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Abstract: This study compares performances of the Critical Point-based revision of Perturbed-
Chain SAFT (CP-PC-SAFT) and the SAFT of Variable Range and Mie Potential (SAFT-VR-Mie) in
predicting the available data on VLE, LLVE, critical loci and saturated phase densities of systems
comprising CO, O2, CH4, H2S, SO2, propane, the refrigerants R22, R23, R114, R124, R125, R125, R134a,
and R1234ze(E) and ionic liquids (ILs) with 1-alkyl-3-methylimidazolium ([Cnmim]+) cations and
bis(trifluoromethanesulfonyl)imide ([NTf2]−), tetrafluoroborate ([BF4]−) and hexafluorophosphate
([PF6]−) anions. Both models were implemented in the entirely predictive manner with k12 = 0. The
fundamental Global Phase Diagram considerations of the IL systems are discussed. It is demonstrated
that despite a number of quantitative inaccuracies, both models are capable of reproducing the
regularities characteristic for the considered systems, which makes them suitable for preliminary
estimation of selectivity of the ILs in separating various gases.

Keywords: predictive modeling; SAFT; ionic liquids

1. Introduction

Ionic liquids (ILs) are organic salts whose melting points are below 100 ◦C. Due to their
negligible vapor pressures, ILs are considered as green solvents. Moreover, the selectivity of
ILs in separating various compounds, including gases, attach them by significant practical
importance. A number of possible combinations between cations and anions of ILs is
practically unlimited. Such a variety of systems cannot be investigated experimentally.
Besides that, purities of laboratory samples are typically much better than of industrial
solvents, which can result in unignorable difference between literature data and actual
phase equilibria in industrial equipment. Moreover, due to the high viscosities of ILs, there
is no guarantee that their real solvent capacities in industrial equipment always reach
equilibria values. At times, there are noticeable deviations between different laboratory
measurements of phase equilibria in the same ILs systems.

These reasons emphasize a primary importance of developing and validating ther-
modynamic approaches capable of estimating phase equilibria and other properties of
mixtures comprising ILs with reasonable accuracy in the entirely predictive manner. In
this respect, it should be emphasized that the thermodynamic properties of real fluids are
influenced by various molecular phenomena, which currently cannot be appropriately
treated, even by the most advanced theoretical approaches. Moreover, their application in
systems of non-ordinary fluids such as ILs present a particularly challenging test. Bearing
in mind a potentially high uncertainty of the available experimental data on ILs systems
used for validation of thermodynamic models, it seems expedient to place major attention
to their overall robustness and predictive capacity rather than to the precision in local
fitting of particular datasets.
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Implementations of various thermodynamic approaches for modeling phase behavior
in the IL systems were scored by several comprehensive reviews, see, for example [1–3].
Among the predictive approaches, the Conductor-Like Screening Model for Real Solvents
(COSMO-RS) [4–8] and the Universal Quasichemical Functional-group Activity Coefficients
model extended to ILs (UNIFAC-IL) [9] should be acknowledged. These models aim at
estimating phase equilibria rather other thermodynamic properties, such as densities, heat
capacities and sound velocities. Comparing to them, the equation of state (EoS) approaches
relating pressure to temperature and volume have a more universal character. Thus far,
numerous applications of Cubic EoSs (see for example [10–27]) and various versions of
models belonging to a more theoretically advanced family of Statistical Association Fluid
Theory (SAFT) (see for example [28–37]) for describing systems of ILs were reported in the
literature. Most of these contributions have fitted the EoS approaches to the available data
on mixtures using binary adjustable parameters. Although such practice substantially im-
proves an agreement between the experimental and calculated data, it affects the predictive
character of the models and hinders evaluation of their overall robustness and reliability.
At the same time, some studies [38–42] have applied the EoS approaches to the systems
of ILs in the predictive manner, while keeping zero or universal substance-independent
values of the binary parameter k12. The basic principle of EoS models is utilizing an input of
available experimental data to produce an output of predicted data. As the input required
by any particular EoS is smaller and the obtained output is larger, its predictive value
becomes higher. Accuracies of the Critical Point-based revision of Perturbed-Chain SAFT
(CP-PC-SAFT) [43] and the SAFT of Variable Range and Mie Potential (SAFT-VR-Mie) [44]
in estimating the elevated pressure densities and auxiliary thermodynamic properties
attach these models by a particularly high degree of universality.

This study examines the performances of CP-PC-SAFT and SAFT-VR-Mie in their
maximal possible level of predictivity. For each model, the input information contains
only three pure compound data or six data per binary system, without any preliminary
consideration of the binary data. Basing on this small amount of the input information,
the models are applied for predicting vapor–liquid equilibria (VLE), liquid–liquid–vapor
equilibria (LLVE), critical loci and saturated phase densities of systems comprising several
industrially important gases and the ILs with 1-alkyl-3-methylimidazolium ([Cnmim]+)
cations (n = 2,4,6,8) and bis(trifluoromethanesulfonyl)imide ([NTf2]−), tetrafluoroborate
([BF4]−) and hexafluorophosphate ([PF6]−) anions.

