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AT A GLANCE COMMENTARY 

 
Scientific Knowledge on the Subject: 
 
Cross sectional studies have identified COPD protein biomarkers and biologic pathways 
that are associated with spirometric measures of airflow obstruction and reduced forced 
expiratory volume at one second (FEV1); a smaller number of studies have found protein 
biomarkers that are associated with accelerated decline in FEV1. However, large scale 
COPD prognostic proteomic studies with replication across diverse cohorts and studies 
relating progression of airflow obstruction with dynamic changes in protein biomarkers 
are lacking. 
 
 
What This Study Adds to the Field: 
 
In three large longitudinal studies that include non-Hispanic White and Black Americans, 
we identified multiple replicated protein biomarkers associated with COPD progression 
measured by spirometry. The strongest association with COPD progression was with 
leptin, for which higher plasma levels were associated with less COPD progression. 
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ABSTRACT  

Rationale: Identification and validation of circulating biomarkers for lung function decline 

in COPD remains an unmet need. 

Objective: Identify prognostic and dynamic plasma protein biomarkers of COPD 

progression. 

Methods: We measured plasma proteins using SomaScan from two COPD-enriched 

cohorts, the Subpopulations and Intermediate Outcomes Measures in COPD Study 

(SPIROMICS) and Genetic Epidemiology of COPD (COPDGene), and one population-

based cohort, Multi-Ethnic Study of Atherosclerosis (MESA) Lung. Using SPIROMICS 

as a discovery cohort, linear mixed models identified baseline proteins that predicted future 

change in FEV1 (prognostic model) and proteins whose expression changed with change 

in lung function (dynamic model). Findings were replicated in COPDGene and MESA-

Lung. Using the COPD-enriched cohorts, Gene Set Enrichment Analysis (GSEA) 

identified proteins shared between COPDGene and SPIROMICS. Metascape identified 

significant associated pathways.  

Measurements and Main Results:  The prognostic model found 7 significant proteins in 

common (p < 0.05) among all 3 cohorts. After applying false discovery rate (adjusted p < 

0.2), leptin remained significant in all three cohorts and growth hormone receptor remained 

significant in the two COPD cohorts. Elevated baseline levels of leptin and growth 

hormone receptor were associated with slower rate of decline in FEV1. Twelve proteins 
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were nominally but not FDR significant in the dynamic model and all were distinct from 

the prognostic model. Metascape identified several immune related pathways unique to 

prognostic and dynamic proteins. 

Conclusion: We identified leptin as the most reproducible COPD progression biomarker. 

The difference between prognostic and dynamic proteins suggests disease activity 

signatures may be different from prognosis signatures.  

Abstract word count: 250 
 
Key Words: 

1. Proteomics 
2. Disease Progression 
3. Spirometry 
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INTRODUCTION  

Chronic obstructive pulmonary disease (COPD) has higher mortality in individuals 

with rapidly progressive disease (1, 2). The gold standard for COPD diagnosis is post 

bronchodilator (BD) spirometric forced expiratory volume at one second (FEV1)/forced 

vital capacity (FVC) < 0.7; FEV1 decline is the best studied parameter to assess disease 

progression. Beyond continued smoking and repeated exacerbations, the factors leading to 

COPD progression are poorly understood (3, 4). Thus, identification of biomarkers that can 

be used for COPD prognosis or as pharmaceutical targets is a major unmet research need. 

Although COPD affects the lungs, it has significant systemic extra-pulmonary 

manifestations such as muscle loss, cardiovascular disease, and osteoporosis (5, 6). 

Circulating (blood) biomarkers, which are less invasive to obtain than lung biomarkers, 

may therefore act as surrogate markers for assessing COPD risk and disease activity. While 

there have been multiple studies investigating cross sectional blood biomarkers for COPD 

(diagnostic biomarkers) in large, well-phenotyped cohorts such as ECLIPSE, 

SPIROMICS, and COPDGene , there are fewer studies that have investigated biomarkers 

of COPD progression (prognostic biomarkers) and none that have comprehensively 

evaluated disease activity by correlating change in biomarker concentration to disease 

progression (dynamic biomarkers) (7). A major limitation to many biomarker publications 

is that they lack external validation or do not replicate across different publications, 

possibly due to cohort heterogeneity, e.g., population-based versus enriched for COPD (8).  
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There are several reasons why a large-scale, longitudinal biomarker study with 

validation in independent diverse cohorts is the best approach to identify COPD 

progression biomarkers. First, COPD is a heterogenous condition and there are likely a 

plethora of multifactorial pathologic changes that lead to airflow obstruction over time. 

