation can take an ordered list of regular

languages in the input. We run REGLINKER for each language in this

order and concatenate the resulting ranked lists of nodes and edges.

If an edge appears in multiple lists, we retain it only in the earliest

one.

3.3.4 Ranking edges and nodes in the output

We order the edges in G in increasing order of weight. Then, for

each edge e with a rank r (edges may be tied in weight), we assign a

rank of r to every edge in the shortest s–t path via e, provided the

edge has not already received a rank. For each r, the desired recon-

struction P0 is the union of P and all edges of rank r or better. We as-

sign each node the smallest rank of any edge incident upon it.

3.4 Other algorithms
Here, we sketch five algorithms that we compare to REGLINKER. For

each method, we describe how we compute P0 and rank its edges

for the purpose of evaluation; we rank nodes just as we do for

REGLINKER.

3.4.1 PATHLINKER and EDGELINKER

PATHLINKER (Ritz et al., 2016), which does not accept P as an input,

computes the k shortest S–T paths in G in OðkjVjðjEj þ jVj log jVjÞÞ
time. We used k¼10 000 for our results.

Inspired by REGLINKER, we implemented a method we call

EDGELINKER that finds the shortest (non-simple) S–T path through

each edge in G. It computes these paths in OðjGj log jGjÞ time in the

same way as REGLINKER, i.e. for each edge (u, v), it concatenates the

shortest S–u path, the edge, and the shortest v–T path. We define P0

to be the union of these paths. To allow EDGELINKER to take advan-

tage of curated interactions, we set the cost of each edge in P to

zero, allowing paths to use these edges for free. For both methods,

we sort the paths in increasing order of length and assign to each

edge the index of the first path in which it appears.

3.4.2 Extended subgraph

This method extends the idea of an induced subgraph. We iteratively

compute the r-neighborhood H(r) of P in G, as follows: we set

Hð0Þ ¼ P. For every i >0, we set H(i) to be the union of all paths of

length i in G – P, where every edge has label x and each path con-

nects two nodes in P. To compute H(i), we add to G a source node

s, a target node t, and for every node u in P, the edges (s, u) and

(u, t). We then compute all simple paths between s and t consisting

of iþ2 edges (adding two to account for the edges incident on s and

t) using a modified depth-first search (Sedgewick, 2001). We define

P0 to be the union of all computed r-neighbourhoods. We rank

the edges in P0 in decreasing order of weight. We use r¼3 in our

evaluations, i.e. P0 ¼ Hð0Þ [Hð1Þ [Hð2Þ [Hð3Þ.

3.4.3 Shortcuts

This method considers only pairs of proteins in P that are not con-

nected by an edge in P (Navlakha et al., 2012). For each such pair, it

computes to what extent an edge connecting them can be used as a

‘shortcut’ to decrease the cost of the sum of shortest s–t paths in P,

for each (s, t) pair in S�T. The algorithm adds to P the edge that

decreases this sum the most, and iterates until no further edge addi-

tions will lead to a decrease in the sum. We modified this algorithm

to consider only pairs of nodes in P connected by an edge in G – P.

3.4.4 Random walk with edge restarts

Here, we describe a modified random walk with restarts that we use

to compute a new set of edge weights for G that take into account

the nodes and edges in the pathway P (Fig. 3). For each edge e ¼
(u, v) in P, we add an artificial node we and the directed edge (we,

v). Given a probability 0 � q < 1, at any node u, the walker has

two choices: move to an outgoing neighbor v of u with a probability

of ð1� qÞcðu; vÞ or move to one of the artificial nodes created above

with a probability of q=jEPj, where EP denotes the set of edges in P.

This approach forces a random walker that has transitioned to an

artificial node (through a ‘restart’ step) to take its next step along an

edge in P. To ensure that the transition matrix of this random walk

is irreducible in practice, we add an edge from each node in G to

every other node with a teleportation probability of jVj=106, as was

done by Ritz et al. (2016); here, V is the set of nodes in G. In prac-

tice, G contains at least one cycle of length two and one cycle of
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length three. Therefore, this random walk has a stationary distribu-

tion, which we compute using power iteration. Finally, we compute

a new weight c(e) for each edge e ¼ (u, v) in G as follows: (i) we set

c(e) to be the probability of traversing e during RWER, and (ii) we

increment c(e) by c(we, v), the probability of traversing the corre-

sponding artificial edge.