2. Theory

Full descriptions of CP-PC-SAFT and SAFT-VR-Mie are available elsewhere [43,44].
Therefore, here, some of their most relevant details are briefly discussed. Generally speak-
ing, SAFT models express the residual Helmholtz energy Ares as a sum of contributions
representing different inter-molecular interactions as functions of temperature (T) and
molar volume (v). Having an expression for Ares, the EoS relating pressure (P) with T and
v can be obtained:

P =
RT
v

−
(

∂Ares

∂v

)
T

(1)

Several SAFT approaches, among them the initial version of PC-SAFT [45], exhibit
certain undesired numerical pitfalls, such as predicting negative heat capacities [46] at
high pressures and the additional unrealistic pure compound phase splits [47,48]. The
latter phenomenon may seriously affect their accuracies in predicting properties of heavy
compounds such as ILs and their mixtures [49–51]. In addition, SAFT models typically
cannot represent critical pressures, temperatures, and saturated liquid densities in a simul-
taneously accurate manner [52,53]. To solve all these problems, CP-PC-SAFT [43] majorly
revised the initial version of PC-SAFT [45]. This revision allows a standardized numerical
solution of three molecular parameters, namely m (the effective number of segments), σ
(the segment diameter, Å), and ε/kB (the potential depth divided by Boltzmann constant,
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K) at critical temperature (Tc), critical pressure (Pc) and the triple point liquid density,
applying the critical point conditions as follows:(

∂P
∂v

)
Tc

=

(
∂P2

∂2v

)
Tc

= 0
∣∣∣∣
vc,EoS=δvc

(2)

Pc,EoS = Pc (3)

ρL,EoS = ρL,experimental

∣∣∣
TriplePoint

(4)

In Equation (2), δ is a substance-dependent critical volume displacement of the model
and it is the fourth variable obtained by solving a system of four Equations (2)–(4). Thus, in
the cases of compounds considered as non-associative and non-polar, the model requires
only three pure compound data, namely the literature values of Tc, Pc, and the triple
point liquid density. In the current study, this information was obtained from the DIPPR
databank [54].

Compared with CP-PC-SAFT, SAFT-VR-Mie is a more complicated approach, whose
theoretical background is substantially more advanced. In addition to the three ordinary
molecular parameters m, σ, and ε/kB, it also includes λa (the attractive exponent of Mie
potential), which is typically set to 6, and λr (the repulsive exponent of Mie potential).
Mejía et al. [55] proposed a set of particularly successful corresponding state (CS) correla-
tions for the molecular parameters of SAFT-VR-Mie. Similarly to CP-PC-SAFT, this method
requires three pure compound data, namely Tc, liquid density at T/Tc = 0.7 and the acentric
factor (ω). However, unlike CP-PC-SAFT, which rigorously obeys the literature values of
both Tc and Pc, it fits only Tc and overestimates Pc. Table 1 lists the values of molecular
parameters of the considered gases obtained by solving Equations (2)–(4) for CP-PC-SAFT
and yielded by the CS approach of Mejía et al. [55] for SAFT-VR-Mie. The parameters of
refrigerants were reported previously [56]. Overestimations of the literature [54] values of
Pc (∆P = Pc,SAFT-VR-Mie/Pc,DIPPR) by CS-SAFT-VR-Mie are also provided. As seen, in some
cases, such as R23 and R134a, these overestimations are significant. Apparently, treatment
of these compounds as non-polar and non-associative is an oversimplification. However,
such an approach allows preserving a predictive parametrization of the model.

Table 1. Pure compound molecular parameters of CP-PC-SAFT and CS-SAFT-VR-Mie and overesti-
mation of Pc by CS-SAFT-VR-Mie (∆P).

CP-PC-SAFT CS-SAFT-VR-Mie (λa = 6)

Compound m σ [Å]
ε/kb
[K] m λr σ [Å]

ε/kb
[K] ∆P

CO 0.9983 3.6437 99.474 1 21.38 3.6901 132.62 1.082
O2 1.0546 3.3055 112.98 1 17.95 3.4069 144.09 1.091

CH4 1.0001 3.7476 142.51 1 16.40 3.7532 170.81 1.096
H2S 1.2332 3.4229 254.04 1 26.69 3.7944 401.27 1.114

C3H8 2.4144 3.3918 184.37 2 11.82 3.6531 205.57 1.084
SO2 3.3034 2.5760 189.41 2 15.74 3.0908 287.98 1.136
R22 3.2452 2.8738 163.48 2 14.426 3.4262 234.54 1.130
R23 4.2360 2.4331 120.42 2 16.838 3.1792 207.36 1.191

R114 2.0403 4.1115 224.78 2 16.119 4.1764 283.70 1.084
R123 3.0540 3.4931 207.02 2 18.043 4.1005 328.26 1.119
R124 3.3472 3.2173 173.12 2 18.416 3.9345 287.09 1.104
R125 3.2728 3.0946 149.66 2 19.755 3.7421 254.23 1.124
R134a 3.9726 2.8502 154.00 2 21.627 3.6783 291.35 1.185