Second, smaller studies have shown that effect sizes of individual protein biomarker of 

COPD are small, so a comprehensive approach including combinations of biomarkers is 

most likely to improve modeling of COPD progression (9). Third, most biomarker studies 

include predominantly European ancestry subjects, and it is not clear whether findings can 

be replicated in non-European ancestry subjects, limiting the generalizability of the 

findings. Fourth, COPD is a dynamic disease with intermittent progression. Thus, disease 

activity biomarkers are best assessed as biomarkers that change as the disease progresses. 

Identifying prognostic and dynamic biomarkers of FEV1 decline may provide better insight 

into COPD progression.  

This study utilizes an innovative proteomic platform (SomaScan) to identify 

prognostic and dynamic proteins associated with decline in FEV1 across three independent 

cohorts, with the Subpopulations and Intermediate Outcomes Measures in COPD Study 

(SPIROMICS) as the discovery cohort, and the Genetic Epidemiology of COPD 

(COPDGene) and Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study as the 

validation cohorts. 
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METHODS  

Cohort Descriptions 

We analyzed three NIH-funded, multi-center observational cohort studies (Figure 

1) all of which were approved by local Institutional Review Boards. All participants 

provided informed written consent. The full protocols for participant enrollment for each 

cohort were previously described elsewhere (10,12-14).  

From 2010 to 2015 SPIROMICS (ClinialTrials.gov Identifier: NCT01969344) 

enrolled 2,981 participants ages 40-80 years old into 4 strata: never smokers (< 1 pack 

year), smokers with normal spirometry, mild/moderate COPD, and severe COPD. Blood 

specimens and spirometry were collected at baseline, year 1, year 3 and a final visit that 

occurred approximately 5-7 years after the baseline visit.  

From 2013 to 2017, COPDGene (ClinialTrials.gov Identifier: NCT00608764), 

enrolled 10,198 non-Hispanic white and non-Hispanic Black never smokers, former 

smokers, and current smokers ages 45-80 with and without COPD with follow up visits 

occurring 5 years and 10 years from their initial visit.  

From 2002 to 2004, MESA (ClinialTrials.gov Identifier: NCT00005487) recruited 

a multi-ethnic cohort of 6,814 participants from the community who self-identified as 

either White, Black, Hispanic, or Asian race/ethnicity, were ages 45-84 years old and free 

of clinical cardiovascular disease to investigate the prevalence, correlates, and progression 

of subclinical cardiovascular disease (15). From 2004 to 2006, the MESA-Lung Study 
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enrolled 3,965 MESA participants who were sampled randomly among those who 

consented to genetic analysis, underwent baseline measures of endothelial function, and 

attended an examination during the recruitment period (16). The current replication sample 

was limited to 483 Black individuals who had at least 1 spirometry measurement over up 

to 14 years of follow-up.  

Biomarker Panel  

Plasma samples were assayed on aptamer-based SomaScan platforms Version 4.1 

(7,288 human SOMAmer that map to 6,467 unique proteins) in SPIROMICS and MESA-

Lung and version 4.0 (4,979 human SOMAmers that map to 4,860 unique proteins) in 

COPDGene (10). Additional information can be found in the supplemental text. 

Clinical Definitions and Study Population  

COPD was defined by post-bronchodilator FEV1 to FVC ratio < 0.70; in MESA-

Lung, only pre-bronchodilator spirometry measurements were available in Exam 3 and 

thus used for Exams 3 through 6 to define COPD. All three cohorts used self-defined race, 

chosen from a limited number of categories. We refer to the selected choices of “Black” 

and/or “African American” as “Black” and where participants selected “White” and/or the 

historically used category “Caucasian” we refer to their race/ancestry as “White.”  