We use RWER in two ways: (a) to solve the curation-aware

pathway reconstruction problem by ranking the edges in G – P in

decreasing order of the edge weights computed by this method and

(b) as a preprocessing step to reweight G before applying the other

algorithms (including REGLINKER).

We adapt the approach of Mohammadi et al. (2013) to select q

such that (1 � q)/q, the expected number of consecutive transitions

along edges in G (before a restart), is the median distance from a

node in P to a target in P. Since we measured this distance to be five

in the NetPath pathways that we sought to reconstruct, we set

q¼0.1667 when we performed RWER.

4 Results

4.1 Datasets
To construct a directed human protein interactome, we used the

PSICQUIC server for protein-protein interactions (Aranda et al.,

2011) in combination with the PhosphoSitePlus (Hornbeck et al.,

2012) and NetPath databases (Kandasamy et al., 2010). The result-

ing network contains 16 636 nodes and 286 561 interactions. We

assigned interaction direction based on evidence of a directed en-

zymatic reaction (e.g., phosphorylation and dephosphorylation)

from any of the source databases. We had sufficient evidence to as-

sign a direction for 7922 of the interactions. We considered the

remaining 286 561 interactions as undirected and represent each of

these as two directed edges in the interactome. Thus, our interac-

tome G has total of 565 200 edges, many of which are supported by

multiple types of evidence. We weighted each edge in the network

using a Bayesian approach that computes interaction probabilities

based on the sources of evidence (Yeger-Lotem et al., 2009). We

provide more details on how we constructed the interactome and

computed weights for its edges in Supplementary Section S3.

We identified the signaling receptors and TFs from previously

published lists of human receptors (Almen et al., 2009) and TFs

(Ravasi et al., 2010; Vaquerizas et al., 2009). We selected 15

NetPath pathways (Kandasamy et al., 2010) that each contained at

least one receptor, at least one TF, and had at least three S–T paths.

We deleted every protein and interaction from the pathway that did

not lie on a receptor-to-TF path in the directed graph representing

the pathway. Table 1 displays the number of proteins and interac-

tions in each pathway.

4.2 Evaluation
To evaluate REGLINKER and the other algorithms on the problem of

reconstructing signaling pathways, we sought to develop a method

akin to cross-validation. We decided against using k-fold cross-

validation since partitioning the nodes and edges into multiple

groups did not appear a realistic way to mimic the state of know-

ledge about a signaling pathway.

Therefore, we consider three more natural models based on dif-

ferent assumptions about how the knowledge on a given signaling

pathway accumulates in the literature. The interaction withholding

model represents a scenario where we are confident that all the pro-

teins in a pathway have been identified, but not all the interactions

among them. Accordingly, we select a fraction a (uniformly at ran-

dom) of the interactions in the pathway and give each selected inter-

action a label of x in G. We then assign the remaining interactions

in the pathway the label p and present this subgraph as P to each al-

gorithm. Similarly, we select a fraction a of edges from G – P to de-

rive a set of negatives, i.e. we give each sampled interaction the label

x and every other interaction in G the label n. Thus, every inter-

action in G has the label p, x or n.

We also evaluate a second and more realistic protein withholding

model, where we assume that both proteins and their incident inter-

actions in the pathway are not completely known. Accordingly, we

select a fraction b (uniformly at random) of proteins from the cura-

ted pathway. In G, we assign the label of x to every edge in the path-

way that is incident on at least one of the selected nodes. As before,

we assign the label of p to every other edge in the pathway. To de-

rive negative edges, we select a fraction b of nodes in G that are not

in the curated pathway and assign a label of x to every edge in G

that is incident on at least one selected node. We evaluate each algo-

rithm on its ability to recover withheld interactions as well as with-

held proteins.

Finally, we consider a combined model that withholds edges

based on a and nodes (and their incident edges) through b. In this

work, we present the results for the three models using a¼0.1 and

for b¼0.1. We repeat the sampling process ten times for each path-

way under each model. For each algorithm, we compute its

precision-recall curve, aggregated over each random sample per

pathway and then aggregated over each pathway.

4.3 Selecting pre-processing strategy and regular

languages
We used the following intuition to guide our selection of regular lan-

guage constraints. In the interaction withholding model, the more

the number of x-labeled edges in a path, the less likely they are to be

members of the pathway. Therefore, we allowed a small number

(�3) of x-labeled edges in a path, namely, p�xp�; p�xp�xp�, and

p�xp�xp�xp�. We use ‘flex-a’ to denote expressions of this form,

where ‘a’ refers to the number of x-labeled interactions permitted by

the expression. When we combine many such expressions, we refer

to them as ‘flex-a-b-c’, i.e. we prefer paths with a x-labeled interac-

tions, before paths with b such interactions and so on. Note that we

are effectively using regular expressions to count the number of

x-labeled interactions in a path.