R1234ze(E) 2.9581 3.3370 175.47 2 21.342 3.8871 296.26 1.134

Unfortunately, the genuine critical constants of ILs are unavailable because these com-
pounds decompose at the much lower temperatures. However, the molecular parameters
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of SAFT models can be obtained by solving them at three standardly selected density
points, two at the lowest available isotherm and one at the highest one. The resulting
values for the considered ILs, along with the predicted values of Tc and Pc, are listed in
Table 2. The CP-PC-SAFT parameters of ILs belonging to the [Cnmim][NTf2] homologies
series were generalized by molecular weight (Mw) [39]. Following the Lennard–Jones
potential, the SAFT-VR-Mie parameters λa and λr were set to 6 and 12. The estimations of
densities in wide range of T and P yielded by both models are particularly accurate, and
the deviations from data are typically comparable with experimental uncertainties [39,42].
As seen, SAFT-VR-Mie yields the higher values of Tc and Pc versus CP-PC-SAFT.

Table 2. The molecular parameters and critical constants of pure ILs yielded by SAFT-VR-Mie and CP-PC-SAFT [39,42].

CP-PC-SAFT SAFT-VR-Mie (λa = 6, λr = 12)

Compound m σ (Å) ε/kB(K) Tc (K) Pc (bar) m σ (Å) ε/kB(K) Tc (K) Pc (bar)

[C8mim][NTf2] m = −7.2461 + 0.0408 Mw
σ = 3.5748 − 0.00012 Mw

ε/kb = 382.8867 − 0.2656 Mw

834.2 10.32 9.3326 3.8650 343.69 1030.0 14.39
[C6mim][NTf2] 841.8 12.08 8.7544 3.8168 341.63 1007.0 15.94
[C4mim][NTf2] 846.1 14.28 8.1763 3.7685 351.58 1017.7 18.36
[C2mim][NTf2] 846.0 17.05 7.5981 3.7203 370.44 1051.1 21.76
[C8mim][BF4] 8.4287 3.5692 298.31 897.6 18.35 6.8632 3.8455 381.50 1051.8 22.60
[C4mim][PF6] 6.8113 3.5923 325.28 929.0 25.10 5.4343 3.8993 418.22 1074.9 30.26
[C4mim][BF4] 5.9300 3.6426 338.02 930.0 29.04 4.9271 3.8976 426.40 1062.2 34.09

3. Results and Discussion

As discussed [41,42], the pressure dependencies of densities of the considered ILs
decrease with reducing the n-alkyl chain of [Cnmim]+ cation and lessening the anion’s size
from [NTf2]− to [PF6]− and then to [BF4]−. It can also be seen (Table 2) that the imaginary
Tc and Pc values of ILs generated by CP-PC-SAFT increase with decrease of the pressure
dependencies. SAFT-VR-Mie partially reproduces this inter-relation as well. According to
the general Global Phase Diagram (GPD) considerations, as the gap between the critical
points of solutes and solvents decrease, the systems become more symmetric, their phase
splits become narrower, resulting thus in higher molar solubilities. Consequently, the
degree of asymmetry in fluid systems is defined by the Tc and Pc values of both the ILs
and the compounds dissolved in them. In particular, the lower critical constants of the IL
solvents and the higher critical constants of the solutes increase the system symmetries and
thus—the solubilities.

So far [41,42], a validity of this regularity was demonstrated for the IL systems of vari-
ous non-associating compounds, such as refrigerants, aliphatic, aromatic, and oxygenated
hydrocarbons. Figure 1 shows that the IL systems of CO, O2, CH4, H2S and SO2 also obey
these regularities. As seen, the solvent capacities of the [NTf2]− ILs are higher than of
[PF6]− and [BF4]−. Besides that, elongation of the cation n-alkyl chain also increases the
solubilities, while the higher Tc and Pc values of the gases result in an increase of their
solubilities. In can also be seen that both CP-PC-SAFT and SAFT-VR-Mie are, in general,
capable of predicting these tendencies without adjusting the binary parameter k12. The
only exception is the results of CP-PC-SAFT for the SO2 systems (Figure 1E), which do not
exhibit any clear tendency.

Nevertheless, this model predicts more accurately phase equilibria in the systems
of CO (Figure 1A) and O2 (Figure 1B), along with solubility of CH4 in [C4mim][PF6]
(Figure 1C). At the same time, SAFT-VR-Mie is advantageous in the case of its solubility
in [C4mim][NTf2]. Besides that, accuracies of both models in predicting the solubilities of
H2S in the considered ILs at 313.15 K are reasonably good (Figure 1D). CP-PC-SAFT tends
to slightly underestimate them, while SAFT-VR-Mie minorly overpredicts these data.
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Figure 1. Solubilities of CO, O2, CH4, H2S and SO2 in [C2mim][NTf2], [C4mim][NTf2], [C6mim][NTf2], [C8mim][NTf2], 
[C4mim][BF4] and [C4mim][PF6]. Points—experimental data [57,58,59,60,61,62,63,64,65,66,67,68,69,70]. Solid lines—
predictions of CP-PC-SAFT, dashed lines—predictions of SAFT-VR-Mie. k12 = 0 for both models. x1—mole fraction of the 
solute gas.  