All participants who consented to genetic analysis, had available proteomics 

results, and spirometry for at least 1 visit were included (Figure 1). To better compare 
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between COPDGene and SPIROMICS, COPDGene subjects were categorized into the 4 

SPIROMICS enrollment strata and excluded if they did not meet strata criteria. We 

minimized variability caused by smoking in SPIROMICS and COPDGene by analyzing 

subjects who maintained consistent smoking status throughout the study. Since MESA-

Lung is a population cohort and had a smaller sample size, we did not limit to those who 

maintained consistent smoking status and we did not apply the SPIROMICS enrollment 

criteria. SomaScan v4.0 results were only run at the 5 and 10 year follow up for 

COPDGene. Thus, we included only participants who had at least 1 visit at the 5 or 10 

years follow up with spirometry and proteomic results. 

The final datasets consisted of N=1,875 subjects for SPIROMICS, N=4,244 for 

COPDGene and N=483 for MESA-Lung (Figure 1).  

Statistical Analysis  

To identify baseline prognostic biomarkers of disease progression, we used a linear 

mixed effects model to identify proteins at baseline associated with change in FEV1 over 

the follow-up period (fixed effect of protein*time interaction). Clinical covariates modeled 

as fixed effects included age, age2, race, sex, smoking status, time-varying pack years, 

exacerbation history prior to baseline, baseline FVC, and time (in years) since baseline 

(first visit with protein measurement) in all 3 cohorts. A Benjamini-Hochberg adjusted p-

value < 0.20 denoted false discovery rate (FDR) significant results and a p-value < 0.05 

was used for nominal significance. 
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To assess multi-protein prognostic model performance, we examined the Akaike 

information criteria (AIC), Bayesian information criteria (BIC), and marginal R2 when 

each identified protein was added to the base clinical model individually for the COPD-

enriched cohorts only. A backward selection approach was then applied to identify a 

combination of proteins that best improved the clinical model for with SPIROMICS as 

discovery and COPDGene as the validation cohort. 

To characterize the dynamic protein level changes associated with lung function 

change over time, we used a linear mixed effect model to examine FEV1 versus the 

interaction of longitudinal protein levels and time in years (protein*years interaction) for 

SPIROMICS and COPDGene. This model was not assessed in MESA-Lung as only 

baseline SomaScan samples were available. Covariates included age, body mass index 

(BMI), smoking status, smoking pack-years, sex, and race. FDR and nominal significance 

were defined as they were for the prognostic model. 

Common Enrichment Pathways for FEV1 Decline  

We used Gene Set Enrichment Analysis (GSEA) (v4.2.3) to identify the top protein 

relationships across SPIROMICS and COPDGene from the prognostic and dynamic 

change models, respectively (17, 18). GSEA analyzed the top 200 proteins associated with 

change in FEV1 in COPDGene and all 7k proteins ranked by t-statistics for FEV1 decline 

from both prognostic and dynamic models. Significant enrichment was defined by an FDR 

corrected p-value < 0.05. Most strongly associated leading edge proteins across the two 
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cohorts in both models were used in Metascape functional enrichment analysis (19). A 

minimum enrichment of 1.5 was required to be included and p-value < 0.05 was used to 

identify statistically significant pathways. 

Additional information on methods are provided under the supplemental text. 

 

RESULTS  

Characteristics of study population  

The baseline characteristics of cohort participants are described in Table 1. As a 

population-based cohort, MESA-Lung participants had fewer cumulative smoking pack 

years, less prevalent COPD, and better lung function. The total analyzed follow-up periods 

of the three cohorts were similar (~5 years). 