Similarly, under the protein withholding model, every path must

pass through at least two x-labeled interactions consecutively in

order to recover a withheld pathway protein. Therefore, we used

regular expressions of the form p�xxp� and p�xxxp�, which allow

only paths with two or three x-labeled interactions appearing in suc-

cession. We use ‘consec-a’ to denote such expressions. These regular

(a) (b) (c)

Fig. 3. An illustration of RWER. (a) Example interactome. Orange edges are in

P and black edges in G – P. (b) Addition of one artificial node and edge for

each edge in P. (c) At each step, the random walker can either transition along

an edge in G (solid) that is incident on the current node, or follow a ‘restart’

edge (dashed) to an artificial node

i628 M.J.Wagner et al.



expressions restrict the number of proteins in the path that are not

members of the pathway to be at most one and two, respectively.

The preprocessing strategy used for REGLINKER also bears consid-

eration. Figure 4a displays the results for edge recovery with the

flex-1 and consec-2 regular expressions under the combined with-

holding model (a ¼ 0:1; b ¼ 0:1) for REGLINKER using different

interactome preprocessing strategies (RWER, RWR and the

evidence-based weights). For RWR, we restart to nodes that are tails

of edges in P. We see that RWER offers a significant advantage over

the competing preprocessing methods. The results also emphasize

the non-specificity of evidence-based weighting: a large number of

interactions (both within and outside curated pathways) have a high

weight. Consequently, the corresponding precision-recall curves

begin at a high recall and moderate precision. In light of this result,

we henceforth apply REGLINKER on the RWER-weighted interac-

tome, referring to this approach as ‘REGLINKERþ RWER’. We do the

same for EXTENDED SUBGRAPH. We do not apply the preprocessing for

EDGELINKER, as the reweighting conflicts how we input P to it.

Figure 4b demonstrates the importance of selecting the appro-

priate regular languages to provide as constraints for REGLINKER

þ RWER. The constraint flex-1 (red curve) offers the best preci-

sion but much lower recall than other curves. In contrast, flex-2

(orange) and flex-3 (green) offer successively higher recall; how-

ever, their precision is lower. Prioritizing these constraints (flex-1-

2, light green and flex-1-2-3, blue) combines the higher precision

of flex-1 with the higher recall of flex-2 and flex-3. These results

indicate that we do not incur a precision penalty for including

expressions successively in this manner. The consec-a constraints,

whether individual or combined (purple, pink and brown) have

lower precision than flex-1-2-3. Therefore, we subsequently elect

to show the results obtained when providing REGLINKER þ RWER

the constraints ‘flex-1-2-3’ (in the case of edge recovery) and

the constraints ‘consec-2-3’ (in the case of node recovery).

In Supplementary Section S4.2, we present DFA sizes

(Supplementary Table S1) and the product graph sizes and run-

ning times (Supplementary Table S2).

Table 1. Sizes of 15 NetPath pathways and of the number of new proteins and interactions in their proposed extensions

Original Proposed extension

Pathway P I P I Proteins annotated to a significant GO term (%)

BDNF 35 81 24 78 21 (87.5)

EGFR1 184 1327 134 466 112 (83.58)

IL-1 35 154 29 75 26 (89.66)

IL-2 44 168 32 97 27 (84.38)

IL-3 40 126 25 91 20 (80.00)

IL-6 45 144 28 81 27 (96.43)

IL-7 13 42 11 31 9 (81.82)

KitReceptor 52 159 46 124 38 (82.61)

Leptin 35 105 23 61 12 (52.17)

Prolactin 52 160 44 141 39 (88.64)

RANKL 30 101 21 67 18 (85.71)

TCR 106 403 63 251 55 (87.30)

TGFb 170 769 131 387 99 (75.57)

TNFa 195 836 161 512 130 (80.75)

Wnt 90 397 75 194 57 (76.00)

Note: In the final column, we consider only GO terms that are significant at the P< 0.001 level.