 

Figure 1. Solubilities of CO, O2, CH4, H2S and SO2 in [C2mim][NTf2], [C4mim][NTf2], [C6mim][NTf2], [C8mim][NTf2],
[C4mim][BF4] and [C4mim][PF6]. Points—experimental data [57–70]. Solid lines—predictions of CP-PC-SAFT, dashed
lines—predictions of SAFT-VR-Mie. k12 = 0 for both models. x1—mole fraction of the solute gas.

A success of CP-PC-SAFT and SAFT-VR-Mie in estimating solubility trends of re-
frigerants in the considered ILs was already discussed [42]. In the current study a more
detailed comparison of their predictions for phase equilibria in these systems is presented.
Figure 2A–C demonstrates that CP-PC-SAFT accurately predicts VLE in the systems of R22
and slightly underestimates them in R23—[C2mim][NTf2] (Figure 2D). At the same time,
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this model yields accurate results for VLE and LLVE in the system R23—[C4mim][PF6] and
overestimates its LLE at high pressures (Figure 2E).
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predictions of SAFT-VR-Mie. k12 = 0 for both models. 
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Figure 2. Phase equilibria in the systems of R22, R23 and R114 dissolved in [C2mim][NTf2], [C4mim][BF4] and [C4mim][PF6].
Points—experimental data [12,22,37,71–74]. Solid lines—predictions of CP-PC-SAFT, dashed lines—predictions of SAFT-
VR-Mie. k12 = 0 for both models.

It can also be seen that SAFT-VR-Mie exhibits an inferior performance overestimating
these data. At the same time, the wider phase splits yielded by this model result in more
accurate in predictions of VLE and LLVE in R114—[C2mim][NTf2] (Figure 2F).
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Figure 3 demonstrates that CP-PC-SAFT accurately predicts both the VLE and LLVE
in R124–[C2mim][NTf2] (Figure 3A) and slightly overestimates VLE in systems of R125 and
propane (Figure 3B–F). At the same, it overestimates the available LLVE data (Figure 3B,D)
in a more significant manner.
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Figure 3. Phase equilibria in the systems of R124, R125, and propane (R290) dissolved in [C2mim][NTf2], [C6mim][NTf2],
[C4mim][BF4], [C8mim][BF4] and [C4mim][PF6]. Points—experimental data [11,12,14,27,75–77]. Solid lines—predictions of
CP-PC-SAFT, dashed lines—predictions of SAFT-VR-Mie. K12 = 0 for both models.

For some of the presented systems (see Figure 3A–C,F) SAFT-VR-Mie predicts substan-
tially wider ranges of phase splits, which results in inferior accuracy in comparison with
CP-PC-SAFT. For other systems (see Figure 3D,E), the results of both models are similar.
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Figure 4A–D show that CP-PC-SAFT yields reasonably good predictions of VLE
and LLVE in the systems of R134a, tending to slightly underestimate them. At the
same time, it overestimates the high-pressure LLE in R134a—[C6mim][NTf2] at 348.15 K
(Figure 4C). Once again, SAFT-VR-Mie yields broader ranges of phase equilibria for these
systems, which usually deteriorates its accuracy. At the same time, in the case of R134a—
[C8mim][NTf2] (Figure 4D) the performance of SAFT-VR-Mie is superior. Figure 4E,D
demonstrate that both modes yield similarly accurate estimations for VLE in the systems
R1234ze(E)—[C4mim][PF6] and—[C8mim][BF4]. Remarkable, unlike other considered
cases, for these systems SAFT-VR-Mie predicts slightly narrower ranges of VLE phase splits.
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[C8mim][NTf2], [C8mim][BF4], and [C4mim][PF6]. Points—experimental data [11,12,15,16,74,78–80]. Solid lines—
predictions of CP-PC-SAFT, dashed lines—predictions of SAFT-VR-Mie. K12 = 0 for both models.
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Figure 5 exemplifies predictions of the saturated liquid phases densities along LLVE.
As seen, the results of both models in predicting these challenging data are usually reason-
ably good. Remarkable, despite the significant differences between CP-PC-SAFT and SAFT-
VR-Mie in estimating the LLVE compositions of some systems (see Figures 2F, 3A, and 4B),
their results of for the densities can be rather similar (see Figure 5A,C,F). Moreover, de-
spite the nearly identical overestimations of the LLVE phase splits in R125-[C4mim][PF6]
(Figure 3D) by both models, the predictions of the pertinent densities are particularly accu-
rate. At the same time, while CP-PC-SAFT accurately predicts both the compositions and
the densities of R134a—[C2mim][NTf2] (Figures 4A and 5E), a major overestimation of the
LLVE range by SAFT-VR-Mie affects its estimations of the densities as well. Besides that, it
can be seen that both models are capable of predicting the barotropy effect in the system
R123—[C4mim][PF6] (Figure 3B). Remarkable, SAFT-VR-Mie estimates the barotropic point
more accurately than CP-PC-SAFT.