Prognostic Protein Biomarkers for changes in FEV1 

The prognostic model focused on identifying baseline proteins that can predict 

future changes in FEV1. In the SPIROMICS (discovery) cohort, we identified 365 

SOMAmers representing 347 proteins associated with FEV1 decline at nominal statistical 

significance (p-value < 0.05); 31 and 25 respectively remained statistically significant after 

FDR adjustments (adjusted p-value < 0.2) (Table E1). Next, we sought to see which 

significant proteins from the SPIROMICS analysis were also significant in a similar 

COPD-enriched cohort (COPDGene) and a population cohort of Black Americans (MESA-
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Lung) (Figure 2A). In COPDGene, there were 406 SOMAmers representing 401 proteins 

that were also significantly associated with FEV1, but only 47 proteins significantly 

associated with FEV1 after adjusting for multiple-testing (FDR p-value < 0.2). In the 

MESA-Lung cohort there were 330 SOMAmers representing 315 proteins that were 

nominally significant, with 8 and 7 respectively that remained FDR significant. Notably, 

leptin was FDR significant (adjusted p-value < 0.2) in all three cohorts and higher values 

of leptin were associated with lower decline in FEV1 over the 5 year follow up (Figure 

2B). Other protective proteins included growth hormone receptor (GHR) and fatty acid 

binding protein 3 (FABP3). GHR was FDR significant in the two COPD-enriched cohorts. 

Insulin growth factor binding protein-2 (IGFBP-2) is an example of an opposite 

relationship in that higher levels of the IGFBP-2 were associated with faster FEV1 decline 

(risk proteins).  

Proteins which improve model fit for a multi-variate COPD progression model  

Next, we examined which of the seven proteins with nominal significance in all 

three cohorts could improve FEV1 progression model fit compared to using only clinical 

and demographic characteristics (clinical model). Most proteins individually improved 

AIC, BIC, and marginal R2 in both SPIROMICS and COPDGene (Table E2). Using 

backward selection, we found a combination of 3 proteins (placental alkaline phosphatase 

(ALPP), IGFBP-2, and leptin) best improved the clinical model. ALPP, a well-known 

biomarker of smoking, improved modeling of FEV1 progression even with adjustment for 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.07.24311507doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.07.24311507
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

current smoking, suggesting that treating smoking as a binary variable may incompletely 

capture the effect of continued smoking on progression of COPD. In the SPIROMICS 

cohort we found only a weak relationship between ALPP and number of cigarettes smoked 

per day or urinary cotinine level in smokers, thus it’s not clear that there is significantly 

better modeling with smoking history. Alternatively, ALPP is also an oncoprotein and can 

bind viruses such as Zika. Thus, there may be functions of ALPP not related to smoking. 

A model estimating annualized decline in FEV1 

To assess the clinical value of the progression model created using SPIROMICS 

data, we used this model to calculate predicted change in COPDGene subjects and 

compared this to observed annualized change in FEV1 (Figure 3). This independent 

clinical/protein progression model validation suggests that our model performs well in 

identifying subjects at high and low risk of progression. For instance, the first decile in 

SPIROMICS and COPDGene had an observed median FEV1 mL/year change of -127.226 

and -107.132 respectively, while the tenth decile had 42.213 and 37.705 (Table E2).  

Dynamic Protein Changes Associated with Changes in FEV1 

Many SPIROMICS and COPDGene subjects had multiple visits with proteomic 

assessments (Table E6). Thus, we could evaluate whether there are protein biomarkers 

whose changes were associated with FEV1 (dynamic or disease activity biomarkers). In 

SPIROMICS, longitudinal changes in FEV1 decline were associated with changes in 686 
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proteins (717 SOMAmers) at p-value < 0.05 and 155 proteins (163 SOMAmers) at FDR 

p-value < 0.2. 69 proteins (71 SOMAmers) were nominally significant in both cohorts, but 

none were FDR significant in both cohorts. Twelve of these 69 proteins were FDR 

significant in SPIROMICS and nominally significant in COPDGene (Figure 4, Table E1). 

Some of the stronger associations were for Phosphoglycerate mutase 1 & 2 (PGAM1 & 

PGAM 2), which play key roles in glycolysis, and Glutamyl aminopeptidase (ENPEP), 

which cleaves N-terminal aspartate or glutamate, thereby changing protein functions for 

diverse functions such as capillary angiogenesis. 