P, proteins; I, interactions.
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Fig. 4. Precision–recall curves of REGLINKER for edge recovery in the combined withholding model for different (a) interactome weighting methods and (b) regular

language constraints
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4.4 Interaction withholding model
This model offers a simple test of the reconstruction capabilities of

an algorithm. In practice, most proteins in the pathway will still be

connected to at least one of the interactions labeled p. Algorithms

like REGLINKER can potentially use these labels to greatly prune the

search space. REGLINKER þ RWER with the flex-1-2-3 constraint

(brown curve in Fig. 5) and EXTENDED SUBGRAPH þ RWER (green)

achieves the highest AUPRC values (0.69), clearly dominating the

others. PATHLINKER’s performance (red) achieves an AUPRC of only

0.18. On the other hand, EDGELINKER (blue) has a precision-recall

curve that starts with recall almost at one, an artifact of the

Bayesian weighting as previously discussed in Section 4.3. With an

AUPRC of 0.26, RWER (orange) is superior to PATHLINKER but con-

siderably worse than REGLINKER þ RWER and EXTENDED SUBGRAPH

þ RWER. The Shortcuts algorithm (purple) achieves moderate to

low precision but very low recall since it adds only a few edges in

the induced subgraph of P. We do not consider it further. We pro-

vide statistics on the running time of all methods for this model in

Supplementary Section S4.2 (Table S3).

4.5 Protein withholding model
The protein withholding model presents a more realistic challenge

by removing any knowledge of the withheld proteins from the path-

way P presented to the reconstruction algorithms. Thus, to achieve

high recall of withheld proteins and the interactions involving them,

algorithms such as EXTENDED SUBGRAPH and REGLINKER must recover

consecutive pairs of interactions, e.g. (u, v) and (v, w), where v is the

protein withheld.

4.5.1 Protein recovery

RWER (orange curve, AUPRC¼0.37, Fig. 6a) compares favorably

to the other algorithms, including REGLINKER þ RWER (consec-2-

3) (brown curve, AUPRC¼0.34). Note that RWER is not guaran-

teed to produce pathway-like subnetworks since it does not expli-

citly compute source-to-target paths. The difficulty presented by

this model is also readily apparent. Notably, EXTENDED SUBGRAPH

(green) performs much more poorly in this evaluation, achieving

an AUPRC of just 0.25. Indeed, at points, the precision of

PATHLINKER (red, AUPRC¼0.18), which serves as a control, sur-

passes that of EXTENDED SUBGRAPH. EDGELINKER (blue) also does

very poorly.

4.5.2 Interaction recovery

The increased challenge of this model is also reflected in Figure 6b,

which shows that all algorithms except PATHLINKER suffer a signifi-

cant performance decrease in interaction recovery compared to the

interaction withholding model (Fig. 5). Once again, REGLINKER þ
RWER (consec-2-3) (brown, AUPRC¼0.22) and EXTENDED

SUBGRAPH (green, AUPRC¼0.19) offer the best performance.

However, RWER (orange, AUPRC¼0.16) displays comparable per-

formance to both methods as recall increases beyond 0.4.

4.6 Combined withholding model
Figure 7 shows the performance attained by algorithms under the

combined withholding model. When recovering withheld proteins,

REGLINKER þ RWER (flex-1-2-3, purple and consec-2-3, brown)

obtained a similar AUPRC (0.35); RWER (orange curve) and

EXTENDED SUBGRAPH þ RWER (green curve) achieved AUPRCs

of 0.37 and 0.29, respectively (Fig. 7a). For edge recovery,

REGLINKER þ RWER (flex-1-2-3) had an AUPRC of 0.36 and

Fig. 5. Precision-recall curves under the interaction withholding model

(a ¼ 0:1)

(a) (b)

Fig. 6. Precision-recall curves under the protein withholding model (b ¼ 0:1) for (a) protein recovery and (b) interaction recovery
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REGLINKER þ RWER (consec-2-3) had an AUPRC of 0.27, while

RWER had an AUPRC of 0.21 and EXTENDED SUBGRAPH þ RWER

had an AUPRC of 0.37 (Fig. 7b). Considering both sets of plots to-

gether, REGLINKER þ RWER flex-1-2-3 offers the most consistent

performance.

The curves for protein recovery (Fig. 7a) closely mirror those

seen in Figure 6a, while the trends for interaction recovery (Fig. 7b)

for each algorithm generally fall between edge recovery under the

node and edge withholding models (Figs 5 and 6b, respectively).

With a¼0.1 and b¼0.1, we withhold nearly 20% of interactions in

an average pathway. Withheld interactions are nevertheless easier

for the algorithm to identify in the combined model than the protein

withholding model.