Figure 6 depicts the critical loci in the systems of R134a and [C6mim][NTf2], [C2mim][NTf2],
and [C4mim][PF6]. Expectedly, the experimental critical pressures of these systems rise
with a decrease of the Ils’ compressibilities and the corresponding increase of their systems
asymmetry. All these systems exhibit Type V behavior according to the classification of
van Konynenburg and Scott [81,82].

As seen, CP-PC-SAFT correctly predicts both the topology of all these systems and
the tendencies established by their critical data. Certain overestimations of the critical
pressures ire not surprising while bearing in mind the results of this model for the available
LLE data (Figure 4C). At the same time, SAFT-VR-Mie overestimates the critical loci in a
much more significant manner. Figure 6 demonstrates that it correctly predicts the phase
behavior of Type V only for the most symmetric R134a—[C6mim][NTf2] system.

For two more asymmetric systems of [C2mim][NTf2], and [C4mim][PF6], this model in-
correctly estimates the behavior of Type III. This result also explains the shapes of LLVE and
their densities yielded by SAFT-VR-Mie for these systems (see Figure 4A,B and Figure 5E,F),
which do not exhibit a lower critical endpoint (LCEP). It can also be seen that SAFT-VR-Mie
erroneously predicts the phase behavior of Type III for the system R124—[C2mim][NTf2],
while CP-PC-SAFT correctly estimates for it, Type V (see Figures 3A and 5C).

Molecules 2021, 26, x FOR PEER REVIEW 11 of 16 

1300 1400 1500 1600
0

3

6

9

LLVE, IL-rich phase
LLVE, R114-rich phase

P(bar)
R114(1) - 

[C2mim][NTf2](2)12

ρ(g/dm3)

A

 ρ(g/dm3)1300 1400 1500 1600
0.0

1.5

3.0

4.5

LLVE, IL-rich phase
LLVE, R123-rich phase

P(bar)
R123(1) - 

[C4mim][PF6](2)83
B

1000 1200 1400 1600
0

7

14

21
LLVE, IL-rich phase
LLVE, R124-rich phaseP(bar)

R124(1) -
[C2mim][NTf2](2)12

ρ(g/dm3)

C

 750 1050 1350 1650
0

12

24

36

LLVE, IL-rich phase
LLVE, R125-rich phase

P(bar)
R125(1) - 

[C4mim][PF6](2)11,75

ρ(g/dm3)

D

800 1080 1360 1640
0

10

20

30

LLVE, IL-rich phase
LLVE, R134a-rich phase

P(bar)

R134a(1) - [C2mim][NTf2](2)12

ρ(g/dm3)

E

 800 1000 1200 1400
0

12

24

36
LLVE, IL-rich phase
LLVE, R134a-rich phaseP(bar)

ρ(g/dm3)

R134a(1) - 
[C4mim][PF6](2)11

F

Figure 5. Densities of saturated liquid phases along LLVE in the systems of R114, R123, R124, R134a dissolved in 
[C2mim][NTf2] and [C4mim][PF6]. Points—experimental data [11,12,75,83]. Solid lines—predictions of CP-PC-SAFT, 
dashed lines—predictions of SAFT-VR-Mie. k12 = 0 for both models. 

Figure 5. Cont.



Molecules 2021, 26, 6621 10 of 15

Molecules 2021, 26, x FOR PEER REVIEW 11 of 16 
 

 

1300 1400 1500 1600
0

3

6

9

LLVE, IL-rich phase
LLVE, R114-rich phase

P(bar)
R114(1) - 

[C2mim][NTf2](2)12

ρ(g/dm3)

A

 

 

ρ(g/dm3)1300 1400 1500 1600
0.0

1.5

3.0

4.5

LLVE, IL-rich phase
LLVE, R123-rich phase

P(bar)
R123(1) - 

[C4mim][PF6](2)81
B

1000 1200 1400 1600
0

7

14

21
LLVE, IL-rich phase
LLVE, R124-rich phaseP(bar)

R124(1) - 
[C2mim][NTf2](2)12

ρ(g/dm3)

C

 750 1050 1350 1650
0

12

24

36

LLVE, IL-rich phase
LLVE, R125-rich phase

P(bar)
R125(1) - 

[C4mim][PF6](2)11,75

ρ(g/dm3)

D

800 1080 1360 1640
0

10

20

30

LLVE, IL-rich phase
LLVE, R134a-rich phase

P(bar)

R134a(1) - [C2mim][NTf2](2)12

ρ(g/dm3)

E

 800 1000 1200 1400
0

12

24

36
LLVE, IL-rich phase
LLVE, R134a-rich phaseP(bar)

ρ(g/dm3)

R134a(1) - 
[C4mim][PF6](2)11

F

Figure 5. Densities of saturated liquid phases along LLVE in the systems of R114, R123, R124, R134a dissolved in 
[C2mim][NTf2] and [C4mim][PF6]. Points—experimental data [11,12,75,83]. Solid lines—predictions of CP-PC-SAFT, 
dashed lines—predictions of SAFT-VR-Mie. k12 = 0 for both models. 