 

GSEA identifies similarities between SPIROMICS & COPDGene in protein expression 

associated with FEV1 decline  

To determine which pathways associated with COPD progression were in common 

between COPDGene and SPIROMICS, we used gene set enrichment analysis (GSEA) to 

find overlapping proteins and then used Metascape to identify pathways for both the 

prognostic and dynamical models (Figure 5). For the prognostic and dynamic models, 

there were 70 (adjusted p-value < 0.05) and 128 (adjusted p-value < 0.05) proteins that 

were significantly and concordantly enriched (Figure 5, Table E5). The most significant 

pathway in the prognostic model of COPD progression was the complement system and 

the most significant for the dynamic model was the PID AVB3 OPN pathway, which 

represents osteopontin mediated events (Figure E2). Although the peptide hormone 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.07.24311507doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.07.24311507
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

metabolism pathway was common between the prognostic and dynamic models, the 

majority of functional categories were distinct, suggesting that the protein pathways that 

represent prognostic value for predicting future changes in FEV1 are different from the 

pathways that change with disease activity (Figure E2).  

 

DISCUSSION  

This is one of the largest studies leveraging high-throughput proteomic profiling to 

identify prognostic and dynamic biomarkers associated with longitudinal changes in FEV1 

in three large, well-phenotyped cohorts (COPDGene, SPIROMICS and MESA-Lung). Our 

study validated leptin as a prognostic biomarker with higher baseline leptin levels 

associated with slower FEV1 decline across all cohorts. Higher baseline growth hormone 

receptor (GHR) was also associated with slower rates of decline, but only in the COPD 

specific cohorts. Additionally, there were dozens of novel prognostic biomarkers 

associated with change in FEV1 at nominal significance across both COPD cohorts. Many 

of these individual biomarkers only partially explained spirometric progression and a 

combination of 3 proteins performed best in predicting FEV1 decline. This finding aligns 

with the concept that COPD progression results from multiple disparate pathologic 

processes, and further supports the notion that multiple biomarkers are needed to predict 

disease progression (9). 
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We are among the first to report the association of higher leptin concentrations with 

a slower rate of change in FEV1 in a model adjusting for BMI and FVC (11). Previous 

studies found leptin inversely correlated with baseline FEV1. However, these studies were 

limited to population-based cohorts or not powered to show an association between leptin 

and longitudinal change in FEV1 (12-14). Other small studies reported inconsistent 

associations between leptin and lung function (15-17). One hypothesis in COPD is that 

leptin, although a known proinflammatory cytokine, contributes to antimicrobial defenses 

that are crucially involved in protection against early small airways disease (18). 

Additionally, leptin is essential to leukocyte function and genetic deficiency of leptin 

impairs host defenses against respiratory tract infections in humans and mice (19-21). 

Leptin is highly associated with obesity (high BMI), which is in turn associated with 

diseases such as diabetes and cardiovascular disease. Conversely, low BMI in the COPD 

population is associated with a 3-fold increase in mortality (22). This suggests that high 

leptin levels could be protective for lung function decline, but excess leptin could be 

deleterious promoting inflammation (obesity paradox) (23).  

GHR is another energy/growth protein which exhibited strong associations with 

COPD progression in COPD enriched cohorts (COPDGene and SPIROMICS), but not in 

the population cohort (MESA-Lung). GHR, like leptin receptor, is a type 1 cytokine 

receptor. Intriguingly, leptin signaling may directly influence growth hormone production 

through the hypothalamus pituitary access, such that low leptin levels decrease growth 

hormone secretion leading to down regulation of growth hormone receptor via growth 
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hormone stimulated processes (24). We also identified insulin-like growth factor binding 

protein-2 (IGFBP-2) as a prognostic biomarker that was FDR significant in SPIROMICS 

and nominally significant in COPDGene and MESA-Lung. IGFBP-2 regulates the 

bioavailability of insulin like growth factor (25). Further research is needed to understand 

how higher leptin levels are protective while higher levels of IGFBP-2 are associated with 

faster progression.  