4.7 REGLINKER 1 RWER interaction recovery across

individual pathways
So far, we have been studying precision-recall curves aggregated

over all pathways. However, some pathways may be more

amenable to reconstruction than others. To investigate this possi-

bility, for each pathway, we examined the distribution of AUPRC

scores (over the 10 runs for each pathway) of REGLINKER þ
RWER using the flex-1-2-3 expressions. The median AUPRC for

interaction recovery in the combined withholding model varied

from 0.25 to 0.6 (Fig. 8).

Many of the smaller pathways (e.g. BDNF, IL-7 and RANKL)

had a large variation in the AUPRC values. Smaller pathways

may be more sensitive to randomized withholding in our models.

For example, the IL-7 pathway has 13 proteins and 42 interac-

tions with Janus Kinase (JAK) connected to nine proteins while

the tyrosine-protein kinase Fyn (FYN) is connected to only two;

hence, removal of even a single protein in this pathway can have

widely varying results, depending on the protein removed. In con-

trast, larger pathways, such as EGFR, TGF-b and Wnt, display

less variance. These results reflect the challenge in creating recon-

struction methods that work robustly across a range of

pathways.

4.8 Proposing pathway extensions using REGLINKER

We applied REGLINKER to propose extensions to the 15 NetPath

pathways under consideration. To this end, for each pathway P, we

assigned the label p to every interaction in P and the label x to every

other interaction in the interactome G, i.e. to every edge in G – P.

We noted that paths constrained by the ‘flex–a’ type of regular ex-

pression do not always suggest any proteins for inclusion in the

pathway. Therefore, we focused our attention on ‘consec-a’ type of

regular expressions that we used in the protein withholding model.

Specifically, we used the ‘consec-2’ regular expression i.e. p�xxp�.

We removed every x-labeled interaction in G that connected two

proteins in P; this step ensured that the node incident on both x-

labeled edges in every path that satisfied p�xxp� was not already be

a member of P. We then computed the shortest path through every

edge labeled p that satisfied p�xxp�. We proposed the union of these

paths as the extension of P. For each pathway, Table 1 summarizes

its size and that of the proposed extension. We also considered com-

puting these paths through every edge in G. We did not analyze

these results since the resulting extensions contained thousands of

nodes and edges.

(a) (b)

Fig. 7. Precision-recall curves under the combined withholding model (a ¼ 0:1; b ¼ 0:1) for (a) protein recovery and (b) interaction recovery. In (a), we show the

plot for flex-1-2-3 (purple) as a thick curve to indicate that it is almost identical to the consec-2-3 curve (brown)
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Fig. 8. Distribution of AUPRC values for each pathway for REGLINKER þ RWER

(flex-1-2-3) for interaction recovery in the combined withholding model

(a ¼ b ¼ 0:1)
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In order to investigate the cellular functions of the proposed pro-

teins and the relevance to their respective pathways, we used Enrichr

(Kuleshov et al., 2016) to compute their enrichment in gene ontol-

ogy (GO) biological process (BP) terms and in other biological path-

way databases. For as many as 14 of the 15 pathways, we observed

that over 75% of the proposed proteins were annotated to at least

one significant GO BP term (P<0.001) (final column of Table 1).

Due to the hierarchical structure of the GO, several enriched terms

were closely related to each other. Therefore, we used REVIGO

(Supek et al., 2011) in order to summarize the significant GO terms.

Here, we focus our attention on three pathways of different sizes:

BDNF [35 proteins, 81 interactions, Wnt (90 and 395) and TNFa
(195 and 386)]. We observed that a large fraction of the new pro-

teins proposed by REGLINKER had functions corresponding to the

biological role of the ligand involved in the respective pathway.

Supplementary Table S4 summarizes the GO terms and pathways

we discuss below.

4.8.1 BDNF pathway

BDNF is a protein that promotes the survival of neurons. Its neuro-

protective and anti-apoptotic effects are well known (Chen et al.,

2017). We observed that 11 out of 24 proteins proposed by

REGLINKER for this pathway are annotated to the term ‘negative

regulation of apoptotic process’ (GO: 0043066, P<10�8).

Furthermore, recent work has implicated BDNF in promoting

angiogenesis in endothelial cells (ECs) (Kermani and Hempstead,

2007). However, the mechanism by which BDNF maintains the

angiogenetic potential of ECs is still unknown (Wang et al., 2019).