 

 

Figure 5. Densities of saturated liquid phases along LLVE in the systems of R114, R123, R124, R134a dissolved in
[C2mim][NTf2] and [C4mim][PF6]. Points—experimental data [11,12,75,83]. Solid lines—predictions of CP-PC-SAFT,
dashed lines—predictions of SAFT-VR-Mie. k12 = 0 for both models.

Molecules 2021, 26, x FOR PEER REVIEW 12 of 16 
 

 

T (K)250 300 350 400 450 500
0

400

800

1200

1600

R134a - [C6mim][NTf2] 
R134a - [C2mim][NTf2] 
R134a - [C4mim][PF6] 

P (bar)

 
Figure 6. Critical loci in the systems of R134a and [C6mim][NTf2], [C2mim][NTf2], and [C4mim][PF6]. 
Points—experimental data [84]. Solid lines—predictions of CP-PC-SAFT, dashed lines—predictions 
of SAFT-VR-Mie. k12 = 0 for both models. 

4. Conclusions 
This study compared performances of two molecularly based approaches, namely 

CP-PC-SAFT and SAFT-VR-Mie, in predicting the available data on VLE, LLVE, critical 
loci and saturated phase densities of systems of CO, O2, CH4, H2S, SO2, propane, and the 
refrigerants R22, R23, R114, R124, R125, R125, R134a, and R1234ze(E) with [C2mim][NTf2], 
[C4mim][NTf2], [C6mim][NTf2], [C8mim][NTf2], [C4mim][BF4], [C8mim][BF4], and 
[C4mim][PF6] ILs. Both models were implemented to mixtures in an entirely predictive 
manner with k12 = 0. In order to preserve a predictive character of the pure compound 
parameterization, all the compounds were treated as non-polar and non-associating. This 
approach can be assessed as oversimplification because some of the considered 
compounds are polar and associating. At the same time, these intermolecular interactions 
influence the values of the critical constants, and therefore their effects are still indirectly 
counted. Remarkably, in the cases of polar and possibly associating compounds, SAFT-
VR-Mie yields higher overestimations of the critical pressures. It has been demonstrated 
that the systems of CO, O2, CH4, H2S and SO2 obey a regularity previously detected for the 
systems of refrigerants and other compounds, namely a rise of solubilities with an increase 
of the ILs’ compressibilities. This regularity is explained by the fundamental GPD 
considerations. Since the imaginary Tc and Pc values of the more compressible ILs are 
lower, their systems are more symmetric, thus increasing the solubilities and vice versa. 
Similarly, the higher critical constants of solutes also reduce the asymmetry and increase 
the solubilities. 

SAFT-VR-Mie is a more sophisticated model versus CP-PC-SAFT and its theoretical 
background is more advanced. Nevertheless, it appears that the GPD factors have a major 
influence on predicting phase equilibria in the IL systems. In particular, while CP-PC-
SAFT rigorously obeys the literature values of both Tc and Pc of gases, SAFT-VR-Mie 
matches just the Tc and overestimates the Pc. The latter is supposed to reduce the systems 
asymmetry. Nevertheless, being fitted to the same high-pressure density data of the 
considered ILs, SAFT-VR-Mie yields the higher Tc and Pc values versus CP-PC-SAFT. 
Unfortunately, at the current level of expertise, it does not seem possible to judge which 
IL critical constants sets are more realistic. Nevertheless, it has been demonstrated that the 
higher critical constants of ILs generated by SAFT-VR-Mie probably result in 
overestimating the ranges of phase splits and lead to an inferior accuracy in predicting 

Figure 6. Critical loci in the systems of R134a and [C6mim][NTf2], [C2mim][NTf2], and [C4mim][PF6].
Points—experimental data [84]. Solid lines—predictions of CP-PC-SAFT, dashed lines—predictions
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4. Conclusions

This study compared performances of two molecularly based approaches, namely
CP-PC-SAFT and SAFT-VR-Mie, in predicting the available data on VLE, LLVE, criti-
cal loci and saturated phase densities of systems of CO, O2, CH4, H2S, SO2, propane,
and the refrigerants R22, R23, R114, R124, R125, R125, R134a, and R1234ze(E) with
[C2mim][NTf2], [C4mim][NTf2], [C6mim][NTf2], [C8mim][NTf2], [C4mim][BF4], [C8mim][BF4],
and [C4mim][PF6] ILs. Both models were implemented to mixtures in an entirely predictive
manner with k12 = 0. In order to preserve a predictive character of the pure compound
parameterization, all the compounds were treated as non-polar and non-associating. This
approach can be assessed as oversimplification because some of the considered compounds
are polar and associating. At the same time, these intermolecular interactions influence
the values of the critical constants, and therefore their effects are still indirectly counted.
Remarkably, in the cases of polar and possibly associating compounds, SAFT-VR-Mie
yields higher overestimations of the critical pressures. It has been demonstrated that the
systems of CO, O2, CH4, H2S and SO2 obey a regularity previously detected for the systems
of refrigerants and other compounds, namely a rise of solubilities with an increase of the
ILs’ compressibilities. This regularity is explained by the fundamental GPD considerations.
Since the imaginary Tc and Pc values of the more compressible ILs are lower, their systems
are more symmetric, thus increasing the solubilities and vice versa. Similarly, the higher
critical constants of solutes also reduce the asymmetry and increase the solubilities.