We found that a composite model (including baseline clinical, demographic, and 

multiple proteins) predicting FEV1 over time performed better than models using only 

single or no proteins. These observations are supported by Zemans et al. who concluded 

that models containing multiple proteins improve predictive value of COPD outcomes 

compared to clinical variables or individual proteins (9). However, this study used AIC to 

assess model improvement and not more strict FDR criteria for significance.  

A unique feature of this study is the use of two different approaches to identify 

proteins predictive of FEV1 decline and dynamically modulated with FEV1 decline in 

multiple large COPD cohorts. Our dynamic model identified 12 proteins that significantly 

change with longitudinal FEV1 change in SPIROMICS with nominal significance in 

COPDGene. All of these proteins have novel associations with COPD, except glutamyl 

aminopeptidase (ENPEP) and high-density lipoprotein binding protein (HDLBP) (26-28). 

We identified several pathways that were significantly prognostic or dynamic, suggesting 

they may be relevant in both early disease and continue to play a role in disease 

progression. The osteopontin-mediated pathway was the most significant dynamically 
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changing pathway for both SPIROMICS and COPDGene cohorts. Osteopontin, a crucial 

lung matrix glycoprotein and cytokine, plays a pivotal role in immune cell recruitment, 

tissue repair, angiogenesis, and remodeling (29). Additionally, the complement pathway 

ranked high in enrichment among leading-edge proteins in the prognostic model. Several 

complement factors have been implicated in COPD's development, progression, and 

exacerbation, contributing to the inflammatory response within the lungs (30). 

Furthermore, some complement factors have been observed to be dysregulated in COPD 

(40). Modulating complement pathways is currently being explored as a therapeutic 

approach for various diseases, including conditions such as Paroxysmal Nocturnal 

Hemoglobinuria (PNH) and kidney disease. Overall, this promising avenue of research 

holds the potential for further exploration in the context of COPD.  

 Strengths of our study include intra-individual repeated measures design, inclusion 

of Black Americans, and large sample size from three different observational cohorts, 

which provides more statistical power compared to cross-sectional and independently 

analyzed observational studies. Nevertheless, our study findings may have been limited by 

clinical and disease heterogeneity across cohorts. Another potential limitation included the 

differences in SomaScan platform (5k vs 7k profiling platforms), but we used GSEA for 

comparison across datasets to address this issue. Depending on the context of use, future 

work to advance biomarker candidates into clinical practice or clinical trials, may require 

confirmatory standard clinical immunoassays. Future analysis could focus on endotyping 
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of COPD patients using proteomic profiling from these cohorts to reduce the disease 

heterogeneity and help identify biomarkers to specific COPD subpopulations.  

In summary, utilizing three large observational cohorts, we have identified protein 

biomarkers such as leptin that predict and dynamically change with FEV1 over time and 

that some of the COPD-associated immune response in the serum may be mediated by 

leptin. The known biological links between leptin and other leading proteins identified in 

this analysis (GHR and IGFBP-2) suggest that leptin may play a central mechanistic role 

in modulating spirometric decline in individuals with COPD. 
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Figure legends 
 
Figure 1: Consort Diagram. Flow diagram depicting the number of participants 
included after application of our study specific exclusion criteria. The SPIROMICS 
enrollment criteria was applied to the COPDGene cohort to reduce the variability 
between participants in each COPD-enriched cohort.  
 
Figure 2: Baseline proteins associated with FEV1 change over time in SPIROMICS, 
COPDGene, and MESA-Lung (A) The x-axes of each panel display the signed -log10(p-
value) (sign of beta estimate * -log10(p-value)) from our discovery cohort, SPIROMICS. 
The y-axes show the signed -log10(p-value) from our validation cohorts, COPDGene and 
MESA-Lung. Proteins highlighted in orange overlapped between our discovery cohort 
and one of our validation cohorts (nominal p-value < 0.05 and beta estimate in same 
direction). Proteins highlighted in blue were FDR significant (adjusted p-value < 0.2) in 
discovery and nominally significant (p-value < 0.05) in validation, with beta estimate in 
the same direction. Points are labeled with Entrez Gene symbol, see Supp. Table 1 for 
corresponding protein target name and additional information. (B) Subjects in each 
cohort were stratified into 4 quartiles based on their baseline leptin expression, with 
group 1 having the lowest baseline leptin and group 4 having the highest. The average 
change in FEV1 (post-bronchodilator for SPIROMICS and COPDGene, pre-
bronchodilator for MESA-Lung) from baseline was calculated for each quartile group at 
each visit. Baseline leptin is predictive of rate of FEV1 change. 
 