We observed that four out of 24 proposed proteins for BDNF are

annotated to ‘regulation of angiogenesis’ (GI: 0045765, P<10�3);

in contrast, only one protein (NTF4) in the original BDNF pathway

is annotated to this term. Therefore, our proposed extension to the

current BDNF pathway may help to shed light on the role of BDNF

in angiogenesis.

4.8.2 Wnt pathway

REGLINKER identified 75 new proteins to add to the Wnt signaling

pathway. Of these, 12 proteins are annotated to ‘negative regulation

of Wnt signaling’ (GO: 0030178, P<10�8). Thus, all these proteins

are ideal candidates for inclusion in the pathway. Moreover, the

interactions that connect them to proteins that are already in the

NetPath-curated Wnt pathway may suggest mechanisms of negative

regulation. A second relevant GO term was ‘macrophage differenti-

ation’ (GO: 0030225). Three of the proposed proteins are annotated

to this term (P<10�3). A recent study reported the activation of

Wnt signaling during monocyte-to-macrophage differentiation

(Yang et al., 2018). Enrichr also reported that seven proteins were

annotated to Adherens junction pathway in the KEGG database

(hsa04520, P<10�7), which is a well-known non-canonical Wnt

pathway (Amin and Vincan, 2012). Interestingly, six of the proteins

suggested by REGLINKER are annotated to the Wnt pathway in the

KEGG database (hsa04310, P<10�3).

4.8.3 TNFa pathway

TNFa is implicated in apoptosis (Rath and Aggarwal, 1999), and 39

out of 161 proposed proteins for TNFa pathway are annotated to

the term ‘regulation of apoptotic process’ (GO: 0042981,

P<10�15). Enrichr found that 16 proposed proteins are members of

the KEGG Influenza A pathway (hsa05164, P<10�9) and 11 add-

itional proteins are in the KEGG NF-jB signaling pathway

(hsa04064, P<10�7). Studies have shown that TNFa has an anti-

influenza virus activity (Seo and Webster, 2002) and that it has anti-

rotavirus activity via the activation of NF-jB signaling pathway

(Hakim et al., 2018).

5 Discussion and conclusions

In this article, we have formulated the curation-aware pathway re-

construction problem and developed REGLINKER as a solution. The

key idea at the heart of REGLINKER is using regular expressions to

control the relative proportion of novel interactions in the recon-

structed pathway. Regular expressions offer considerable flexibility.

For instance, if we are given information on whether a (directed)

edge indicates activation or inhibition, we can use regular expres-

sions to compute paths where the total effect of all interactions in

the path is activating or inhibitory (record whether the number of in-

hibitory edges is even or odd). We can also integrate other types of

data, e.g. consider only paths where a certain number of genes is dif-

ferentially expressed in an RNA-seq dataset. Another possibility is

to encode cellular location of proteins, e.g. to compute paths whose

proteins are located in a specific sequence of organelles.

We evaluated REGLINKER and five competing algorithms on three

models for withholding information on a curated pathway.

PATHLINKER and EDGELINKER took no or imperfect advantage of the

pathway, leading them to recover pathway proteins and interactions

poorly. The different facets of EXTENDED SUBGRAPH and RWER

revealed their different strengths. Neighborhood constraints enabled

EXTENDED SUBGRAPH to significantly reduce the edges it considers

when recovering interactions; as a result, it performs better than

RWER at this task. However, RWER displays better protein recov-

ery performance, indicating that that the constraints that aid

EXTENDED SUBGRAPH in filtering interactions force it to make mistakes

when ranking proteins. By using receptor–to–TF shortest paths that

are constrained by regular languages, REGLINKER þ RWER presents

a compromise between these approaches, proving capable in each

evaluation.

These results also underscore the greatly increased difficulty of

pathway reconstruction under the protein and combined withhold-

ing models. Our results reveal that evidence-based weighting proce-

dures and reconstruction approaches rooted in graph topology are

alone insufficient to reliably distinguish withheld pathway interac-

tions. In contrast, we have demonstrated that REGLINKER þ RWER

produces competitive reconstructions under various hypothetical

models of pathway knowledge, guided by the flexibility afforded by

regular languages. Our results offer insights into the promise of

these automated techniques for pathway reconstruction, and the

obstacles they must overcome if they are to generalize well across

multiple signaling pathways.

Methods such as REGLINKER are appropriate for signaling path-

ways and other biological processes where sources and targets can

be readily identified. The vast majority of interactions are unlikely

to be related to signaling. Developing approaches to annotate inter-

actions to non-signaling related processes is an important open

problem.
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