SAFT-VR-Mie is a more sophisticated model versus CP-PC-SAFT and its theoretical
background is more advanced. Nevertheless, it appears that the GPD factors have a major
influence on predicting phase equilibria in the IL systems. In particular, while CP-PC-SAFT
rigorously obeys the literature values of both Tc and Pc of gases, SAFT-VR-Mie matches just
the Tc and overestimates the Pc. The latter is supposed to reduce the systems asymmetry.
Nevertheless, being fitted to the same high-pressure density data of the considered ILs,
SAFT-VR-Mie yields the higher Tc and Pc values versus CP-PC-SAFT. Unfortunately, at
the current level of expertise, it does not seem possible to judge which IL critical constants
sets are more realistic. Nevertheless, it has been demonstrated that the higher critical
constants of ILs generated by SAFT-VR-Mie probably result in overestimating the ranges of
phase splits and lead to an inferior accuracy in predicting phase equilibria in many systems
compared with CP-PC-SAFT. However, in certain cases, both models yielded similar results.
Moreover, some data, such as VLE in the systems R114—[C2mim][NTf2] and R134a—
[C4mim][PF6], along with the barotropic point of R123—[C4mim][PF6], were predicted
more accurately by SAFT-VR-Mie. At the same time, despite a number of quantitative
inaccuracies, both models were capable of reproducing the regularities characteristic for the
considered systems, which makes them suitable for preliminary estimation of selectivity of
the ILs in separating various gases.
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6. Paduszyński, K. Extensive evaluation of the conductor-like screening model for real solvents method in predicting liquid-liquid
equilibria in ternary systems of ionic liquids with molecular compounds. J. Phys. Chem. B 2018, 122, 4016–4028. [CrossRef]
[PubMed]

7. Palomar, J.; Ferro, V.R.; Torrecilla, J.S.; Rodríguez, F. Density and molar volume predictions using COSMO-RS for ionic liquids.
An approach to solvent design. Ind. Eng. Chem. Res. 2007, 46, 6041–6048. [CrossRef]

8. Paduszyński, K.; Królikowska, M. Extensive evaluation of performance of the COSMO-RS approach in capturing liquid–liquid
equilibria of binary mixtures of ionic liquids with molecular compounds. Ind. Eng. Chem. Res 2020, 59, 11851–11863. [CrossRef]

9. Chen, Y.; Liu, X.; Woodley, J.M.; Kontogeorgis, G.M. Gas solubility in ionic liquids: UNIFAC-IL model extension. Ind. Eng. Chem.
Res. 2020, 59, 16805–16821. [CrossRef]

10. Shariati, A.; Peters, C.J. High-pressure phase behavior of systems with ionic liquids: Measurements and modeling of[ the binary
system fluoroform + 1-ethyl-3-methylimidazolium hexafluorophosphate. J. Supercrit. Fluids 2003, 25, 109–117. [CrossRef]

11. Shiflett, M.B.; Yokozeki, A. Vapor-liquid-liquid equilibria of hydrofluorocarbons + 1-butyl-3-methylimidazolium hexafluorophos-
phate. J. Chem. Eng. Data 2006, 51, 1931–1939. [CrossRef]

12. Shiflett, M.B.; Yokozeki, A. Solubility differences of halocarbon isomers in ionic liquid [emim][Tf2N]. J. Chem. Eng. Data 2007, 52,
2007–2015. [CrossRef]

13. Álvarez, V.H.; Aznar, M. Thermodynamic modeling of vapor–liquid equilibrium of binary systems ionic liquid + supercritical
{CO2 or CHF3} and ionic liquid + hydrocarbons using Peng–Robinson equation of state. J. Chin. Inst. Chem. Eng. 2008, 39, 353–360.
[CrossRef]

14. Shiflett, M.B.; Yokozeki, A. Binary vapor–liquid and vapor–liquid–liquid equilibria of hydrofluorocarbons (HFC-125 and HFC-
143a) and hydrofluoroethers (HFE-125 and HFE-143a) with ionic liquid [emim][Tf2N]. J. Chem. Eng. Data 2008, 53, 492–497.
[CrossRef]

15. Ren, W.; Scurto, A.M. Phase equilibria of imidazolium ionic liquids and the refrigerant gas, 1,1,1,2-tetrafluoroethane (R-134a).
Fluid Phase Equilib. 2009, 286, 1–7. [CrossRef]

16. Ren, W.; Scurto, A.; Shiflett, M.B.; Yokozeki, A. Phase behavior and equilibria of ionic liquids and refrigerants: 1-ethyl-3-methyl-
imidazolium bis(trifluoromethylsulfonyl)imide ([EMim][Tf2N]) and R-134a. ACS Symp. Ser. 2009, 1006, 112–128.