Figure 3: Predicted FEV1 change per year by composite prognostic model versus 
observed FEV1 change per year for COPD enriched cohorts (SPIROMICS and 
COPDGene). The plot is limited to the last follow-up visit at least 3 years after baseline 
for each subject. 
 
Figure 4: Proteins dynamically associated with FEV1 over time in SPIROMICS and 
COPDGene. The axes display the signed -log10(p-value) (sign of beta estimate * -
log10(p-value)) from our discovery cohort, SPIROMICS, and our validation cohort, 
COPDGene. 72 proteins were identified that overlapped between two cohorts changing in 
the same direction (nominal p-value < 0.05) highlighted in orange. 12 of those proteins 
highlighted in blue were FDR significant (adjusted p-value < 0.2) in SPIROMICS. Points 
are labeled with Entrez Gene symbol, see Supp. Table 4 for corresponding protein target 
name and additional information. 
 
Figure 5: Enrichment between COPD datasets for prognostic and dynamic 
biomarkers in response to change in FEV1 over time. (A) Figure shows the strategy 
flow diagram that was used to identify proteins that are most enriched between the 
SPIROMICS and COPDGene data sets for the Prognostic and Dynamic model separately. 
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The leading-edge proteins were then passed to functional annotation tool, Metascape, to 
identify the biological similarities between the two models. B) The relationship between 
the effect of protein expression on FEV1 overtime in the COPD 
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Definition of abbreviations: SPIROMICS = Subpopulations and Intermediate Outcomes 
Measures in COPD Study; COPDGene = Genetic Epidemiology of COPD; MESA-Lung 
= Multi-Ethnic Study of Atherosclerosis-Lung  
*pre-bronchodilator spirometry value  
**Exacerbation history not obtained  
 

Table 1: Cohort Characteristics 

 SPIROMICS 
(N=1,875) 

COPDGene 
(N=4,244) 

MESA-Lung 
(N = 483) 

Age (years) Mean (SD) 63.6 (9.09) 65.6 (8.7) 68.5 (9.3) 

Race  

White 1,462 (78.0%) 3,092 (72.9%) 0 (0%) 

Black 329 (17.5%) 1,152 (27.1%) 483 (100%) 

Other 84 (4.5%) 0 (0%) 0 (0%) 

Gender or Sex   

Male 995 (53.1%) 2,184 (51.5%) 225 (46.6%) 

Female 880 (46.9%) 2,060 (48.5%) 226 (46.8%) 

Smoking Status  

Consistent former smoker 1,118 (59.6%) 2,380 (56.1%) 215 (44.5%) 

Consistent never smoker 144 (7.7%) 350 (8.2%) 218 (45.1%) 

Consistent smoker 611 (32.6%) 1,514 (35.7%) 50 (10.4%) 

Smoking pack-years (years) Median (5
th

 

and 95
th

 percentile) 
42.0 (0, 95.0) 41.4 (0, 90.0) 

14.5 (0.75, 
57.0) 

Number of exacerbations treated with 
antibiotics or steroids in 12 months 
before baseline visit Mean (SD) 

0.3 (0.854) 0.3 (0.811) 
 

NA** 

Post bronchodilator FEV1 (liters) Mean 
(SD) 

2.6 (0.932) 2.2 (0.897) 2.2 (0.6)* 

% predicted post bronchodilator FEV1 
Mean (SD) 

75.2 (27.1) 79.0 (26.2) 95.5 (20.3)* 

Observed post bronchodilator FVC 
(liters) Mean (SD) 

3.5 (1.03) 3.2 (0.988) 2.9 (0.8)* 

% predicted post bronchodilator FVC 
Mean (SD) 

92.0 (18.2) 89.1 (17.8) 98.0 (20.2) 
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