17. Yokozeki, A.; Shiflett, M.B. Gas solubilities in ionic liquids using a generic van der Waals equation of state. J. Supercrit. Fluids
2010, 55, 846–851. [CrossRef]

18. Kim, S.; Patel, N.; Kohl, P.A. Performance simulation of ionic liquid and hydrofluorocarbon working fluids for an absorption
refrigeration system. Ind. Eng. Chem. Res. 2013, 52, 6329–6335. [CrossRef]

19. Freitas, A.C.D.; Cunico, L.P.; Aznar, M.; Guirardello, R. Modeling vapor liquid equilibrium of ionic liquids + gas binary systems
at high pressure with cubic equations of state. Braz. J. Chem. Eng. 2013, 30, 63–73. [CrossRef]

20. Shariati, A.; Ashrafmansouri, S.-S.; Haji Osbuei, M.; Hooshdaran, B. Critical properties and acentric factors of ionic liquids. Korean
J. Chem. Eng. 2013, 30, 187–193. [CrossRef]

21. Faúndez, C.A.; Barrientos, L.A.; Valderrama, J.O. Modeling and thermodynamic consistency of solubility data of refrigerants in
ionic liquids. Int. J. Refrig. 2013, 36, 2242–2250. [CrossRef]

22. Shiflett, M.B.; Corbin, D.R.; Elliott, B.A.; Yokozeki, A. Sorption of trifluoromethane in zeolites and ionic liquid. J. Chem. Thermodyn.
2013, 64, 40–49. [CrossRef]

23. Kim, S.; Kohl, P.A. Analysis of [hmim][PF6] and [hmim][Tf2N] ionic liquids as absorbents for an absorption refrigeration system.
Int. J. Refrig. 2014, 48, 105–113. [CrossRef]

24. Panah, H.S. Modeling H2S and CO2 solubility in ionic liquids using the CPA equation of state through a new approach. Fluid
Phase Equilib. 2017, 437, 155–165. [CrossRef]

25. Shojaeian, A. Thermodynamic modeling of solubility of hydrogen sulfide in ionic liquids using Peng Robinson-Two State equation
of state. J. Mol. Liq. 2017, 229, 591–598. [CrossRef]

26. Shojaeian, A.; Fatoorehchi, H. Modeling solubility of refrigerants in ionic liquids using Peng Robinson-Two State equation of
state. Fluid Phase Equilib. 2019, 486, 80–90. [CrossRef]

http://doi.org/10.1021/cr300497a
http://doi.org/10.1016/j.fluid.2012.06.026
http://doi.org/10.3390/pr7050277
http://doi.org/10.1021/ie102471b
http://doi.org/10.1021/ie2025322
http://doi.org/10.1021/acs.jpcb.7b12115
http://www.ncbi.nlm.nih.gov/pubmed/29533649
http://doi.org/10.1021/ie070445x
http://doi.org/10.1021/acs.iecr.0c00449
http://doi.org/10.1021/acs.iecr.0c02769
http://doi.org/10.1016/S0896-8446(02)00160-2
http://doi.org/10.1021/je060275f
http://doi.org/10.1021/je700295e
http://doi.org/10.1016/j.jcice.2008.02.007
http://doi.org/10.1021/je700588d
http://doi.org/10.1016/j.fluid.2009.07.007
http://doi.org/10.1016/j.supflu.2010.09.015
http://doi.org/10.1021/ie400261g
http://doi.org/10.1590/S0104-66322013000100008
http://doi.org/10.1007/s11814-012-0118-9
http://doi.org/10.1016/j.ijrefrig.2013.06.006
http://doi.org/10.1016/j.jct.2013.04.018
http://doi.org/10.1016/j.ijrefrig.2014.09.003
http://doi.org/10.1016/j.fluid.2017.01.023
http://doi.org/10.1016/j.molliq.2016.12.001
http://doi.org/10.1016/j.fluid.2019.01.003


Molecules 2021, 26, 6621 13 of 15

27. Morais, A.R.C.; Harders, A.N.; Baca, K.R.; Olsen, G.M.; Befort, B.J.; Dowling, A.W.; Maginn, E.J.; Shiflett, M.B. Phase equilibria,
diffusivities, and equation of state modeling of HFC-32 and HFC-125 in imidazolium-based ionic liquids for the separation of
R-410A. Ind. Eng. Chem. Res. 2020, 59, 18222–18235. [CrossRef]

28. Karakatsani, E.; Economou, I.; Kroon, M.C.; Witkamp, G.-J. TPC-PSAFT modeling of gas solubility in imidazolium-based ionic
liquids. J. Phys. Chem. C 2007, 111, 15487–15492. [CrossRef]

29. Chen, Y.; Mutelet, F.; Jaubert, J.-N. Modeling the solubility of carbon dioxide in imidazolium-based ionic liquids with the PC-SAFT
equation of state. J. Phys. Chem. B 2012, 116, 14375–14388. [CrossRef] [PubMed]
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